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Abstract 
DNA is subject to constant chemical modification and damage, which eventually results in 
variable mutation rates throughout the genome. Although detailed molecular mechanisms of 
DNA damage and repair are well-understood, damage impact and execution of repair across a 
genome remains poorly defined. To bridge the gap between our understanding of DNA repair and 
mutation distributions we developed a novel method, AP-seq, capable of mapping apurinic sites 
and 8oxoguanidine bases at high resolution on a genome-wide scale. We directly demonstrate 
that the accumulation rate of oxidative damage varies widely across the genome, with hot spots 
acquiring many times more damage than cold spots. Unlike SNVs in cancers, damage burden 
correlates with marks for open chromatin notably H3K9ac and H3K4me2. Oxidative damage is 
also highly enriched in transposable elements and other repetitive sequences. In contrast, we 
observe decreased damage at promoters, exons and termination sites, but not introns, in a 
seemingly transcription-independent manner. Leveraging cancer genomic data, we also find 
locally reduced SNV rates in promoters, genes and other functional elements. Taken together, our 
study reveals that oxidative DNA damage accumulation and repair differ strongly across the 
genome, but culminate in a previously unappreciated mechanism that safe-guards the regulatory 
sequences and the coding regions of genes from mutations. 
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1. Introduction 
The integrity of DNA is constantly challenged by damaging agents and chemical modifications. 
Base oxidation is a frequent insult that can arise from endogenous metabolic processes as well as 
from exogenous sources such as ionizing radiation. At background levels, a human cell is 
estimated to undergo 100 to 500 such modifications per day, most commonly resulting in 8-oxo-
7,8-dehydroguanine (8OxoG) 1. Left unrepaired, 8OxoG can compromise transcription, DNA 
replication, and telomere maintenance. Moreover, damaged sites provide direct and indirect 
routes to C-to-A mutagenesis.  

Oxidative damage is reversed in a two-step process through the base excision repair (BER) 
pathway. The damaged base is first recognized and excised by 8Oxo-G-glycohydrolase 1 
(OGG1), leaving an apurinic site (AP-site). Glycohydrolysis is highly efficient, with a half-life of 
11 min 2. In a second step, the AP-site is removed through backbone incision by AP-lyase 
(APEX1) and subsequently replaced with an undamaged nucleotide.  

Though originally controversial 3,4, there is now broad acceptance that mutation rates vary across 
different regions within genomes. Background mutation rates in Escherichia coli genomes were 
shown to vary non-randomly between genes by an order of magnitude, with highly expressed 
genes displaying lower mutation rates 5. In cancer genomes, single nucleotide variants (SNVs) 
tend to accumulate preferentially in heterochromatin 6,7. More recently, it was reported that SNV 
densities in cancers are lower in regions surrounding transcription-factor-binding, but are 
elevated at the binding sites themselves and at sites with a high nucleosome occupancy 8–11. 
Although these variabilities remain mechanistically unexplained, they likely arise through a 
combination of regional differences in damage sensitivity and the accessibility to the DNA repair 
machinery 12. However, since mutations represent the endpoint of mutagenesis, it is impossible to 
tease apart the contributions from damage and repair using re-sequencing data alone.  

To further our understanding of the molecular mechanisms underlying local heterogeneity of 
mutation rates, direct measurement of specific DNA-damage types is required at high resolution 
and on a genomic scale. Dissecting these mechanisms will help understand the local sensitivities 
of the genome and why certain regions appear to be protected. 

 

2. A genome-wide map of oxidative damage 
To measure oxidative damage across the genome, we developed an approach that detects AP-
sites using a biotin-labelled aldehyde-reactive probe 13; (Figure 1A and Supplementary Figure 
S1). After fragmentation, biotin-tagged DNA with the original damage sites was pulled down 
using streptavidin magnetic beads and prepared for high-throughput sequencing. The signal was 
quantified as the Relative Enrichment of the pull-down over the input DNA, with positive values 
indicating regions of damage accumulation.  

Figure 1B provides the first high-resolution, genome-wide view of oxidative DNA damage. It 
immediately highlights the extreme variability in the density of AP-sites across the human 
genome after X-ray treatment in HepG2 cells: though the genome-wide mean Relative 
Enrichment is 0.1, local enrichments vary from less than -0.6 to more than 3.0. Hot and cold 
spots are found across all chromosomes and do not appear to follow a particular distribution 
pattern: whereas the entire chromosome 19 is enriched for damage, on chromosome 7 we observe 
pericentromeric hot spots. Figure 1C shows a more detailed profile of chromosome 16, including 
distributions for treated and untreated samples. The profiles of the X-ray treated samples indicate 
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an overall treatment-dependent accumulation of damage; however local distribution patterns are 
maintained, suggesting that hot spots gain the most additional damage. In Figure 1D, we zoom 
further into an 8kb region upstream of the MALT1 gene. Here, differences between the treated 
and untreated samples become apparent, with damage particularly accumulating on Alu 
transposable elements after X-ray exposure. These plots exemplify how variable damage 
enrichments can be, with hot and cold spots occurring from ~50-500bp to kilo base resolution.  

To assess whether the distribution of AP-sites is representative of 8OxoG we applied 
recombinant OGG1 in vitro to the extracted DNA (Figure 1A); this additional treatment excises 
any remaining 8OxoG after DNA extraction and results in a set of secondary AP-sites. Any 
difference in enrichment between the original and OGG1-enriched samples indicates the presence 
of unprocessed 8OxoG in vivo. The control and X-ray treated samples are highly correlated 
overall (Figure 1E). Moreover, the OGG1-enriched samples are very similar to the unenriched, 
indicating that the AP-site pull-down provides a good measure of the in vivo 8OxoG distribution.  

