
beachmat: a Bioconductor C++ API for accessing single-cell
genomics data from a variety of R matrix types

Aaron T. L. Lun1,*, Hervé Pagès2, Mike L. Smith3

1 Cancer Research UK Cambridge Institute, University of Cambridge, Li
Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
2 Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle,
WA 98109, USA
3 European Molecular Biology Laboratory (EMBL), Genome Biology Unit,
69117 Heidelberg, Germany

* aaron.lun@cruk.cam.ac.uk

Abstract

Recent advances in single-cell RNA sequencing have dramatically increased the number
of cells that can be profiled in a single experiment. This provides unparalleled resolution
to study cellular heterogeneity within biological processes such as differentiation.
However, the explosion of data that are generated from such experiments poses a
challenge to the existing computational infrastructure for statistical data analysis. In
particular, large matrices holding expression values for each gene in each cell require
sparse or file-backed representations for manipulation with the popular R programming
language. Here, we describe a C++ interface named beachmat , which enables agnostic
data access from various matrix representations. This allows package developers to write
efficient C++ code that is interoperable with simple, sparse and HDF5-backed matrices,
amongst others. We perform simulations to examine the performance of beachmat on
each matrix representation, and we demonstrate how beachmat can be incorporated into
the code of other packages to drive analyses of a very large single-cell data set.

Introduction 1

Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have led to an 2

explosion in the quantity of data that can be generated in routine experiments. 3

Droplet-based methods such as Drop-Seq [16], inDrop [12] and GemCode [25] allow 4

expression profiles to be captured for each of thousands to millions of cells. It hardly 5

needs to be said that this is a substantial amount of data – the expression profile for 6

each cell consists of a measure of expression for each transcriptionally active (and 7

polyadenylated) genomic feature, of which there are usually 10,000-40,000 in the current 8

genome annotations for most model organisms. Careful computational analysis is 9

critical to extract meaningful biology from these data, but the sheer volume strains 10

existing pipelines and methods designed for single-cell data processing. The challenge is 11

compounded by the presence of large-scale projects such as the Human Cell Atlas [19], 12

which aims to use single-cell ‘omics to profile every cell type in the human body. Similar 13

issues are encountered outside of transcriptomics, with single-cell ATAC-seq [3] and 14

bisulfite sequencing [22] providing region- to base-level resolution of biochemical events 15

1/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

(chromatin accessibility and DNA methylation, respectively). This results in even more 16

data compared to gene-level expression values. 17

It is fair to say that the R programming language [18] is the premier tool of choice 18

for statistical data analysis. R provides well-designed, rigorously-tested implementations 19

of a large variety of statistical methods. Its interactive nature makes it easy for 20

newcomers to learn and lends itself to data exploration and research, while its 21

programming features allow more experienced users to readily assemble complex 22

analyses. It is also extensible through the installation of optional packages, often 23

contributed by the research community, which provide implementations of bespoke 24

methods targeted to specific scientific problems. In particular, the Bioconductor 25

project [6] supports a number of packages for biological data analysis, many of which 26

focus on the processing of genomics data [9]. Packages are usually written in R but can 27

also include compiled code (e.g., in C/C++ or Fortran), which is beneficial for 28

computationally intensive tasks where high performance is required. For C++ code, 29

this process is facilitated by the Rcpp package [4], which simplifies the integration of 30

package code with the R application programming interface (API). 31

In its simplest form, a scRNA-seq data set consists of a count matrix where each 32

column is a cell, each row is a gene, and the value of each matrix entry is set to the 33

quantified expression (e.g., number of mapped reads, transcripts-per-million) for that 34

gene in that cell. This can be most directly represented in R as a simple matrix, where 35

each entry is explicitly stored in memory. Alternatively, it can be represented as a 36

sparse matrix using classes from the Matrix package [1], which saves memory by only 37

storing non-zero entries. This exploits the fact that scRNA-seq protocols have low 38

capture efficiencies [7] – RNA molecules are present in cells but are not 39

reverse-transcribed to cDNA for sequencing, resulting in a preponderance of zeroes in 40

the final count matrix. Droplet-based protocols also exhibit very low sequencing depth 41

per cell, further increasing the sparsity of the data. Another option is to use file-backed 42

representations such as those in the bigmemory [10] or HDF5Array packages, where the 43

data set is stored on disk and parts of it are extracted into memory upon request. In 44

each case, methods are provided in R for common operations such as subsetting, 45

transposition and arithmetic, such that code written by users (or other developers) can 46

be agnostic to the exact representation of the matrix. This simplifies the development 47

process and improves interoperability. 48

Unfortunately, for compiled code written in statically typed languages like C++, the 49

details of the matrix representation must be known during compilation. This makes it 50

difficult to write a single, general piece of code that can be applied to many different 51

representations. Writing multiple versions for each representation is difficult and 52

unsustainable when more representations become available. The alternative is to 53

perform all processing in R to exploit the availability of common methods. However, 54

this is an unappealing option for high-performance code. For scRNA-seq data stored in 55

matrices, consider the most common access pattern, i.e., looping across all cells or genes 56

and performing operations on the cell- or gene-specific expression profiles. If this was 57

performed in R, the code within the loop would need to be re-interpreted at each of 58

thousands or millions of iterations. This increases the computational time required to 59

perform analyses, which is inconvenient for small scripts, undesirable for interactive 60

analyses and unacceptable for large simulation studies. It would clearly be preferable to 61

implement critical functions (including loops) in compiled code wherever possible. 62

Here, we describe a C++ API named beachmat (using Bioconductor to handle Each 63

Matrix Type), which enables access to R matrix data in a manner that is agnostic to 64

the exact matrix representation. This allows developers to implement computationally 65

intensive algorithms in C++ that can be immediately applied to a wide range of R 66

matrix classes, including simple matrices, sparse matrices from the Matrix package, and 67

