
Is	coding	a	relevant	metaphor	for	the	brain?	

Abstract	

“Neural	 coding”	 is	 a	 popular	 metaphor	 in	 neuroscience,	 where	 objective	 properties	 of	 the	 world	 are	
communicated	to	the	brain	in	the	form	of	spikes.	Here	I	argue	that	this	metaphor	is	often	inappropriate	and	
misleading.	First,	when	neurons	are	said	to	encode	experimental	parameters,	the	implied	communication	
channel	consists	of	both	the	experimental	and	biological	system.	Thus,	the	terms	“neural	code”	are	used	
inappropriately	when	“neuroexperimental	code”	would	be	more	accurate,	although	less	insightful.	Second,	
the	brain	cannot	be	presumed	to	decode	neural	messages	into	objective	properties	of	the	world,	since	it	
never	gets	to	observe	those	properties.	To	avoid	dualism,	codes	must	relate	not	to	external	properties	but	
to	 internal	 sensorimotor	 models.	 Because	 this	 requires	 structured	 representations,	 neural	 assemblies	
cannot	be	the	basis	of	such	codes.	Third,	a	message	is	informative	to	the	extent	that	the	reader	understands	
its	language.	But	the	neural	code	is	private	to	the	encoder	since	only	the	message	is	communicated:	each	
neuron	speaks	its	own	language.	It	follows	that	in	the	neural	coding	metaphor,	the	brain	is	a	Tower	of	Babel.	
Finally,	 the	relation	between	 input	signals	and	actions	 is	circular;	 that	 inputs	do	not	preexist	 to	outputs	
makes	the	coding	paradigm	problematic.	I	conclude	that	the	view	that	spikes	are	messages	is	generally	not	
tenable.	 An	 alternative	 proposition	 is	 that	 action	 potentials	 are	 actions	 on	 other	 neurons	 and	 the	
environment,	and	neurons	interact	with	each	other	rather	than	exchange	messages.	
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1.	Introduction	

A	pervasive	paradigm	in	neuroscience	 is	 the	concept	of	neural	coding	(deCharms	and	Zador,	2000):	 the	
query	“neural	coding”	on	Google	Scholar	retrieves	about	15,000	papers	in	the	last	ten	years.	Neural	coding	
is	a	communication	metaphor.	An	example	is	the	Morse	code	(Fig.	1A),	which	was	used	to	transmit	texts	
over	telegraph	lines:	each	letter	is	mapped	to	a	binary	sequence	(dots	and	dashes).	In	analogy,	visual	signals	
are	encoded	into	the	spike	trains	of	retinal	ganglion	cells	(Fig.	1B).	Both	the	Morse	code	and	the	retinal	code	
relate	to	a	communication	problem:	to	communicate	text	messages	over	telegraph	lines,	or	to	communicate	
visual	 signals	 from	 the	 eye	 to	 the	 brain.	 This	 problem	 has	 been	 formalized	 by	 communication	 theory	
(Shannon	and	Weaver,	1971),	a	popular	tool	in	neuroscience	(Rieke	et	al.,	1999).	

	

Figure	1.	The	coding	analogy.	A,	A	communication	channel	consists	of	an	emitter	who	wants	to	transmit	some	
message	 to	 a	 receiver,	 in	 an	 altered	 form	 named	 “code”	 (here	 Morse	 code).	 The	 receiver	 knows	 the	
correspondence	 and	 can	 reconstruct	 or	 “decode”	 the	 original	 message.	 B,	 In	 analogy,	 sensory	 signals	 are	
encoded	 in	 the	spike	 trains	of	neurons.	C.	 In	an	experimental	context,	 the	emitter	 is	 the	experimenter,	who	
presents	a	stimulus	(oriented	bar)	characterized	by	some	parameter	(orientation	q).	The	brain	receives	the	
message	in	the	form	of	neural	activity,	from	which	it	infers	information	about	the	stimulus	(q).	