 

3. Genomic features shape distribution of oxidative damage  

3.1 Damage accumulates preferentially in euchromatin but not heterochromatin 
To identify potential causes of variation across the genome we compiled for the same HepG2 cell 
line a set of 18 genomic and epigenomic features associated with DNA damage, repair, and 
patterns of mutagenesis (Figure 2A). Previous studies reported that SNV densities in cancer 
genomes were positively correlated with heterochromatic markers (eg, H3K9me3) and negatively 
correlated with euchromatic ones (eg, H3K4me3, H3K9ac) 7. Here, oxidative DNA damage 
displays the opposite trend, correlating with open chromatin and anticorrelating with closed 
chromatin. At first glance, it is surprising that SNVs and DNA damage should show opposing 
trends; open chromatin is probably more accessible to damage-causing agents, but is also more 
accessible for repair and it is more accurately replicated. The balance of these three mechanisms 
leads ultimately to decreased mutations in euchromatin despite the increased damage levels. 
Observations are upheld at higher resolutions for many features; for instance, the Spearman’s 
correlation with H3K9me3 is -0.48 at 1Mb resolution, -0.34 at 100kb, -0.3 at 10kb, and -0.14 at 
1kb resolution. For other features, these correlations break down; DNase I hypersensitivity 
correlates at low resolution (Spearman’s r = 0.5 and 0.3 at 1Mb and 100kb respectively), but the 
relationship is lost at higher resolutions (r = 0.06 and -0.06 at 10kb and 1kb respectively). This 
suggests that more detailed genomic features and functional elements also play a role in shaping 
the local damage distributions. 

3.2 Damage enrichment is GC-content dependent   
As oxidative damage predominantly occurs on guanines, base content is expected to be a prime 
determinant of genome-wide distribution. The heatmap in Figure 2A shows that this is true in 
general, with average damage levels in 100kb windows correlating with GC content (Spearman’s 
r = 0.37). However closer examination shows a more complex relationship: in Figure 2B, we plot 
average damage levels in 1kb windows against their GC content. While there is a clear increase 
in damage as GC content rises from 25% to 47%, this relation breaks down above 47% GC and 
damage levels drop sharply. This indicates that damage in regions of high GC content cannot be 
explained by base composition alone.  

3.3 Gene promoters and bodies show selective protection from damage 
Next, we interrogated damage distributions over coding regions by compiling a metaprofile for 
23,056 protein-coding genes (Figure 2C). The analysis reveals rigid compartmentalisation, with 
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damage levels varying substantially between elements. Damage is dramatically reduced within 
genes compared with flanking intergenic regions (Relative Enrichment = 3.8), most prominently 
at the transcriptional start (Relative Enrichment = -8.0), 5’-UTRs (Relative Enrichment = -6.9), 
exons (Relative Enrichment = -6.1) and termination sites (Relative Enrichment = -5.8). In stark 
contrast, introns show high damage (Relative Enrichment = 0.4), though still below intergenic 
levels. Intron-exon junctions are accompanied by steep transitions in damage indicating the sharp 
distinction between coding, regulatory and non-coding regions (Relative Enrichment changes 
from -6.0 to -0.5 within 300bp around the 3’-exon junction). Damage levels rapidly rise again 
downstream of termination sites towards intergenic regions (Relative Enrichment shifts from -4.3 
to 2.0 within 500bp).  

Promoters and transcription start sites have the lowest damage levels of any functional element in 
the genome (average Relative Enrichment = -8.0 compared with intergenic average of 3.8). 
Unlike SNVs and other damage types, which decrease with rising expression levels, we do not 
detect an association between oxidative damage and expression (Figure 2D). There is a 
substantial GC content effect (Figure 2E); but in contrast to expectations from base composition 
alone, damage levels fall as GC content rises (Relative Enrichment = 1.1 at 45% GC and Relative 
Enrichment = -12.6 at > 64% GC).  

3.4 Retrotransposons accumulate large amounts of damage 
Retrotransposons provide a fascinating contrast to coding genes: Long Interspersed Nuclear 
Elements (LINEs) possess similar structures to genes with an RNA Pol II-dependent promoter 
and two open reading frames (ORFs), whereas Short Interspersed Nuclear Elements (SINEs) 
resemble exons in their nucleotide compositions and presence of cryptic splice sites. Unlike 
coding genes though, LINEs and SINEs accumulate staggeringly high levels of damage. Alu 
elements, the largest family among SINEs, show by far the highest damage levels of any 
annotated genomic feature: a metaprofile of >800,000 Alu elements in Figure 2F peaks at an 
average Relative Enrichment of 59, much higher than the genomic average of 0.1. The damage 
profile rises and falls within 500bp. Similarly, a metaprofile of >2,500 LINE elements in Figure 
2G displays heterogeneous, but high levels of damage accumulation: like coding genes, there is 
reduced damage at the promoter (average minimum Relative Enrichment = -5.2), but in contrast 
to genes there is a gradual increase in damage from the 5’ to 3’end, peaking at a Relative 
Enrichment of 26.9 near the end of the second ORF.   

Retrotransposons, though usually silenced through epigenetic mechanisms, can be activated by 
DNA damage in general 14 and ionizing radiation in particular 15. How DNA damage or repair 
affects such silencing mechanisms is currently unknown. One might speculate that DNA damage 
at these positions could lead to unwanted LINE transcription, for instance through repair-
associated opening of the chromatin. These distinct and unique damage patterns of both 
protection and strong accumulation of damage within one functional element suggest the 
existence of targeted repair or protective mechanisms that are unique to retrotransposons.  

3.5 Transcription factor-binding sites, G-quadruplexes and other regulatory sites 
Finally, we examine the most detailed genomic features previously implicated in mutation rate 
changes. In Figure 3A-C we assess the impact of DNA-binding proteins: there is a universal U-
shaped depletion of damage levels +/-500bp of the binding-site regardless of the protein 
involved, suggesting that the act of DNA-binding itself is a major factor. We find the greatest 
reduction in damage for actively used binding-sites that overlap with DNase-hypersensitive 
regions in the HepG2 cell line. However, a smaller reduction is also present for inactive sites, 
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indicating that the effects go beyond simple DNA-binding. It is notable that the binding-site 
effects override the contribution of the GC content to damage levels. 