2/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

HDF5-backed matrices from the HDF5Array package. Using simulated and real 68

scRNA-seq data, we assess the performance of beachmat for data access from each 69

matrix representation. We show that each representation has specific strengths and 70

weaknesses, with a clear memory-speed trade-off that motivates the use of different 71

representations in different settings. We also demonstrate how beachmat can be used by 72

other Bioconductor packages to empower the analysis of a very large scRNA-seq data 73

set. By operating synergistically with existing Bioconductor infrastructure, beachmat 74

extends R’s capabilities for analyzing scRNA-seq and other large matrix data. 75

Description of the beachmat API 76

Overview of the API 77

The beachmat API uses C++ classes to provide a common interface for data access from 78

R matrix representations. We define a base class that implements common methods for 79

all matrix representations. Each specific representation is associated with a derived C++ 80

class that provides customized implementations of the access methods. The intention is 81

for a user to pass in an R matrix of any type, in the form of an RObject instance from 82

the Rcpp API (Figure 1). A function is then called to produce its C++ equivalent, 83

returning a pointer to the base class. This pointer is the same regardless of the R 84

representation and can be used in downstream code to achieve run-time polymorphism. 85

While the API is agnostic to the matrix representation, it still needs to know the 86

type of data that are stored in the matrix. We use C++ templating to recycle the code 87

to define specific classes for common data types, i.e., logical, integer, double-precision 88

floating point or character strings. The same methods are available for all classes of 89

each data type, improving their ease of use for developers. Briefly, when access to a 90

specific row or column (or a slice thereof) is requested, the API will fill a Rcpp-style 91

Vector object with corresponding data values from the matrix. A request for a specific 92

entry of the matrix will directly return the corresponding data value. 93

In the following text, we discuss some of the specifics of the beachmat API 94

implementation. This includes the details of each matrix representation, its memory 95

footprint and the computational time required for data access. 96

Performance with simple matrices 97

By default, R stores matrices as one-dimensional arrays of length NrNc, where Nr and 98

Nc are the number of rows and columns, respectively. This is done in column-major 99

format, i.e., the matrix entry (x, y) corresponds to array element x + Nry (assuming 100

zero-based indexing). We refer to this format as a “simple matrix”. The simple matrix 101

is easy to manipulate and the time required for data access is linear with respect to the 102

number of rows/columns (Supplementary Figure 1). However, its memory footprint is 103

directly proportional to its length. For example, a double-precision matrix containing 104

data for 10000 genes in each of one million cells would require 80 GB of RAM to store 105

in memory. This is currently not possible for most workstations, instead requiring 106

dedicated high-performance computing resources. Even smaller matrices will cause 107

problems on systems with limited memory due to R’s copy-on-write semantics. Thus, 108

the utility of simple matrices is limited to relatively small scRNA-seq data sets. 109

We compare the access speed of the beachmat API to that of a reference 110

implementation using only Rcpp. Both row and column access via beachmat require 111

20-50% more time compared to the reference (Supplementary Figure 1). This is 112

expected as beachmat is built on top of Rcpp, so the former cannot be faster than the 113

latter. Another reason is that, at each row/column access, beachmat copies the matrix 114

3/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

matrix

dgCMatrix

HDF5Matrix

...

RObject

numeric_
simple_matrix

numeric_
Csparse_matrix

numeric_
HDF5_matrix

*numeric_
 matrix

...
R Rcpp beachmat user code

#include "beachmat/numeric_matrix.h"

SEXP test_sparse_numeric(SEXP in, SEXP rorder) {
 BEGIN_RCPP
 auto ptr=beachmat::create_numeric_matrix(in);
 const int& nrows=ptr->get_nrow();
 const int& ncols=ptr->get_ncol();

 Rcpp::IntegerVector ro(rorder);
 if (ro.size()!=nrows) {
 throw std::runtime_error("incorrect length");
 }
 Rcpp::NumericMatrix output(nrows, ncols);

 // By row, in the specified order.
 Rcpp::NumericVector target(ncols);
 for (int r=0; r<nrows; ++r) {
 int currow=ro[r]-1;
 ptr->get_row(currow, target.begin());
 for (int c=0; c<ncols; ++c) {
 output[c * nrows + r]=target[c];
 }
 }

 return output;
 END_RCPP
}

SEXP test_sparse_numeric_slice(SEXP in, SEXP Inx) {
 BEGIN_RCPP
 auto ptr=beachmat::create_numeric_matrix(in);
 const int& nrows=ptr->get_nrow();

 Rcpp::IntegerMatrix inx(Inx);
 if (inx.nrow()!=nrows) {
 throw std::runtime_error("incorrect length");
 }
 Rcpp::List output(nrows);

 // By row, using the requested column indices.
 for (int r=0; r<nrows; ++r) {
 int start=inx(r, 0)-1, end=inx(r, 1);
 Rcpp::NumericVector target(end-start);
 ptr->get_row(r, target.begin(), start, end);
 output[r]=target;
 }

 return output;
 END_RCPP
}

Figure 1. Schematic of the beachmat workflow. Various matrix representations at the
R level are passed as RObject instances to a C++ function. beachmat identifies the
specific representation, constructs an instance of the appropriate C++ derived class,
and returns a pointer to base class. (In this case, a numeric matrix pointer is returned
for input matrices holding double-precision data.) This pointer can then be used in
user-level code in a manner that is agnostic to the details of the original representation.

data into a Vector by default. The reference implementation avoids the overhead of 115

creating a new copy by simply iterating across the original data. Our use of copying is 116

deliberate as it ensures that the API is consistent across matrix representations – for 117

example, file-based representations must copy the data to a new location in memory. 118

Copying is also required for operations that involve transformations and/or re-ordering 119

of data, as well as for libraries such as LAPACK that accept a pointer to a contiguous 120

block of memory. Nonetheless, for read-only access to column data in a simple matrix, 121

developers can direct beachmat to return an iterator directly to the start of the column. 122