However,	 the	 neural	 coding	metaphor	 is	 used	more	 broadly,	 in	ways	 that	 are	 less	 obviously	 related	 to	
communication	problems.	For	example,	neurons	in	the	primary	visual	cortex	encode	the	orientation	of	bars	
in	their	firing	rate	(Fig.	1C);	neurons	in	the	auditory	brainstem	encode	the	spatial	position	of	sounds	(Ashida	
and	Carr,	2011),	and	neurons	in	the	hippocampus	encode	the	animal’s	location	(Moser	et	al.,	2008).	The	
coding	metaphor	applies	to	these	situations	 in	the	sense	that	there	 is	a	correspondence	between	neural	
activity	and	some	measurable	property.	In	this	sense,	the	metaphor	applies	equally	well	to	any	situation	
where	two	measurable	properties	co-vary.	But	as	the	linguists	Lakoff	and	Johnson	(2008)	have	argued,	the	
metaphors	that	pervade	our	language	are	not	neutral;	on	the	contrary,	they	form	the	architecture	of	our	
conceptual	 system.	 For	 example,	 seeing	 the	 heart	 as	 a	 pump	 is	 quite	 different	 from	 seeing	 it	 as	 an	
information	processing	device	encoding	walking	speed	in	its	beat	rate,	two	equally	applicable	metaphors.	
Is	perception	a	communication	problem?	And	if	so,	with	whom?	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/168237doi: bioRxiv preprint 

https://doi.org/10.1101/168237
http://creativecommons.org/licenses/by/4.0/


This	critique	of	the	neural	coding	metaphor	 is	articulated	as	 follows.	First,	 the	coding	metaphor	 is	often	
applied	in	a	way	that	the	encoded	property	is	not	a	sensory	signal	but	an	experimental	parameter,	as	when	
interpreting	tuning	curves.	Casting	this	situation	into	a	communication	problem	is	problematic	because	the	
communication	channel	is	made	of	both	the	biological	system	and	the	experimental	system.	One	may	then	
speak	of	a	code,	but	perhaps	not	of	a	neural	code.	Second,	in	the	coding	metaphor,	the	encoded	message	is	
information	in	the	sense	that	the	receiver	can	“decode”	it	into	the	original	message,	but	unless	we	postulate	
the	existence	of	a	homunculus	who	maps	neural	activity	to	an	external	description	of	the	world,	this	is	not	
the	situation	faced	by	the	brain.	All	that	the	nervous	system	ever	gets	to	observe	is	the	Morse	code.	Thus,	
coding	usually	refers	to	an	extrinsic	notion	of	information,	while	a	more	biologically	relevant	notion	should	
be	intrinsic.	Finally,	I	will	end	with	a	more	radical	criticism	of	the	neural	coding	metaphor,	based	on	the	
circular	relation	between	sensory	signals	and	actions	and	the	fact	that	no	clear	separation	exists	in	the	brain	
between	representation	and	computation.	This	discussion	will	lead	us	to	the	question:	are	spikes	messages	
or	actions?	

	

2.	Contextual	codes	

2.1.	The	fallacy	of	the	overwise	neuron	

In	a	reflection	on	theories	of	the	brain,	Francis	Crick	warned	against	the	“fallacy	of	the	overwise	neuron”	
(Crick,	1979)	that	arises	when	the	neural	coding	metaphor	is	combined	with	methodological	reductionism.	
He	took	the	example	of	color	perception.	Cones	are	tuned	to	a	particular	wavelength	(Schnapf	et	al.,	1987):	
in	an	experiment	where	light	of	different	wavelengths	is	flashed,	the	amplitude	of	the	transduced	current	
varies	systematically	with	wavelength	(Fig.	2A).	Thus,	the	current	encodes	wavelength,	in	the	sense	that	
one	can	recover	wavelength	 from	the	magnitude	of	 the	current.	However,	 the	code	 is	contingent	on	 the	
context	of	the	experiment.	In	a	natural	situation,	the	current	may	also	vary	with	light	intensity	and	therefore	
does	not	provide	unambiguous	 information	about	wavelength.	 Indeed,	animals	or	humans	with	a	single	
functional	 type	 of	 cones	 are	 color	 blind.	 Thus,	 from	 the	 experimenter’s	 viewpoint,	 it	 can	 be	 said	 that	
photoreceptor	 current	 encodes	wavelength,	 yet	 from	 the	 viewpoint	 of	 the	 organism	 there	 is	 no	 usable	
information	about	color	in	that	current.	Thus,	applied	in	this	way,	the	coding	metaphor	is	misleading.	