GC-rich features are particularly interesting because of the complex relationship between GC 
content, protein-binding and damage levels. CpG islands are frequently located in promoters and 
display reduced damage (Figure 3D). Most surprising is the dramatic reduction in damage in CpG 
islands outside promoters and DNase-hypersensitive regions, indicating that the localisation in 
promoters is not the main reason for damage reduction; in fact, it is possible that the reduction in 
damage for high-GC promoters might be explained by the presence of CpG islands and not vice 
versa.  

Another feature of GC-rich sequences are G4-quadruplexes (G4 structures) formed by repeated 
oligo-G stretches. G4-quadruplexes are prevalent in promoters and telomeric regions, where they 
impact telomere replication and maintenance. A meta-profile for >350,000 predicted G4 
structures displays a dramatic asymmetric reduction in damage, in which the minimum occurs 
just downstream of the G4-quadruplex centre (Figure 3E). G4 structures are also one of the few 
features in which we detect a difference between the 8OxoG and AP-site distributions with a 
particular enrichment at the centre of G4 structures. This finding is particularly relevant for 
telomeric repeats (Figure 3F), where oxidized bases impact on telomerase activity and telomere 
length maintenance16. These repeats are thought to form G4 structures, but in contrast to 
quadruplexes in general, telomeres present with a mild increase in AP-sites after X-ray treatment 
(average Relative Enrichment=1.1) and stronger enrichment of 8OxoG (average Relative 
Enrichment=2.3). 

Micro-satellites are 3-6bp sequences that are typically consecutively repeated 5-50 times. 
Whereas GC-rich micro-satellite repeats show generally reduced damage, most simple repeats 
show an accumulation of damage; this is depicted for individual repeat sites at the LINC00955 
locus (Figures 3G). The motifs (GAA)n, (GGAA)n, and (GAAA)n accumulate the largest amounts 
of damage (Figure 3H). Interestingly, specific sequences display preferential damage enrichment 
in the OGG1-enriched samples, such as (CCCA)n and (ATGGTG)n. Micro-satellites are capable 
of forming non-B-DNA structures, such as hairpins; we suggest that changes in the DNA’s local 
structural properties impairs 8OxoG-processing on these genomic features with possible 
regulatory functionality.  

 

4. SNVs in oxidative damage-dependent cancers reflect underlying 
damage profiles 
Lastly, we address how the distribution of oxidative DNA damage is reflected in the landscape of 
SNVs in cancer genomic data. We compiled a dataset of 9.4 million C-to-A transversions, the 
major mutation-type caused by oxidative damage, from 2,702 cancer genomes 17. Of these, 8 
hypermutated tumours are defective in polymerase epsilon (Pol E) activity (total 3.4 million C-to-
A SNVs). Under normal conditions, Pol E-proofreading prevents 8OxoG-A mismatches, but in 
the absence of this activity, a large proportion of mismatches is thought to result in C-to-A 
mutations. Thus, the distribution of SNVs in the absence of Pol E-proofreading is expected to 
follow the underlying oxidative damage pattern, reflecting local differences in damage 
susceptibility and repair preferences. We also identified 2,401 tumours with increasing 
proportions of C-to-A SNVs originating from the mutational process associated with the 
COSMIC Mutational Signature 18, which has been suggested to arise from oxidative damage 19,20.  
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In most tumours, about 9% of C-to-A SNVs occur in regions of high GC content (Figure 4A); 
however, the proportion drops to just 3% among Pol E-defective tumours, in line with the 
unexpected depletion of oxidative damage in these genomic regions (Figure 2B). Similarly, 
tumours display decreasing proportions of SNVs with rising amounts of Signature 18 (Figure 
4A), following the expected trend for oxidative damage. We also observed that damage is 
preferentially distributed in euchromatin at 100kb resolution, whereas SNVs tend to accumulate 
in heterochromatin; unsurprisingly at this resolution, the damage and SNV densities are 
anticorrelated (Spearman’s r =-0.49 and -0.45 for proofreading-defective and control tumours 
respectively). 

We focused on the proof-reading defective and control tumour samples for the high-resolution 
genomic features, as they contain the largest numbers of SNVs. In protein-coding genes, the SNV 
distribution for Pol E-defective tumours is remarkably similar to the damage profiles (Figure 4B): 
decreased rates at the TSS, 5’-UTR, exons, and increased rates in introns. The profile is lost in 
control tumours: we speculate that bulky adducts or strand breaks – a distinct form of damage – 
cause the accumulation of SNVs at the promoter. SNVs are also depleted from GC-rich genomic 
features in Pol E-defective tumours, including CTCF-binding sites, transcription factor binding 
sites, CpG islands and G4-quadruplexes. The patterns are lost in the controls (Figure 4C). The 
difference between the two tumour sets indicates that at high resolution, the distribution of 
distinct damage types dominates the ultimate SNV profiles. However, there is a striking 
divergence from damage distributions in retrotransposons (Figure 4D); whereas above we 
observed high levels of damage in Alus and LINEs, there appears to be increased safe-keeping, 
leading to lower levels of mutations. This pattern is lost in the control tumours.  

 

5. Discussion 
Our results demonstrate the feasibility of measuring oxidative damage across a genome at high 
resolution and specificity. In addition to the considerable feature-dependent variability in damage 
rates, we are able to relate them directly to patterns of SNV occurrences in cancer genomes. At 
the 100kb scale, euchromatin has increased exposure to oxygen radicals but also better 
accessibility for repair enzymes, leading to high damage levels but fewer SNVs; in 
heterochromatin with poorer relative access to repair, the trends are reversed. At the 10kb to 
200bp resolution, we find reduced damage levels in functional elements such as coding 
sequences, promoters, and transcription factor binding sites, which correlate with SNV 
occurrences in cancers. The heterogeneity results from changes in the balance of damage 
susceptibility and repair rates at different genomic regions. 