This avoids making a copy and allows for some optimization in certain scenarios. 123

Performance with sparse matrices 124

The dgCMatrix class from the Matrix package stores sparse matrix data in compressed 125

sparse column-orientated (CSC) format (Supplementary Figure 2). Consider that every 126

non-zero entry in this matrix is characterized by a triplet: row x, column y and value v. 127

To convert this into the CSC format, entries are sorted in order of increasing x + Nry. 128

All entries with the same value of y are now grouped together in the ordered sequence. 129

We refer to each column-based group as Gy, the entries of which are sorted internally in 130

order of increasing x. The representation is further compressed by discarding y from 131

each triplet. All entries from the same column are at consecutive locations of the 132

ordered sequence, so only the start position of Gy on the sequence needs to be stored for 133

each column. (The end position of one column is simply the start position of the next 134

column.) This reduces memory usage to sINc + (sI + sv)N6=0 where sI is the size of an 135

integer, sv is the size of a single data element and N6=0 is the number of non-zero 136

elements in the matrix. For double-precision matrices with many rows, sparse matrices 137

will be more memory-efficient than their simpler “dense” counterparts if the density of 138

non-zero elements is less than ≈ 66% (assuming 4-byte integers and 8-byte doubles). 139

The CSC format simplifies data access by imposing structure on the non-zero entries. 140

4/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

1 2 5 10 20

50
10

0
20

0
50

0

Density (%)

T
im

e
(m

s)
●

● ● ●

● simple
sparse
naive

(a)

10 20 50 100

50
10

0
20

0
50

0
10

00
20

00

Number of rows (103)

T
im

e
(m

s)

●

●

●

●

(b)

Figure 2. Row access times for CSC matrices using a naive binary search or the
improved caching method in beachmat . For reference, access time for an equivalent
simple matrix in beachmat (simple) is also shown. (a) Access times with respect to
the density of non-zero entries, for a matrix with 10000 rows and 1000 columns. (b)
Access times with respect to the number of rows, for a matrix with 1000 columns and
1% non-zero entries. Horizontal dotted lines represent 2-fold increases in time.

When accessing a particular column y, all corresponding entries in Gy can be quickly 141

extracted by taking the relevant part of the ordered sequence. For low-density sparse 142

matrices, column access via beachmat is even faster than access from simple matrices 143

(Supplementary Figure 3). This is because only a few non-zero entries need to be copied 144

– the rest of the Vector can be rapidly filled with zeroes. As the density of non-zero 145

entries increases, column access becomes slower but is still comparable to that of simple 146

matrices. We note that the RcppArmadillo package [5] also handles sparse matrices via 147

the SpMat class. This provides faster column-level access than the beachmat API as no 148

copying of data is performed – see above for a related discussion with simple matrices. 149

Row-level access is more difficult in the CSC format as entries in the same row do 150

not follow a predictable pattern. If a row is requested, a binary search on x needs to be 151

performed within Gy for each column y, which requires an average time proportional to 152

log(Nr). In contrast, obtaining the next element in a row of a dense matrix can be done 153

in constant time by jumping Nr elements ahead on the one-dimensional array. To speed 154

up row access for sparse matrices, we realized that the most common access pattern 155

involves requests for consecutive rows. If row r is accessed, beachmat will loop over all 156

columns and cache the index of the first value of x in Gy that is not less than r. When 157

r + 1 is accessed, we simply need to check if each of the indices should be incremented 158

by one. This avoids the need to perform a new binary search and reduces the row access 159

time substantially (Figure 2). Even when the row access pattern is random, we mitigate 160

the time penalty by checking if the requested row is greater than or less than the 161

previous row for which indices are stored. If greater, we use the stored indices to set the 162

start of the binary search; if less, we use the indices to set the end of the search. This 163

reduces the search space and the amount of computational work for large Nr. 164

Despite these optimisations, row access with sparse matrices in beachmat remains 165

slower than that with simple matrices (Figure 2a). This is not surprising as there is 166

simply less work to do with dense matrices. The exception is with large matrices of low 167

density (Figure 2b), where the cost of CPU cache misses due to large jumps exceeds the 168

5/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

cost of handling both x and v per non-zero entry. Row access of either representation 169

with beachmat is also faster than that of sparse matrices with RcppArmadillo. For 170

example, for a 10000-by-1000 sparse matrix with 1% non-zero entries, beachmat with 171

sparse matrices takes 39.8 milliseconds to access each row; beachmat with dense 172

matrices takes 29.2 milliseconds; and RcppArmadillo takes 1921.4 milliseconds. These 173

results motivate the use of beachmat for data access from sparse matrices. 174

For highly sparse data, it is also possible to design efficient algorithms that 175

completely avoid processing the zeroes. To accommodate this, beachmat can be directed 176

to return the indices and values of all non-zero elements in each row or column. In 177

contrast, the default acccess methods will return all values of a row/column. This 178

ensures that the API is consistent with non-sparse representations but is inefficient for 179

operations where zeroes can be ignored. The user-level code can switch between 180

different algorithms depending on whether the input matrix is sparse or dense. In 181

general, we recommend this approach only for performance-critical parts of the code. 182

Writing, testing and maintaining two different versions of the same code doubles the 183

burden on the developer, which is precisely what beachmat was intended to avoid. 184

Performance with HDF5-based matrices 185

For large, non-sparse matrices that do not fit into memory, the most obvious option is 186

to store them on disk and load submatrices into memory as required. We consider the 187

use of the hierarchical data format (HDF5) [23], which provides flexible and efficient 188

storage of and access to large amounts of data in a filesystem-like format. Each large 189

matrix is stored as a dataset in a HDF5 file on disk, while in memory, it is represented 190

in R by a HDF5Matrix object from the HDF5Array package. The in-memory 191

representation is very small – fewer than 3 kilobytes in size – and simply extracts data 192

from disk upon request. Each HDF5Matrix instance provides methods to mimic a real 193

matrix object and allows users to manipulate the matrix in real time without the need 194

to load all of the data into memory. Compression of data in the HDF5 file also ensures 195

that the on-disk footprint remains manageable throughout the course of the analysis. 196