	

Figure	2.	Encoding	wavelength	of	 light.	A,	Response	of	a	cone	 to	 flashed	 light	as	a	 function	of	wavelength	
(cartoon),	 at	 different	 intensities	 (grey).	 If	 intensity	 is	 fixed,	 wavelength	 can	 be	 inferred	 from	 transduced	
current.	 Otherwise,	 current	 is	 not	 informative	 about	 wavelength.	 B,	 The	 relative	 response	 of	 cones	 with	
different	tunings	may	provide	intensity-invariant	information	about	wavelength.	

The	reason	is	that,	since	the	encoded	property	is	an	experimental	parameter,	the	communication	channel	
implicitly	consists	of	both	the	biological	system	and	the	experimental	system	(Fig.	1C).	This	makes	the	code	
contextual,	contingent	on	the	specifics	of	the	experiment.	If	the	code	is	contextual,	then	the	coding	metaphor	
can	just	as	well	be	applied	to	an	element	of	context.	For	example,	if	intensity	rather	than	wavelength	were	
varied,	then	the	current	would	encode	light	intensity.	Thus,	if	it	can	be	said	that	cones	encode	wavelength,	
then	it	can	also	be	said	that	cones	encode	intensity,	flickering	frequency,	and	any	other	stimulus	parameter	
that	an	experimenter	can	vary.	Used	in	this	sense,	coding	is	a	property	not	of	neurons	but	of	a	particular	
experimental	situation,	which	merely	refers	to	neural	sensitivity	to	an	experimental	parameter.	Thus,	it	is	
misleading	to	speak	of	a	neural	code	when	one	should	speak	of	neural	sensitivity	(Brette,	2010).	
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When	a	message	is	transmitted	in	Morse	code,	the	encoded	message	constitutes	information	for	the	receiver	
in	the	sense	that	the	receiver	can	reconstruct	the	original	message	from	the	encoded	message,	a	process	
called	“decoding”.	If	the	decoder	depends	on	the	specifics	of	the	experiment,	then	the	message	constitutes	
information	 for	 the	 experimenter,	 not	 for	 the	organism.	Thus,	 one	 can	 speak	of	 a	neural	 code	 for	 some	
dimension	to	the	extent	that	the	implied	decoder	is	insensitive	to	other	dimensions	(but	not	necessarily	the	
activity	of	individual	neurons).	For	example,	wavelength	may	be	encoded	in	the	relative	activity	of	cones	
with	different	tunings,	provided	that	this	is	invariant	to	light	intensity	(Fig.	2B).	

	

2.2.	Implications	for	population	coding	

The	reductionist	approach	to	coding	is	more	than	an	inappropriate	use	of	words.	For	example,	in	mammals,	
the	major	cue	for	sound	localization	in	the	horizontal	plane	is	the	difference	in	arrival	times	of	the	sound	
wave	 at	 the	 two	 ears	 (interaural	 time	 difference	 or	 ITD)	 (Fig.	 3A).	 There	 are	 neurons	 in	 the	 auditory	
brainstem	that	are	very	sensitive	to	that	cue	(Joris	et	al.,	1998):	when	a	sound	is	played	through	earphones	
and	the	ITD	is	varied,	the	firing	rate	of	those	neurons	changes	(Fig.	3B).	Thus,	these	neurons	encode	ITD	in	
the	same	way	as	cones	encode	wavelength.	In	this	sense,	because	the	relation	between	ITD	and	firing	rate	
is	steep,	a	single	neuron	can	in	fact	encode	ITD	with	the	same	accuracy	as	the	entire	organism,	as	assessed	
by	behavioral	experiments	(Skottun,	1998;	Shackleton	et	al.,	2003).	But	as	we	have	seen,	this	comparison	is	
highly	misleading,	 because	 the	 code	 is	 contextual:	 playing	 a	 different	 sound	 (for	 example	 a	 louder	 or	 a	
higher	 sound)	would	 also	 change	 the	 activity	 of	 these	neurons,	 and	 therefore	 the	 firing	 rate	of	 a	 single	
neuron	may	be	informative	for	the	experimenter,	but	not	for	the	organism.	