Locus-specific oxidative damage is distinct from damage types repaired by other pathways such 
as nucleotide excision repair (NER). For instance, oxidative damage levels are seemingly 
independent of gene expression, whereas nucleotide excision repair can be coupled to 
transcription. Moreover, for NER, Sabarinathan and Perera reported UV-dependent mutation 
hotspots around transcription factor binding sites explained by hindered access of the repair 
machinery. For oxidative damage, we observe the opposite: protection of the same regions from 
oxidative damage and its derived mutations. Such hotspots are probably prevented through 
inaccessibility of the DNA to oxygen radicals, which is not the case for UV light.  

Intriguingly, though damage accumulates in LINEs and Alus, they are protected from mutations 
in cancer genomes; this suggests a specific mechanism for targeted repair at these features that 
was not reflected in the damage distribution or may be defective in the HepG2 cell line used here. 
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Modulation of DNA damage at these sites would suggest not only effects on mutagenesis, but 
perhaps even an epigenetic regulatory mechanism through oxidative damage to silence 
retrotransposons; indeed, an epigenetic function for 8OxoG has been suggested at G4 structures 
21. At these sites and other potential non-B-DNA structures we detected elevated signals in the 
OGG1-enriched samples indicating the in vivo accumulation of 8OxoG; this suggests that 
8OxoG-processing is impaired. It is interesting to speculate that these sites may have acquired a 
regulatory function beyond accumulating mutations.  

In conclusion, we have established a robust method to measure oxidative damage in a genome-
wide manner. With minor modifications, it will be suitable for detecting any base modification 
that can be excised with a specific glycohydrolase. Identifying the pathways that lead to selective 
repair fidelity and protection of functional elements will not only provide insights into basic 
mutagenesis but will also allow us to identify any regulatory characteristics of 8OxoG and AP-
sites as epigenetic marks.  
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7. Figures 
 
7.1 Figure 1. Oxidative damage is heterogeneously distributed at different scales 
of resolution. (A) Schematic of AP-seq, a new protocol to detect apurinic-sites (AP-sites) as a 
measure of oxidative damage in a genome. 8OxoG is excised by OGG1 in the first, rapid step of 
base excision repair, leaving an AP-site. DNA containing these sites are biotin-tagged using an 
aldehyde reactive probe (ARP), fragmented, and pulled-down with streptavidin. The enriched 
DNA is processed for sequencing and mapped to the reference genome. The damage level across 
the genome is quantified by assessing the number of mapped reads. To check for unprocessed 
8OxoG, we perform an in vitro digest of extracted genomic DNA with OGG1 and repeat the AP-
site pull-down. (B) Genome-wide map of AP-site distribution after X-ray treatment. The colour 
scale represents the Relative Enrichment of AP-sites in 100kb bins across the human genome, 
averaged across biological replicates. Damage levels are highly correlated between treatment 
conditions at 100kb resolution. (C) More detailed view of AP-site distribution on Chromosome 
16. Plot lines depict the average Relative Enrichment for X-ray treated (green) and untreated 
(blue) samples. Shaded boundaries show standard error of the mean for the biological replicates. 
Untreated and X-ray treated samples display very similar damage profiles. (D) Genome browser 
views of damage distributions for untreated and X-ray treated samples across an 8kb region 
upstream of MALT1. Damage levels are represented by the read depths of the pooled biological 
replicates. At high resolution, the sharp relative increase in damage at Alu elements after X-ray 
treatment becomes apparent. (E) Scatterplots of the correlation in average Relative Enrichments 
of samples with differing treatment and OGG1-enrichment conditions. Damage levels are highly 
correlated across all conditions.  
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7.2 Figure 2. Oxidative damage distribution is associated with genomic features. 
(A) Bar plot displays the average correlation of damage levels with large-scale chromatin and 
other features in HepG2 cells at 100kb resolution. Damage correlates with euchromatic features 
and anticorrelates with heterochromatic ones, the opposite of that observed for cancer SNVs. The 
heatmap shows the relationship between the features, grouped using hierarchical clustering. (B) 
The plot shows dependence between Relative Enrichment of damage and genomic GC content at 
1kb resolution. Damage levels increase with GC content and then surprisingly fall in high GC 
areas. The blue line marks the genomic average GC content of 41%. (C) Metaprofile of Relative 
Enrichment over ~23,000 protein-coding genes (ngenes=23,056, npromoters=48,838, n5UTRs=58,073, 
nexons=214,919, nintrons=182,010, n3UTRs=28,590, ntermination=43,736, nintergenic=22,480). Damage levels 
for UTRs, exons, introns, and intergenic regions are averaged across each feature due to their 
variable sizes. Coding and regulatory regions are depleted for damage, whereas introns have near 
intergenic damage levels. (D, E) Boxplots depict damage levels at 48,838 promoters binned into 
unexpressed and expression deciles (D), and average GC content deciles (E). Promoters are 
defined as the transcriptional start sites +/- 1kb. Damage is not transcription-dependent, but 
reduces with increasing promoter GC content. (F, G) Metaprofiles of Relative Enrichments and 
average GC contents across 848,350 Alu and 2,533 LINE elements. There is a very large 
accumulation of damage inside these features. All panels display measurements for X-ray treated 
samples. Error bars and shaded borders show the standard error of mean across biological 
replicates. 
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7.3 Figure 3. Oxidative damage distribution is associated with regulatory sites and 
repeats. (A) Metaprofiles of Relative Enrichments centred on CTCF- and DNA-binding sites 
within and outside DNase hypersensitive regions (DHS; nCTCFinDHS=37,763, nCTCFnotDHS=10,908, 
nTFbsInDHS=253,613, nTFbsNotDHS=5,463,612). Damage levels are reduced around binding sites. 
Shaded borders show the standard error of mean across biological replicates. (B) Scatter plot of 
average Relative Enrichments and GC contents +/-500bp of binding sites for each transcription 
factor. Binding sites are separated into within and outside DNase hypersensitive sites. Damage 
levels are universally reduced regardless of transcription factor, with particularly lowered levels 
for actively used sites in DHS regions.  (C) Metaprofiles centred on binding sites for 4 selected 
transcription factors. (D) Metaprofiles centred on CpG islands, within and outside promoters and 
DHS regions (nDHS=17,565, nNotDHS=9878, nPromoter=14850, nNotPromoter=12,593). Damage levels are 
reduced regardless of location and accessibility. (E) Metaprofiles centred on predicted G4-
quadruplex structures (n=359,449). There are asymmetrically reduced damage levels for AP-
sites, but not for OGG1-enriched AP-sites. (F) Bar plots of average Relative Enrichments in G4-
quadruplexes at telomeric repeats across the 4 treatment and processing conditions. Damage 
levels are increased in OGG1-enriched samples. Error bars show the standard error of mean 
across biological replicates. (G) Genome browser views of damage levels in ~30kb locus 
surrounding LINC00955, including microsatellite repeats. Some groups of microsatellites 
accumulate large amounts of damage and reduced 8OxoG processing. (H) Scatter plot displaying 
average damage levels in different microsatellites types for the AP-site and OGG1-enriched 
samples. Most types display similar damage levels in the two processing conditions; however, 
several display elevated damage in the OGG1-enriched sample. All panels display measurements 
for X-ray treated samples, unless indicated otherwise.  
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7.4 Figure 4. Oxidative damage patterns are reflected in cancer mutagenesis. (A) 
Boxplots of the proportion of C-to-A SNVs in genomic regions of high GC content. Tumour 
samples are separated into those that are Pol E-proofreading defective (n=8) and to all other 
tumours (n=2,694), and into 4 groups according to Mutational Signature 18 contributions 
(n<0.1=1398, n0.1-0.4=322, n0.4-0.6=540, n>0.6=141). Tumours that are proofreading defective and high 
in Signature 18 display lower proportions of SNVs in GC-rich regions. (B) Metaprofile of SNV 
rates over ~23,000 protein-coding genes in proofreading defective and control tumours. The 
damage profile is overlaid for comparison. The oxidative damage-dependent SNV profiles in 
proofreading-defective tumours show similar distributions to AP-sites, whereas the pattern is lost 
in control tumours. (C-F) Metaprofiles of SNV rates centred on CTCF-binding sites (n=48,671), 
transcription factor-binding sites in DHS regions (n=253,613), CpG islands (n=27,443), and G-
quadruplex structures (n= 359,449). SNV profiles in proofreading defective tumours mimic the 
damage profiles. (G, H) Metaprofiles across 848,350 Alu and 2,533 LINE elements. SNV rates in 
proofreading defective tumours are reduced compared with damage profiles.  
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7.5 Supplementary Figure S1. Schematic diagram of the chemical enrichment process of 
AP-sites using an aldehyde reactive probe. 
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8. Methods 