The beachmat API supports row- and column-level access from a HDF5Matrix 197

instance. Specifically, beachmat directly accesses data from the underlying HDF5 file 198

through the official HDF5 C++ API, which has been stored in the Rhdf5lib package for 199

portability. This means that even very large data sets can be accessed in C++, using 200

the same code for simple and sparse matrix representations. However, data access is 201

inevitably slower than that from a simple matrix as the data need to be read from disk 202

at regular intervals. We observed a 20-fold increase in the time required to access each 203

column and a 40-fold increase in the time required to access each row (Figure 3). This 204

suggests that the HDF5Matrix representation should be used sparingly – if possible, 205

smaller data sets should use alternative in-memory representations for faster access. 206

A key determinant of the performance of the HDF5Matrix representation is the 207

layout of data in the HDF5 file. There are two layout choices for large matrices: 208

contiguous or chunked. In the contiguous layout, raw data are flattened into a 209

one-dimensional array analogous to column-major storage of simple matrices in memory. 210

In the chunked layout, data are arranged into “chunks” of a pre-defined size. For 211

example, in a row-chunked layout, each chunk would correspond to a row of the matrix. 212

Each chunk is always read (or written) in its entirety, even when only a portion of the 213

chunk is requested. Chunking is required for fast access to data, provided that the layout 214

is consistent with the expected access pattern. For example, a row-chunked layout allows 215

fast access to each row, as only one disk read is required to obtain the chunk for each 216

row. However, access to any given column is very slow, as the value of each element in 217

the column must be obtained by performing a disk read for every row chunk in its 218

entirety, i.e., Nr reads in total. In practice, both row and column accesses are often 219

6/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

1 2 5 10

20
50

10
0

20
0

50
0

10
00

20
00

50
00

Column access

Number of columns (103)

T
im

e
(m

s)
●

●

●

●

● simple
HDF5 (column)
HDF5 (rectangle)

(a)

10 20 50 100

50
10

0
20

0
50

0
10

00
20

00
50

00

Row access

Number of rows (103)

T
im

e
(m

s)

●

●

●

●

● simple
HDF5 (row)
HDF5 (rectangle)

(b)

Figure 3. Access times for a HDF5-backed matrix using column/row-chunking or
rectangular 100 × 100 chunks. Times for a simple matrix are shown for comparison. (a)
Column access time with respect to the number of columns, for a dense matrix with
10000 rows. (b) Row access time with respect to the number of rows, for a dense matrix
with 1000 columns. Horizontal dotted lines represent 2-fold increases in time.

required (e.g., to access gene- and cell-level scRNA-seq data), which means that the file 220

layout must be carefully chosen to allow for these orthogonal access patterns. 221

The choice of file layout is the responsibility of the process that constructs the HDF5 222

file. This can be the original data provider; the developer whose function returns a 223

HDF5Matrix; or a user who coerces their data into a HDF5Matrix. As such, the chunking 224

scheme is generally outside of beachmat ’s control, preventing the API from automatically 225

choosing the optimal layout for the requested access pattern. Nonetheless, for a given 226

layout, beachmat will dynamically resize the HDF5 chunk cache to speed up access to 227

consecutive rows or columns – see Additional Note 1 for more information. This permits 228

fast extraction of both row- and column-based data from the same layout (Figure 3, 229

Supplementary Figures 4-5, Additional Note 2). beachmat also provides a function to 230

convert an existing HDF5 file to pure row- or column-based chunks (Additional Note 2), 231

which performs optimally for random row and column access, respectively. 232

Another benefit of chunking is that the data in each chunk can be compressed using 233

filters such as ZLIB and SZIP. This decreases the size of the HDF5 file by at least 4-fold 234

for dense matrices (80 MB to 19 MB for a 10000-by-1000 double-precision matrix), with 235

even greater gains for sparse data (9 MB for the same matrix with 1% non-zero entries). 236

The use of smaller files reduces the risk that disk space will be exceeded during the 237

course of an analysis. This is important when many on-disk matrices need to be 238

constructed, e.g., to store transformed expression values or intermediate results. 239

Other matrix types 240

While the matrix representations described above are the most commonly used for 241

storing scRNA-seq data, beachmat can be easily extended to other representations. For 242

example, the packed symmetric representation from the Matrix package only stores the 243

upper or lower half of a symmetric matrix. This provides an efficient representation of 244

distance matrices, which are often used to cluster cells based on their expression profiles. 245

beachmat supports row and column access of data from packed symmetric matrices 246

7/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

through the same interface that is used for the other representations. 247

beachmat also supports data access from RleMatrix instances from the 248

DelayedArray package. The RleMatrix stores its values as a column-major run-length 249

encoding, where stretches of the same value in the one-dimensional array are stored as a 250

single run. This reduces memory usage in a more general manner than a sparse matrix, 251

especially for matrices with many small but non-zero counts. As with CSC matrices, 252

beachmat caches the row indices to speed up consecutive row access. 253

Another option for storing matrices on disk is to use the bigmemory package [10]. 254

This constructs an in-memory big.matrix object that contains external pointers 255

pointing to an on-disk representation. In beachmat , we have deliberately chosen 256

HDF5Matrix rather than big.matrix due to the standardized nature of the HDF5 257

specification and portability of HDF5 files across systems. Nonetheless, we note that it 258

is simple to extend beachmat to accept big.matrix inputs if required. 259

Storing matrix output 260

In addition to accessing data in existing matrices, the beachmat API allows values 261

generated in C++ to be stored in various matrix representations for output to R. For 262

integer, logical, double-precision and character data, simple and HDF5-backed matrices 263

can be constructed that are indistinguishable from those generated in R. Logical and 264

double-precision data can also be stored in CSC format, where only true or non-zero 265

values are retained in lgCMatrix or dgCMatrix instances, respectively. (The Matrix 266

package does not support sparse integer or character matrices, so these are ignored.) 267