	

Figure	3.	Encoding	sound	location.	A,	A	major	cue	for	sound	localization	is	the	interaural	time	difference	or	
ITD,	dR	-	dL.	B,	Number	of	spikes	in	response	to	two	binaural	tones	(950	Hz	and	800	Hz)	as	a	function	of	ITD,	
for	the	same	neuron	in	the	medial	superior	olive	of	a	cat	(digitized	from	(Yin	and	Chan,	1990),	Fig.	10).	It	is	
possible	to	infer	ITD	from	spike	count	if	the	experimental	configuration	(presented	tone)	is	known,	not	if	the	
sound	is	a	priori	unknown.	C,	If	the	organism	lived	in	a	world	with	a	single	sound	played	at	different	ITDs,	then	
the	best	way	to	encode	ITD	would	be	with	a	neuron	tuned	to	an	ITD	outside	the	physiological	range	(shaded),	
so	 that	 the	 selectivity	 curve	 is	 steep	 inside	 that	 range.	 However,	 the	 response	 of	 a	 single	 neuron	 is	
fundamentally	ambiguous	when	sounds	are	diverse,	irrespective	of	the	steepness	of	the	curve	(selectivity	curve	
for	another	sound	shown	in	grey).	

This	 misuse	 of	 the	 coding	 metaphor	 leads	 to	 incorrect	 conclusions	 about	 population	 coding.	 If	 the	
confounding	 dimensions	 (level,	 etc)	 are	 neglected,	 then	 the	 best	way	 to	 encode	 ITD	 is	 to	 have	 a	 steep	
monotonous	relation	between	ITD	and	firing	rate,	that	is,	to	maximize	neural	sensitivity	to	ITD	(Fig.	3C).	
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Thus,	the	neuron’s	preferred	ITD	should	lie	outside	the	range	of	natural	sounds	(around	±800	µs	for	humans	
(Benichoux	et	al.,	2016))	while	the	steepest	slope	of	the	selectivity	curve	should	be	inside,	which	leads	to	
two	 symmetrical	 optimal	 selectivity	 curves	 (Harper	 and	McAlpine,	 2004).	 This	 is	 the	 concept	 of	 “slope	
coding”,	which	motivates	an	influential	model	of	sound	localization	(Grothe	et	al.,	2010),	and	was	meant	to	
explain	why	many	neurons	have	their	preferred	ITD	outside	the	natural	range	(McAlpine	et	al.,	2001)	(even	
though	many	are	also	inside,	especially	in	larger	mammals	such	as	cats	(Goodman	et	al.,	2013,	Fig.	1a)).	

Unfortunately,	 this	 conclusion	 is	 incorrect	when	 confounding	 dimensions	 are	 not	 neglected.	 To	 encode	
wavelength	independently	of	 intensity,	what	is	required	is	not	a	steep	relation	between	wavelength	and	
current,	but	cones	with	diverse	tunings.	In	the	same	way,	modeling	work	shows	that	heterogeneity	of	ITD	
tunings	is	crucial	to	raise	the	ambiguities	due	to	non-spatial	dimensions	of	sounds,	so	that	the	slope	coding	
model	cannot	account	for	behavioral	accuracy	(Brette,	2010;	Goodman	et	al.,	2013).	