8.1 Cell culture and X-ray treatment  
HepG2 cells were cultivated at 37°C and 5% CO2 in Dulbecco’s Modified Eagle Medium 
(DMEM; Invitrogen) supplemented with 1% essential amino acids, 1% pyruvate, 2% 
penicillin/streptavidin and 10% heat-inactivated fetal bovine serum (FBS). ~1x106 cells were 
exposed to 6Gy X-ray using a SOFTEX M-150WE in triplicates. Triplicate samples of untreated 
control cells were processed in parallel, excluding irradiation. Cells were harvested 30 minutes 
post-treatment.   

8.2 AP-Seq 
Total genomic DNA was extracted using a Blood and Tissue Kit (Qiagen, catalogue number 
69506) and genomic DNA was kept on ice during the process. 5.7µg of genomic DNA was 
tagged with biotin using 5mM Aldehyde Reactive Probe 13 (ARP; Life Technologies, catalogue 
number A10550) in phosphate buffered saline (PBS) for 2h at 37°C. Genomic DNA was then 
purified using AMPure beads as described above and was fractionated using a Covaris 
fractionator in 130µl for a mean fragment length of 300bp. After separating 30µl for sequencing 
as the input sample, the remaining DNA was used for biotin-streptavidin pulldown, using MyOne 
Dynabeads (Life Technologies, catalogue number 65601). 120µl beads (10µl per sample) were 
washed 3x with 1ml 1M NaCl in Tris-EDTA buffer (TE buffer) and re-suspended in 100µl 2M 
NaCl in TE and then added to 100µl of the sonicated DNA. Samples were rotated at room 
temperature for 10h. Subsequently the beads were washed 3x with 1M NaCl in TE and finally re-
suspended in 50µl TE for library preparation.  

For the in vitro OGG1-enrichment, 10µg of genomic DNA was digested with recombinant OGG1 
(New England Biolabs, catalogue number M0241L). 0.1µg enzyme was taken for 1µg of 
genomic DNA in New England Biolabs (NEB)-buffer 2 and bovine serum albumin (BSA) for 1h, 
37°C. Digested DNA was subsequently purified using AMPure beads (Agencourt, catalogue 
number A63882) with 1.8x bead solution, 2x 70% ethanol washing; beads were not allowed to 
dry to prevent DNA from sticking.  The DNA was subsequently tagged with ARP as described 
above.  