The output representation can either be explicitly specified in the code, or it can be 268

automatically chosen to match some input representation. To illustrate, consider a C++ 269

function that accepts a matrix as input and returns a matrix of similar dimensions. If 270

the input is in the simple matrix format, one might assume that there is enough 271

memory to also store the output in the simple format; whereas if the input is a 272

HDF5Matrix, one could presume that the output would be similarly large, thus requiring 273

a HDF5Matrix representation for the results. This means that results of processing in 274

C++ can be readily returned in the most suitable representation for manipulation in R. 275

Note that the layout considerations described for read access to HDF5-backed input 276

are equally applicable to HDF5-backed output. If rows/columns are to be filled 277

consecutively, we suggest using rectangular chunks that are proportional to the 278

dimensions of the matrix (Additional Note 1). For random write access, pure column- 279

or row-based chunks are more suitable. Chunk dimensions can be specified directly with 280

the beachmat API; or by using functions from the HDF5Array package to set the global 281

chunking dimensions in R, which will be respected by beachmat in the C++ code. 282

Performance of beachmat on real data sets 283

Access times for a small brain data set 284

We evaluated the performance of beachmat with the different matrix representations on 285

real data, using the count matrix from a scRNA-seq study of the mouse brain [24]. This 286

data set contains integer expression values for 19972 genes in each of 3005 cells, of 287

which 18% are non-zero. We note that this is not a particularly large matrix, especially 288

in the context of droplet-based experiments that routinely generate data for tens of 289

thousands of cells. However, its size ensures that each of the matrix representations – 290

including those that are stored in memory – can be easily evaluated and compared. 291

The performances of the different representations on the brain data set largely 292

recapitulate the results with simulated data. Row and column accesses from a simple 293

8/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

si
m

pl
e

sp
ar

se

H
D

F
5

(c
ol

um
n)

H
D

F
5

(r
ec

ta
ng

le
)

Column access

T
im

e
(m

s)
0

500

1000

1500

(a)

si
m

pl
e

sp
ar

se

H
D

F
5

(c
ol

um
n)

H
D

F
5

(r
ec

ta
ng

le
)

Row access

T
im

e
(m

s)

0

1000

2000

3000

4000

5000

6000

(b)

Figure 4. Access times for various matrix representations of the mouse brain data set
from Zeisel et al. [24]. (a) Column access time for each representation, based on calculation
of column sums. For HDF5Matrix, a column-chunked layout and a rectangular 200 × 200
layout were tested. (b) Row access time for each representation. For HDF5Matrix, a
row-chunked layout and a rectangular 200 × 200 layout were tested. Heights represent
the average of 10 repeated timings; standard errors were negligible and not shown.

matrix are the fastest, followed by accesses from a sparse matrix (Figure 4). 294

HDF5-backed matrices provide the slowest access but also the smallest memory footprint 295

(2 KB, compared to 480 MB for simple matrices and 130 MB for sparse matrices). The 296

on-disk size of the HDF5 file is also relatively small, requiring only 16-20 MB of space 297

for each HDF5Matrix instance. These results demonstrate that the strengths and 298

weaknesses of the different representations are recapitulated with real data. 299

Analysis of the very large 10X data set 300

To demonstrate the utility of beachmat for faciliting analyses of large data sets, we 301

converted several functions in the scater [17] and scran packges [14] to use the beachmat 302

API in their C++ code. We applied these functions to the 1 million neuron data set 303

from 10X Genomics (see Methods). First, we called cell cycle phase with the cyclone 304

method [21]. The vast majority of cells were identified as being in G1 phase (Figure 5a), 305

consistent with the presence of differentiated neurons that are not actively cycling. 306

Next, we applied the deconvolution method [13] to compute size factors to normalize for 307

cell-specific biases. The size factor generally correlated well with the library size for each 308

cell (Figure 5b). Deviations were observed for a small number of cells, consistent with 309

composition effects [20] caused by differential expression between cell subpopulations. 310

We then detected highly variable genes (HVGs) based on the variance of the 311

log-normalized expression values [14]. This was performed while blocking on the 312

sequencing library of origin for each cell, to regress out technical factors of variation 313

unrelated to biological heterogeneity. We identified a number of HVGs (Figure 5c), 314

including genes involved in neuronal differentiation and function such as Neurod6 [11] 315

and Sox11 [2]. Finally, we performed dimensionality reduction on the HVG expression 316

profiles for all cells using principal components analysis (PCA). This showed clear 317

substructure in the first two principal components (PCs), reflecting the diversity of cell 318

types in the mouse brain. Indeed, once PCA has been performed, the first 10-20 PCs for 319

9/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

(a) (b)

(c) (d)

Figure 5. Analysis of the 10X million neuron data set. (a) Cell cycle phase assignment,
based on the G1 and G2M scores reported by cyclone. The intensity of colour is
proportional to the density of cells at each plot location. Dashed lines indicate the score
boundaries corresponding to each phase, and the number of assigned cells is also shown
for each phase. (b) Size factor for each cell from the deconvolution method, plotted
against the library size. Cells were coloured according to the deviation from the median
log-ratio of the size factor to the library size for all cells. (c) Variance of the normalized
log-expression values for each gene, plotted against the mean log-expression. The red
line indicates the mean-dependent trend fitted to all genes. Orange points correspond
to highly variable genes detected at a false discovery rate of 5%, with the top 10 genes
highlighted. (d) PCA plot generated from the HVG expression profiles of all cells. The
variance explained by each of the first two principal components is shown in brackets.