Thus,	the	reductionist	approach	to	coding	leads	to	incorrect	conclusions	because	it	focuses	exclusively	on	
neural	 sensitivity.	 While	 neural	 sensitivity	 is	 not	 a	 sufficient	 property,	 it	 could	 be	 argued	 that	 it	 is	 a	
necessary	one.	Unfortunately,	this	is	not	true	either.	For	example,	no	auditory	nerve	fiber	is	sensitive	to	ITD	
because	 their	 responses	 are	 exclusively	 monaural.	 Yet,	 the	 joint	 response	 of	 auditory	 nerve	 fibers	 on	
opposite	sides	is	informative	about	ITD,	in	the	relative	timing	of	their	spikes.	In	general,	unless	confounding	
dimensions	are	ignored,	there	is	no	direct	relation	between	neural	sensitivity	and	information	in	the	activity	
of	a	neural	population.	

	

2.3.	Can	neurons	encode	experimental	parameters?	

For	 the	 coding	 metaphor	 to	 be	 biologically	 meaningful,	 the	 decoder	 (explicit	 or	 implied)	 must	 not	 be	
experiment-specific.	An	immediate	implication	is	that	the	encoded	property	must	be	meaningful	outside	of	
the	experimental	context.	Such	is	the	case	when	the	coding	metaphor	is	applied	to	a	transduction	problem,	
for	example	when	neural	activity	encodes	visual	signals	(Laughlin,	1981).	This	is	less	straightforward	when	
the	quantity	to	be	decoded	is	a	variable	of	the	experimental	protocol	rather	than	the	sensory	signal,	as	when	
tuning	curves	are	measured.	Crick	noted	that	the	activity	of	a	single	cone	cannot	encode	wavelength	in	any	
meaningful	sense	because	of	confounding	factors.	But	the	more	profound	reason	is	that	natural	light	is	not	
monochromatic,	 it	 has	 a	 continuous	 spectrum.	 In	 reality,	 the	 transduced	 current	 depends	 on	 the	
convolution	of	the	spectrum	of	incident	light	with	the	absorption	spectrum	of	the	photoreceptor.	Cones	do	
not	encode	wavelength	because	there	is	no	such	thing	as	the	wavelength	of	a	patch	of	visual	scene.	

Do	V1	neurons	encode	the	orientation	of	bars	and	gratings?	The	answer	completely	depends	on	whether	
the	world	is	made	of	bars	and	gratings.	If	not,	then	the	proposition	must	be	made	more	precise,	for	example:	
V1	neurons	encode	 the	direction	of	 the	 local	gradient	of	 the	visual	 field.	But	 this	proposition	cannot	be	
established	from	a	simple	tuning	curve	experiment.	It	turns	out	that	other	types	of	experiments	show	that	
it	is	not	true,	because	the	response	of	those	neurons	also	depends	on	the	surround;	typically,	responses	are	
suppressed	when	stimulus	properties	at	the	center	(e.g.	orientation)	match	those	in	the	surround	(Hubel	
and	Wiesel,	1968;	Bolz	and	Gilbert,	1986).	Thus,	it	is	not	so	clear	what	V1	neurons	encode;	perhaps	how	
surprising	a	patch	of	visual	scene	is	given	its	surround	(Rao	and	Ballard,	1999).	

Thus,	 the	 first	 requirement	 for	 the	 coding	metaphor	 to	 be	meaningful	 is	 that	 the	 encoded	 property	 is	
meaningful	outside	of	the	experimental	context,	whether	it	is	the	physical	sensory	signal	or	a	more	abstract	
property.	