8.3 Library preparation and sequencing 
Both the damage-enriched and input DNA were in vitro repaired using PreCR (NEB catalogue 
number M0309L). The input DNA and supernatant of the pull-down were purified using AMPure 
beads. The purified pull-down was recombined with the beads and library preparation was 
performed on the re-pooled sample using a 125bp paired-end ChIP-Seq library preparation kit 
(KAPA Biosystems catalogue number KK8504) and sequenced using an Illumina HiSeq 2000 on 
first a rapid and then a high-output run (catalogue number FC-401-4002). The resulting data were 
subsequently combined. 

8.4 Read processing library normalisation and damage quantification 
Unless stated, data-processing was performed using R 3.4.0 and Bioconductor 3.5.  

The quality of damage-enriched AP-seq samples (n=12) and corresponding input samples were 
checked using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/); the quality 
was sufficient that no further filtering was required before alignment. The reads were mapped to 
the reference human genome (version hg19) using the Bowtie2 algorithm (http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml) 22 with standard settings, allowing for 2 mismatches and 
random assignment of non-uniquely mapping reads. To confirm the robustness of key results, 
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analyses were repeated excluding non-uniquely mapped reads (reads with FLAG 3 filtered using 
SAMtools; http://samtools.sourceforge.net/) 23. Data were visualised with the Integrative 
Genomics Viewer version 2.3.92 (http://software.broadinstitute.org/software/igv/) 24.     

Paired reads were imported into R using the “GenomicAlignments” and “rtracklayer” 25 
packages. Paired reads mapping more than 1kb apart were discarded. Filters were applied to 
assess read duplication, reads mapping to the Broad Institute blacklist regions 
(ftp://encodeftp.cse.ucsc.edu/users/akundaje/rawdata/blacklists/hg19/wgEncodeHg19ConsensusS
ignalArtifactRegions.bed.gz) 26, and whether reads overlap with repeats annotated in the UCSC 
RepeatMasker track from the UCSC Table Browser (rrmsk_hg19.bed). The main analysis was 
performed without applying these filters, but the robustness of key results was confirmed by 
repeating analyses with the filters.  

Inter-library normalization was performed using only genomic areas of low damage. It was 
necessary to consider that increased exposure to DNA damage leads to increased library sizes. A 
global scaling factor was calculated as the mean read coverage in a low-damage subset (10 %) of 
100kb bins, which were identified by their read coverage as the lowest decile of 100kb bins over 
the mean of all samples. 

Relative Enrichment of DNA damage was assessed through the normalised log2 fold-change of 
the enriched sample over input (termed Relative Enrichment). Analyses were restricted to 
Chromosomes 1 to 22 and X, except for the 100kb damage distribution map which includes the Y 
chromosome (Figure 1B).  

All analyses were performed using the average Relative Enrichment in appropriate bin sizes tiled 
across the genome or covering genomic elements. Genome browser images were generated using 
absolute read counts pooled over replicates.   

8.5 Analysis on local oxidative damage distribution 
The karyogram map was compiled using the mean of the replicates at 100kb resolution with 
“ggbio” 27 karyogram plot fixing the colour scale to a Relative Enrichment of -1 to 1. Enrichment 
over chromosomes was also depicted with 100kb resolution for the mean of the replicates with 
shades depicting the standard error of the mean of triplicates. For illustration purposes data were 
smoothed with a Gaussian smooth over 10 bins, using the smth.gaussian function of the 
“smoother” package. Correlations at 100kb resolution were performed using Spearman 
correlation. Fine resolution images were depicted using the IGV browser without any additional 
smoothing applied.      

8.6 Epigenome and feature analysis 
Genome-wide feature sets were obtained from the UCSC Genome Browser. Chromatin features 
for HepG2 cells were retrieved from the data repository generated in the context of the ENCODE 
consortium and obtained through https://www.encodeproject.org/ 26. Where applicable, datasets 
were pooled. Accession numbers are listed in Table 1. 

Transcript density was calculated through the genome coverage with any one transcript as 
defined by UCSC. Distance to telomeres and centromeres was calculated as the absolute base pair 
distance to annotated telomeres and centromeres.   

Genomic and chromatin features were calculated as mean values in 100kb bins over the genome 
and clustered using hierarchical clustering of Spearman’s correlation coefficients. Features were 
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then correlated (also Spearman) to the individual DNA damage levels. Data points represent the 
mean of the correlation coefficients with the standard error of the mean over replicates. 

Feature ENCODE accession numbers, URL, or UCSC table browser ID 

DNase 
hypersensitivity 

ENCFF774LVT 

H3K4me3 ENCFF000BGT 

H3K4me2 ENCFF000BFV 

H3K4me1 ENCFF000BFC 

H3K27me3 ENCFF001FLH, ENCFF001FLI 

H3K9me3 ENCFF000BEW 

H2Az ENCFF000BEK 

H4K20me1 ENCFF000BFJ 

H3K36me3 ENCFF001FLR, ENCFF001FLS 

H3K79me2 ENCFF000BGB 

H3K27ac ENCFF000BGH 

H3K9ac ENCFF000BGM 

RNA-Seq ENCFF000DPL, ENCFF000DPM, ENCFF000DPN, ENCFF000DPO 

Replication timing http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncode
UwRepliSeq/wgEncodeUwRepliSeqHepg2WaveSignalRep1.bw 

Mappability http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/wgEncodeCr
gMapabilityAlign100mer.bigWig 

Transcription factor 
binding sites 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/tfbsConsSite
s.txt 

CTCF binding sites ENCFF661OYF 

DNase 
hypersensitivity sites 

wgEncodeAwgDnaseUwdukeHepg2UniPk.bed 

Table 1: HepG2 specific datasets obtained from ENCODE and genomic annotation datasets 
obtained from the UCSC browser 

6.7 GC content analysis 
GC content preference of DNA damage distribution was assessed at 1kb resolution. For each 1kb 
bin in the genome, GC content was calculated and rounded to the closest percentage. Bins with 
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more than 10% undefined sequence were censored. For all bins falling into a particular 
percentage range, mean Relative Enrichment was calculated with also the standard error of the 
mean for biological replicates. For display, a Gaussian smooth was applied reaching over 10% 
GC content range.  