10/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

each cell can be used as a summary of its expression profile. This can be stored in 320

memory as a simple matrix and supplied directly to other R functions for further 321

processing, provided the underlying algorithms are scalable with the number of cells. 322

While a full characterisation of this data set is outside the scope of this paper, it is 323

clear that we can proceed through many parts of the scRNA-seq analysis pipeline using 324

beachmat-driven C++ functions. By taking advantage of the file-backed HDF5Matrix, 325

this analysis can be conducted in reasonable time on a desktop with modest 326

specifications (see Methods). In particular, the incoporation of the beachmat API only 327

required modest modifications to the existing C++ code for scRNA-seq data analysis. 328

Obtaining this level of functionality without beachmat would be much more difficult. 329

Discussion 330

The popularity of the R programming language stems, in part, from the ease of its 331

extensibility. Packages can be easily developed by the research community to implement 332

cutting-edge algorithms for new sources of data. The increasing number of packages 333

designed to analyze scRNA-seq data (13 on Bioconductor at time of writing) provides a 334

case in point. Here, we describe the beachmat package, which provides a common API 335

for data access from a variety of R matrix representations in C++. This simplifies 336

package development and improves interoperability within the R/Bioconductor 337

ecosystem, by enabling arbitrary C++ code to accept many different matrix inputs 338

without any further effort on the part of the developer. While we have focused on 339

scRNA-seq in this paper, analyses of other large matrices (e.g., genome-wide contact 340

matrices in Hi-C data [15]) may also benefit from beachmat-driven code. 341

As we have shown, each matrix representation has specific strengths and weaknesses 342

for data access. Matrices that occupy more memory generally provide faster access, as 343

data do not need to be unpacked or retrieved from disk. Obviously, though, this may 344

not be practical for large data sets. Sparse matrix representations are not effective if 345

sparsity-destroying operations (e.g., mean-centering during PCA) are applied. Even 346

high-performance computing resources have their limits, especially in academic 347

environments with many users where high-resource jobs are difficult to schedule. In 348

such cases, it may be preferable to sacrifice speed for reduced memory consumption by 349

using a file-backed representation such as the HDF5Matrix class. By incorporating 350

beachmat into the C++ code, an R package can dynamically accept different matrix 351

types appropriate for the size of the data set and computing environment. 352

An alternative to using beachmat is to write C++ code for one matrix representation 353

(usually simple matrices) and apply it to chunks of a given input matrix. Each chunk is 354

coerced into the chosen representation and the C++ code is applied to the coerced 355

object. After looping across all chunks, the chunk-wise results are combined to obtain 356

the final result for the entire matrix. However, this hybrid approach requires extensive 357

coordination between R and C++ to keep track of the chunk that is being processed, to 358

monitor intermediate variables that persist between chunks, and to combine the results 359

in an appropriate manner. The need to ensure that R and C++ are interacting correctly 360

at multiple points imposes a significant burden on the developer. Computational 361

efficiency is also reduced by the use of R loops, multiple matrix coercions and repeated 362

C++ function calls. The beachmat API provides a natural solution by moving the 363

entire procedure into C++, simplifying development and maintenance. 364

It is straightforward to integrate beachmat into C++ code in existing R packages. 365

Our modifications to scran and scater have enabled the analysis of a very large 366

scRNA-seq data set in low-memory environments using file-backed representations, 367

without compromising speed for smaller data sets that can be held fully in memory. We 368

anticipate that beachmat will be useful to developers of computationally intensive 369

11/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

bioinformatics methods that need to access data from different matrices. Given the 370

infrastructure that is now available for handling large data sets, it is fair to say that the 371

rumours of R’s demise (Supplementary Figure 6) have been greatly exaggerated. 372

Code availability 373

beachmat is available as part of version 3.6 of the Bioconductor project 374

(https://bioconductor.org/packages/beachmat). The scran and scater packages 375

that were modified to support beachmat can also be installed from Bioconductor. All 376

code used to perform the simulations and real data analyses are available on Github 377

(https://github.com/LTLA/MatrixEval2017). 378

Author contributions 379

ATLL conceived and implemented the beachmat C++ API, performed the data access 380

simulations and analyzed the 10X data set. HP adapted the HDF5Array and 381

DelayedArray packages to interface with beachmat . MLS ported the HDF5 C++ API 382

into Rhdf5lib, to support HDF5 read/write access in beachmat . 383

Acknowledgements 384

We thank Martin Morgan, Andrew McDavid, Peter Hickey, Raphael Gottardo, Mike 385

Jiang, Vince Carey, John Readey and other members of the Bioconductor single-cell big 386

data working group for useful discussions. We thank Davis McCarthy for his assistance 387

with incorporating beachmat into scater. We also thank John Marioni for helpful 388

comments on the manuscript. 389

Funding statement 390

ATLL was supported by core funding from Cancer Research UK (award no. 17197 to 391

Dr. John Marioni), the University of Cambridge and Hutchison Whampoa Ltd. MLS 392

was funded by The German Network for Bioinformatics Infrastructure (de.NBI) 393

Förderkennzeichen Nr. 031A537 A. 394

Methods 395

Access timings with simulated data 396

Double-precision dense matrices of a specified dimension were filled with values sampled 397

from a standard normal distribution. By default, all dense matrices were constructed in 398

the simple format. Double-precision CSC matrices of a specified dimension and density 399

were generated as dgCMatrix instances, using the rsparsematrix function from the 400

Matrix package. Conversion of each matrix object into other representations, if 401

necessary, was performed prior to timing access with the C++ APIs. 402

To time row and column access with beachmat and other APIs, we wrote a C++ 403

function that computes the sum of values in each row or column, respectively. 404

Calculation of the row/column sums ensures that each entry of the row/column is 405

visited in order to use its value. This means that each API has to do some work, 406

avoiding trivially fast approaches where a pointer or iterator is returned to the start of 407