	

2.4.	Can	contextual	codes	make	sense?	
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Place	 cells	 in	 the	hippocampus	encode	 the	 spatial	position	of	 the	organism	within	a	given	environment	
(Moser	et	al.,	2008).	The	code	is	contextual,	because	it	is	specific	of	each	environment.	However,	in	contrast	
with	the	color	and	sound	localization	examples,	this	does	not	make	the	coding	metaphor	irrelevant.	Indeed,	
the	issue	in	those	examples	is	not	so	much	that	the	code	is	contextual,	but	that	the	context	lives	outside	of	
the	 organism,	 within	 the	 design	 of	 the	 experiment.	 A	 rat	 lives	 in	 an	 environment,	 which	 has	 some	
persistence.	The	fact	that	the	place	code	is	contextual	implies	that	the	activity	of	place	cells	does	not	provide	
information	of	the	type	“I	am	at	position	(48°,	2°)”,	but	it	does	provide	information	of	the	type	“I	am	in	the	
same	corner	as	a	few	minutes	earlier”.	In	addition,	a	key	argument	to	justify	the	name	of	“place	cell”	was	
that	the	responses	of	those	cells	depend	on	spatial	position	but	not	on	specific	non-spatial	features	of	the	
environment,	for	example	light	intensity	-	they	are	not	merely	sensitive	to	spatial	position	(O’Keefe,	1976).	

In	contrast,	cone	activity	does	not	provide	information	about	wavelength	unless	the	organism	knows	that	a	
monochromatic	light	is	being	presented	and	additionally	knows	how	cone	activity	depends	on	wavelength.	
The	 latter	 point	 is	 crucial:	 since	 the	 organism	 never	 gets	 to	 observe	 stimulus	wavelength	 but	 only	 the	
activity	of	cones,	there	is	no	way	that	it	can	infer	the	relation	between	these	two	observables.	

In	the	same	way,	in	our	sound	localization	example,	the	firing	rate	of	a	single	neuron	provides	information	
about	 the	spatial	position	of	a	 sound,	but	only	 if	one	knows	which	sound	 is	being	played,	and	what	 the	
relation	between	position	and	firing	rate	is	for	that	particular	sound.	Thus,	the	code	is	specific	of	a	particular	
sound,	just	as	place	cell	activity	is	specific	of	an	environment.	But	while	a	rat	can	explore	its	environment,	
one	does	not	explore	a	sound,	because	a	sound	is	transient.	The	initial	proposition	must	then	be	qualified:	
firing	rate	encodes	sound	position	within	a	given	world	of	identical	sounds.	This	makes	the	coding	metaphor	
much	less	meaningful	than	in	the	case	of	place	cells.	

One	may	raise	the	following	objection.	The	code	for	sound	position	is	contextual,	but	it	could	be	that	context	
is	provided	by	another	part	of	the	nervous	system:	there	could	be	a	“where”	pathway	and	a	“what”	pathway,	
with	 the	 former	 making	 sense	 in	 the	 context	 of	 the	 latter.	 This	 hypothesis	 implies	 that	 there	 is	 no	
information	per	se	in	the	where	pathway,	but	only	in	the	joint	activity	of	the	two	pathways.	It	follows	that	
the	 proposition	 is	 logically	 equivalent	 to	 the	 following:	 sound	position	 is	 encoded	 in	 the	 activity	 of	 the	
nervous	system.	Indeed,	consider	the	following	proposition:	sound	location	is	encoded	in	the	activity	of	the	
left	 auditory	nerve	 (since	 firing	 rate	varies	with	 level	and	 thus	with	 sound	position),	 and	 the	context	 is	
provided	by	the	right	auditory	nerve.	This	is	true	since	sound	location	is	encoded	in	the	joint	activity	of	the	
two	auditory	nerves,	but	separating	code	and	context	is	arbitrary	and	misleading.	

In	 summary,	 when	 the	 coding	 metaphor	 is	 applied,	 the	 dependence	 of	 the	 code	 on	 context	 must	 be	
identified.	If	the	code	depends	on	specifics	of	the	experimental	design,	then	it	constitutes	information	for	
the	experimenter,	not	for	the	organism.	In	this	case,	it	is	misleading	to	speak	of	a	“neural”	code	because	the	
communication	 channel	 implied	 by	 the	 metaphor	 is	 made	 of	 both	 the	 biological	 system	 and	 the	
experimental	system.	