6.8 DNA damage distribution over gene profile 
Metaprofiles over coding genes were compiled using the UCSC transcript annotation. The mean 
was taken for different elements of the genes, which are comprised of a total of 26,860 
transcripts. Gene elements were either centred around an appropriate centre point, in which case 
the mean Relative Enrichment was calculated for each base pair in the respective region. For 
gene elements of different sizes the mean over the gene element was taken. Independent of their 
size they were weighted as equal in subsequent analyses. The metaprofile was then compiled with 
the different gene elements in the following order: 48,838 promoters were centred around the 
transcriptional start site with 1kb sequence in 5’ direction and 500bp in 3’. 58,073 5’-UTRs, 
214,919 exons, and 182,010 introns were addressed as a scaled mean. In addition, exons and 
introns were addressed through the exon-intron junction, both 5’ and in 3’ of the exon +/- 250bp. 
Given the small sizes of exons, 250bp partially also contains following gene elements. The end of 
genes is represented through the means of 28,590 3’-UTRs and 43,736 transcription termination 
sites with 500bp in 5’ direction and 1kb in 3’. 22,480 intergenic regions were addressed as the 
mean of each region. Shades represent the standard error of the mean over biological replicates.  

8.9 GC content and transcription dependent promoter analysis 
Gene transcription was assessed using RNA-Seq data for HepG2 cells from the ENCODE 
consortium (Table 1). Replicates were pooled and RNA-Seq coverage was calculated for each 
unique UCSC defined transcript (n = 57,564). Promoters, i.e. the transcriptional start sites +/- 1kb 
for each transcript were grouped into 11,058 silent promoters and the remaining 46,506 into 
deciles of increased transcriptional use. In parallel, the mean GC content for each promoter was 
calculated, which were then also grouped into deciles based on their GC content. Mean damage 
was assessed for each promoter in these groups.  

8.10 Retrotransposon analysis 
Retrotransposon information was obtained from the UCSC repeat masker. For repetitive 
sequences, there is a risk of mapping issues and errors of annotation. Therefore, retrotransposon 
analysis was limited to families of these repeats, where location issues should not arise and mis-
estimation of total repeat numbers should largely be balanced out through the IP vs. input 
comparison. Analyses for particular locations were confirmed by excluding ambiguous mapping.  

LINE elements were defined as belonging to LINE element families of L1PA7 or newer and only 
considered, if the size fell between 5.9 and 6.1kb (n=2,533). Alus were considered when 270 to 
330bp in size (n=848,350). Retrotransposons were anchored to their start sites and addressed with 
flanking regions from the start –1kb to +7kb for LINE elements and -200bp to +500bp for Alu 
elements. Metaprofiles were compiled as the mean Relative Enrichment over the respective 
region. GC content was assessed as the mean GC content at the particular site and smoothed 
using Gaussian smoothing in windows of 5% of feature length. 

8.11 Transcription factor binding sites, CpG islands and G4-quadruplex structure 
analysis 
Transcription factor binding sites were obtained as the consensus set from ENCODE (Table 1), 
which is cell line unspecific. (n=5,717,225). HepG2 cell specific CTCF binding sites (n=48,671) 
and DNase hypersensitivity sites (n=192,735) were obtained through ENCODE and UCSC 
respectively (Table 1). G4-quadruplex (G4) structures were obtained using the G4Hunter method 
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28, utilising directly the reference file QP37_hg19_ref.RData provided with the associated R 
package (n=359,446) with the exception of telomeric G4 structures with the centre less than 
500bp away from the chromosome end (n=3). CpG islands were defined through UCSC 
(n=27,443). Features were considered to be in a promoter, if they overlap with the region of a 
transcriptional start site +/-1kb. They were considered to overlap with DNase hypersensitivity 
only when the feature itself overlaps with a DNase hypersensitivity site. For metaprofiles the 
centres of the features were considered and mean Relative Enrichment of damage levels assessed 
relative to the centre point. For quantification of mean damage at a given feature site, only the 
feature itself was addressed and quantified as the mean Relative Enrichment over the region. The 
GC content of transcription factor binding site was however calculated as the mean over the 
region (+/-500bp) around the transcription factor binding site. Groups of features were 
summarised using the median. 

8.12 Telomere analysis 
Due to expected mapping artefacts at telomeric repeats, telomeres were addressed separately not 
using the aligned sequence. Instead, Telomere hunter version 1.0.4. 
(https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html) 29 was used 
to filter out reads that map to telomeric repeats. These were reassigned to intratelomeric and 
subtelomeric regions or other locations. Of these, only the intratelomeric repeats were considered. 
Normalisation between libraries was performed not within the Telomerehunter package but 
separately with the global scaling factor as described above. Mean Relative Enrichment between 
biological replicates was calculated with the standard error of the mean.   

8.13 Microsatellite analysis 
Microsatellites were defined through the UCSC repeat masker as the “Simple_repeat” class. For 
quantification purposes, reverse complement repeat classes were combined. Only microsatellite 
sequences that are represented >1,000 times in the genome were considered. This leaves 39 
repeat types, which are represented by a total of 388,350 repeats. Median Relative Enrichment of 
damage was quantified over each microsatellite type. 

8.14 Patient selection for mutation analysis  
Data for mutations in cancer were obtained from the Pan-cancer Analysis of Whole Genomes 
consortium 17. Contributions of mutational signatures were provided by PCAWG working group 
7. 20 

The data set is comprised of 2,702 tumour-normal pairs for 39 cancer types. From this dataset, we 
obtained all data on mutation rates and mutation signature contributions, as well as clinical 
metadata. The analysis was restricted to chromosomes 1 to 22 and X.  