12/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://bioconductor.org/packages/beachmat
https://github.com/LTLA/MatrixEval2017
https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

the column/row. Summation is also simple enough that the access time of the API will 408

still constitute a major part of the overall time spent by the function. 409

Timings were performed in R using the system.time function on a call to each C++ 410

function via .Call. This was repeated 10 times with new matrices, and the average 411

time and standard error were computed for each access method. Row and column access 412

times were evaluated with respect to the numbers of rows and columns, respectively. 413

For sparse matrices, times were also recorded with respect to the density of non-zero 414

entries. In all cases, standard errors were negligible and not plotted for clarity. 415

Access timings with the brain data 416

scRNA-seq data from the mouse brain study [24] were obtained as a count matrix from 417

http://linnarssonlab.org/cortex/. Counts were read into R and converted into a 418

double-precision simple matrix, a dgCMatrix or a HDF5Matrix. For each representation, 419

timings of the calculation of row or column sums were performed as previously 420

described. This was repeated 10 times to obtain an average time. Column- and row-wise 421

chunking were used for timing column and row access, respectively, of a HDF5Matrix. 422

Analysis of the 1 million neuron data set 423

We downloaded the 1 million neuron data set from the 10X Genomics website 424

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1. 425

3.0/1M_neurons, obtained 15 June 2017). We used the TENxGenomics package 426

(https://github.com/mtmorgan/TENxGenomics) to compute metrics for each cell, 427

including the total number of unique molecular identifiers (UMIs) and the total number 428

of expressed genes (i.e., with at least one UMI). Low-quality cells were identified as 429

those with log-total UMI counts or log-numbers of expressed genes that were more than 430

three median absolute deviations below the median value for all cells in the same 431

sequencing library. After filtering out the low-quality cells, we converted the count data 432

into a HDF5Matrix with column-based chunks using the HDF5Array package. 433

To call cell cycle phase, we applied the cyclone method [21] from the scran package 434

using the pre-defined mouse classifier. This was performed over three cores to reduce 435

computational time. To compute size factors, we used the computeSumFactors method 436

after splitting the data set into chunks of 2000-3000 cells. Cells in each chunk were 437

normalized using the deconvolution method [13], and size factors were calibrated across 438

chunks by normalizing the chunk-specific pseudo-cells. The size factor for each cell was 439

used to compute normalized log-expression values [14], which were represented in a new 440

HDF5Matrix object. Note that, when computing the size factors, we only used genes 441

with an average count above 0.1 (as calculated by the calcAverage function in scater). 442

This ensures that the pooled expression profiles will not be dominated by zeros. 443

To identify highly variable genes, we used the trendVar and decomposeVar functions 444

from scran. We computed the variance of the normalized log-expression values for each 445

gene while blocking on the sequencing library of origin. We fitted a mean-dependent 446

trend to the variances to model the mean-variance relationship. Assuming that most 447

genes were not highly variable, we tested whether the residual from the trend for each 448

gene was significantly greater than zero. Highly variable genes were identified as those 449

with a significantly non-zero component at a FDR of 5%. To reduce computational 450

time, the severity of the multiple testing correction and to avoid discreteness when 451

fitting the trend, we only considered genes with an average count above 0.01. 452

We used a simple approach to perform PCA on a very large matrix. After subsetting 453

the expression matrix by the detected HVGs, we mean-centred and standardized the 454

expression vector for each gene. We randomly selected 10000 cells and coerced the 455

expression profiles into a simple matrix. This was used as input into the prcomp 456

13/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

http://linnarssonlab.org/cortex/
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://github.com/mtmorgan/TENxGenomics
https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

function to obtain the loading vectors. We then projected all cells onto the space 457

defined by the first two loading vectors to obtain PC1 and PC2 coordinates for all cells. 458

This approach assumes the selected 10000 cells provide a good representation of the 459

variance structure in the full population, allowing the approximate loading vectors to be 460

obtained by PCA on the smaller matrix. More sophisticated strategies such as 461

randomized PCA [8] could also be used, but a correct and efficient implementation of 462

such algorithms for HDF5Matrix objects is beyond the scope of this paper. 463

Details of the computing environment 464

All timings and analyses were performed on a Dell OptiPlex 790 desktop with an Intel 465

Core i5 processor and 8 GB of RAM, running Ubuntu 14.04.5 with R 3.4.0 and 466

Biocondcutor 3.6. On this machine, the 10X data analysis required approximately 4 467

hours for quality control and construction of the HDF5Matrix; 22 hours for cell cycle 468

phase assignment; 8 hours for calculation of size factors and generation of normalized 469

expression values; 10 hours for detecting highly variable genes; and 8 hours for PCA. 470

Only the phase assignment step was run on multiple cores. 471

References 472

1. D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2017. 473

R package version 1.2-10. 474

2. M. Bergsland, M. Werme, M. Malewicz, T. Perlmann, and J. Muhr. The establishment 475

of neuronal properties is controlled by Sox4 and Sox11. Genes Dev., 20(24):3475–3486, 476

Dec 2006. 477

3. J. D. Buenrostro, B. Wu, U. M. Litzenburger, D. Ruff, M. L. Gonzales, M. P. Snyder, 478

H. Y. Chang, and W. J. Greenleaf. Single-cell chromatin accessibility reveals principles 479

of regulatory variation. Nature, 523(7561):486–490, Jul 2015. 480

4. D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of 481

Statistical Software, 40(8):1–18, 2011. 482

5. D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with 483

high-performance C++ linear algebra. Computational Statistics and Data Analysis, 484

71:1054–1063, March 2014. 485

6. R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, 486

L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, 487

F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, 488

L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open software development for 489

computational biology and bioinformatics. Genome Biol., 5(10):R80, 2004. 490

7. D. Grun and A. van Oudenaarden. Design and analysis of single-cell sequencing 491

experiments. Cell, 163(4):799–810, Nov 2015. 492

8. N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: 493

Probabilistic algorithms for constructing approximate matrix decompositions. SIAM 494

Review, 53(2):217–288, 2011. 495

9. W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C. 496

Bravo, S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen, R. A. 497

Irizarry, M. Lawrence, M. I. Love, J. MacDonald, V. Obenchain, A. K. Oleś, H. Pages, 498

A. Reyes, P. Shannon, G. K. Smyth, D. Tenenbaum, L. Waldron, and M. Morgan. 499

Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods, 500

12(2):115–121, Feb 2015. 501

10. M. J. Kane, J. Emerson, and S. Weston. Scalable strategies for computing with massive 502

data. Journal of Statistical Software, 55(14):1–19, 2013. 503

14/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

11. J. N. Kay, P. E. Voinescu, M. W. Chu, and J. R. Sanes. Neurod6 expression defines new 504

retinal amacrine cell subtypes and regulates their fate. Nat. Neurosci., 14(8):965–972, 505

Jul 2011. 506

12. A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, 507

D. A. Weitz, and M. W. Kirschner. Droplet barcoding for single-cell transcriptomics 508

applied to embryonic stem cells. Cell, 161(5):1187–1201, May 2015. 509

13. A. T. Lun, K. Bach, and J. C. Marioni. Pooling across cells to normalize single-cell RNA 510

sequencing data with many zero counts. Genome Biol., 17:75, Apr 2016. 511

14. A. T. Lun, D. J. McCarthy, and J. C. Marioni. A step-by-step workflow for low-level 512

analysis of single-cell RNA-seq data with Bioconductor. F1000Res, 5:2122, 2016. 513

15. A. T. Lun, M. Perry, and E. Ing-Simmons. Infrastructure for genomic interactions: 514

Bioconductor classes for Hi-C, ChIA-PET and related experiments. F1000Res, 5:950, 515

2016. 516

16. E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A. R. 517

Bialas, N. Kamitaki, E. M. Martersteck, J. J. Trombetta, D. A. Weitz, J. R. Sanes, A. K. 518

Shalek, A. Regev, and S. A. McCarroll. Highly parallel genome-wide expression profiling 519

of individual cells using nanoliter droplets. Cell, 161(5):1202–1214, May 2015. 520

17. D. J. McCarthy, K. R. Campbell, A. T. Lun, and Q. F. Wills. Scater: pre-processing, 521

quality control, normalization and visualization of single-cell RNA-seq data in R. 522

Bioinformatics, 33(8):1179–1186, Apr 2017. 523

18. R Core Team. R: A Language and Environment for Statistical Computing. R 524

Foundation for Statistical Computing, Vienna, Austria, 2017. 525

19. A. Regev, S. Teichmann, E. S. Lander, I. Amit, C. Benoist, E. Birney, B. Bodenmiller, 526

P. Campbell, P. Carninci, M. Clatworthy, H. Clevers, B. Deplancke, I. Dunham, 527

J. Eberwine, R. Eils, W. Enard, A. Farmer, L. Fugger, B. Gottgens, N. Hacohen, 528

M. Haniffa, M. Hemberg, S. K. Kim, P. Klenerman, A. Kriegstein, E. Lein, 529

S. Linnarsson, J. Lundeberg, P. Majumder, J. Marioni, M. Merad, M. Mhlanga, 530

M. Nawijn, M. Netea, G. Nolan, D. Pe’er, A. Philipakis, C. P. Ponting, S. R. Quake, 531

W. Reik, O. Rozenblatt-Rosen, J. R. Sanes, R. Satija, T. Shumacher, A. K. Shalek, 532

E. Shapiro, P. Sharma, J. Shin, O. Stegle, M. Stratton, M. J. T. Stubbington, A. van 533

Oudenaarden, A. Wagner, F. M. Watt, J. S. Weissman, B. Wold, R. J. Xavier, and 534

N. Yosef. The human cell atlas. bioRxiv, 2017. 535

20. M. D. Robinson and A. Oshlack. A scaling normalization method for differential 536

expression analysis of RNA-seq data. Genome Biol., 11(3):R25, 2010. 537

21. A. Scialdone, K. N. Natarajan, L. R. Saraiva, V. Proserpio, S. A. Teichmann, O. Stegle, 538

J. C. Marioni, and F. Buettner. Computational assignment of cell-cycle stage from 539

single-cell transcriptome data. Methods, 85:54–61, Sep 2015. 540

22. S. A. Smallwood, H. J. Lee, C. Angermueller, F. Krueger, H. Saadeh, J. Peat, S. R. 541

Andrews, O. Stegle, W. Reik, and G. Kelsey. Single-cell genome-wide bisulfite sequencing 542

for assessing epigenetic heterogeneity. Nat. Methods, 11(8):817–820, Aug 2014. 543

23. The HDF Group. Hierarchical Data Format, version 5, 1997-2017. 544

http://www.hdfgroup.org/HDF5/. 545

24. A. Zeisel, A. B. Munoz-Manchado, S. Codeluppi, P. Lonnerberg, G. La Manno, 546

A. Jureus, S. Marques, H. Munguba, L. He, C. Betsholtz, C. Rolny, G. Castelo-Branco, 547

J. Hjerling-Leffler, and S. Linnarsson. Brain structure. Cell types in the mouse cortex 548

and hippocampus revealed by single-cell RNA-seq. Science, 347(6226):1138–1142, Mar 549

2015. 550

25. G. X. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo, 551

T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, 552

J. G. Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt, 553

C. M. Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, 554

C. McFarland, K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, 555

T. S. Mikkelsen, B. J. Hindson, and J. H. Bielas. Massively parallel digital 556

transcriptional profiling of single cells. Nat Commun, 8:14049, Jan 2017. 557

15/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 24, 2017. ; https://doi.org/10.1101/167445doi: bioRxiv preprint

https://doi.org/10.1101/167445
http://creativecommons.org/licenses/by/4.0/