For the mutations dependent on oxidative damage, 8 samples were selected that have a 
polymerase epsilon proofreading defect as determined by a hypermutator phenotype (C-to-A 
>100,000) with prominence of Signature 10. In total, these samples contain 3,436,531 mutations. 
For information to individual patients see Table 2.  

For comparison, all other 2,695 tumour samples were taken with a total of 6,008,940 C-to-A 
mutations.  

Tumour samples with mutations in direct processing of 8OxoG or AP-sites were identified 
through assessing, whether mutations fall into the coding sequence of OGG1 (n=7) or APEX1 
(n=3). Mutations were considered, if their effect determined by the ensembl VEP tool 
(http://www.ensembl.org/Multi/Tools/VEP) 30 identified them as missense variants, stop codon 
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gained, frameshift variants, or splice donor variant. They were not considered, if there was an 
underlying hypermutator phenotype of >100,000 C-to-A mutations (n=2). Information to 
individual patients can be found in Table 3. 

Patients with oxidative damage induced mutations beyond polymerase epsilon proofreading 
defects were separated based on the proportion contribution of Signature 18 to C-to-A mutations. 
Patients were censored that have a hypermutator phenotype (C-to-A >100,000, which includes 
Pol E proofreading deficient tumour samples) or coding mutations in 8OxoG or AP-site 
processing as identified above. In addition, patients were also censored based on documented 
smoking history or previous exposure to chemotherapy/radiotherapy. A total of 2,401 samples 
were used for analysis.  They were grouped into Signature 18 based groups of <10% (n=1,398), 
10% to 40% (n=322), 40% to 60% (n=540), and >60% (n=141). 

 

Sample IDs 
[tumor_wgs_aliquot_id] 

Total  
C-to-A 

Proportion 
C-to-A 

Total 
mutation 
count 

Cancer type 
Proportion 
Signature 
10 

00aa769d-622c-433e-
8a8a-63fb5c41ea42 115,337 0.46 252,195 ColoRect-

AdenoCA 0.65 

0980e7fd-051d-45e9-
9ca6-2baf073da4e8 396,377 0.44 907,411 ColoRect-

AdenoCA 0.60 

14c5b81d-da49-4db1-
9834-77711c2b1d38 989,958 0.40 2,502,427 ColoRect-

AdenoCA 0.57 

154f80bd-984c-4792-
bb89-20c4da0c08e0 126,870 0.45 280,527 ColoRect-

AdenoCA 0.63 

2df02f2b-9f1c-4249-
b3b4-b03079cd97d9 964,307 0.38 2,570,161 ColoRect-

AdenoCA 0.41 

6ca5c1bb-275b-4d05-
948a-3c6c7d03fab9 243,272 0.28 871,206 ColoRect-

AdenoCA 0.55 

93ff786e-0165-4b02-
8d27-806d422e93fc 436,686 0.43 1,024,918 ColoRect-

AdenoCA 0.50 

b0a83df8-dd2c-4c1b-
b238-9081d2c22258 163,724 0.54 303,201 Uterus-

AdenoCA 0.65 

Table 2: Selected tumour samples with polymerase epsilon proofreading defect. 
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Sample IDs 
[tumor_wgs_aliquot_id] 

Total    
C-to-A 

Proportion 
C-to-A 

Total 
mutation 
count 

Cancer 
type 

Coding 
Mutation 

42f88b95-fa12-47c7-93f1-
cf72f207291c 1,308 0.16 7,945 Kidney-

RCC OGG1 

4a1ad661-f6ae-44e8-b50b-
72ff658ff22b 1,480 0.19 7,872 CNS-

GBM OGG1 

7456abd5-303e-4e6f-bf4e-
47efefc7310f 913 0.16 5,729 Breast-

AdenoCA OGG1 

dc4ba4bc-6333-4fe9-
8805-e058cc9e6e18 1,963 0.17 11,509 Panc-

Endocrine OGG1 

e6801359-d1d7-4871-
b2fb-180674a2e469 1,506 0.16 9,141 Kidney-

RCC OGG1 

f7e7d61f-e2dc-b523-e040-
11ac0c482000 477 0.16 3,011 Breast-

AdenoCA OGG1 

fc5dc6d8-62d2-76d8-
e040-11ac0d4863c3 1,494 0.17 8,637 Breast-

AdenoCA OGG1 

45a7949d-e63f-4956-
866c-df51257032de 2,631 0.10 25,181 Bladder-

TCC APEX1 

9ebac79d-8b38-4469-
837e-b834725fe6d5 2,594 0.16 16,191 Panc-

AdenoCA APEX1 

bf91afc4-aa2b-4365-80c5-
b98c9d118e10 333 0.13 2,543 Panc-

Endocrine APEX1 

Table 3: Selected tumour samples with coding mutations in OGG1 and APEX1. 

8.15 GC content preferences of mutation rates  
For each 1kb bin in the genome, GC content was calculated and rounded to the closest 
percentage. Bins with more than 10% undefined sequence were censored. Mutations falling into 
bins of 50% GC content or higher was calculated as proportion of the total C-to-A mutation 
counts. Assuming equal distribution dependent only on base content, a total of 9% of C-to-A 
mutations would be expected to fall into such high GC content areas of the genome.      

8.16 Genomic features analysis 
Metaprofiles over genomic features were calculated for the features with the same selection 
strategy as described above. For this, C-to-A mutations were pooled for each patient group. Mean 
relative mutation rates over features were calculated as relative C-to-A mutation density 
normalized to 1,000,000 C-to-A mutations per patient group.  The mean over the features was 
normalized for sequence content of the particular location by dividing with a factor of the local 
GC content divided by the average of 41%. For display purposes, data were smoothed using a 
Gaussian smooth spreading over 100bp for the gene body profile, Alus, protein binding sites, 
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CpG islands, and G4 structures. LINE elements were smoothed using Gaussian smoothing over 
200bp to account for the increased noise originating from the lower frequency of this particular 
feature.  
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