	

3.	Extrinsic	vs.	intrinsic	information	

3.1.	The	neural	coding	metaphor	is	implicitly	dualist	

In	what	sense	is	the	neural	code	“information”	about	objective	properties	of	the	world?	It	is	information	in	
the	sense	that	these	properties	can	be	inferred	from	neural	activity.	Methodologically,	this	inference	is	done	
by	the	experimenter,	who	confronts	these	properties	with	measurements	of	neural	activity.	But	by	using	
the	 terms	 “neural	 code”,	we	 imply	 that	 the	brain	must	 also	do	 this	 inference.	How	 is	 it	possible	 for	 the	
nervous	system	to	infer	external	properties	from	neural	activity,	 if	all	that	it	ever	gets	to	observe	is	that	
activity?	In	fact,	what	does	it	even	mean	that	a	neural	network	infers	external	properties	(e.g.	the	direction	
of	a	sound	source),	given	that	those	properties	do	not	belong	to	the	domain	of	neural	activity?	
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This	hints	at	the	homunculus	fallacy.	In	the	coding	paradigm,	meaning	is	obtained	at	some	final	stage	where	
neural	activity	is	mapped	to	the	initial	message,	where	the	world	is	described	in	external	terms.	This	leads	
to	what	philosopher	Daniel	Dennett	called	the	“Cartesian	theater”	(Dennett,	1992).	Descartes	suggested	that	
the	mind,	which	he	viewed	as	non-material,	interacted	with	the	brain	at	the	pineal	gland.	At	that	stage,	the	
mind	would	 read	 the	 activity	of	 the	nerves	 and	 interpret	 it	 in	 terms	of	 the	outside	physical	world.	The	
“Cartesian	theater”	is	the	brain	seen	as	a	screen	where	the	world	is	projected,	that	a	homunculus	(the	mind)	
watches.	Pushed	 to	 its	ultimate	conclusions,	 the	 coding	view	of	perception	 is	 logically	equivalent	 to	 the	
dualism	of	Descartes.	

I	suggest	that	the	appeal	of	the	coding	metaphor	for	the	brain	stems	from	the	misleading	use	of	the	word	
“information”.	In	the	coding	metaphor,	neural	activity	is	information	about	the	world	in	the	sense	that	it	is	
possible	to	reconstruct	the	external	world	from	neural	activity,	just	as	it	is	possible	to	map	a	Morse	message	
back	to	the	original	message.	The	problem	is,	a	Morse	message	translated	from	German	is	not	informative	
unless	one	understands	German,	and	it	is	even	less	informative	if	all	that	the	receiver	ever	gets	to	observe	
is	Morse	messages.	To	decipher	the	Enigma	code	during	World	War	II,	the	Allies	used	the	weather	of	the	
day	as	 an	element	 that	 they	 could	 look	 for	 in	 the	encoded	messages.	Thus,	 they	used	a	known	element	
external	to	the	messages	(a	“known-plaintext	attack”),	in	addition	to	their	prior	knowledge	of	German.	

Thus,	the	fundamental	problem	with	the	coding	metaphor,	as	it	applies	to	the	brain,	is	that	it	conveys	an	
extrinsic	notion	of	information:	the	meaning	conferred	to	symbols	is	extrinsic,	given	by	an	external	observer	
who	has	access	to	both	the	external	world	and	neural	activity.	This	meaning	is	not	intrinsic	to	the	activity	
of	the	nervous	system.	Thus,	it	is	not	immediately	obvious	that	this	extrinsic	notion	of	information	is	the	
right	way	to	address	the	informational	problems	faced	by	the	brain.	This	problem	is	known	as	the	symbol	
grounding	problem:	how	do	spikes,	the	symbols	of	the	neural	code,	make	sense	for	the	organism?	

	

3.2.	Information	as	subjective	laws	

How	can	there	be	any	information	about	the	world	without	direct	access	to	the	world?	This	is	the	question	
to	 be	 answered	 if	 we	 are	 to	 address	 the	 implicit	 dualism	 of	 the	 neural	 coding	 metaphor.	 It	 has	 been	
addressed	 by	 philosophers	 and	 psychologists.	 O’Regan	 and	 Noë	 (2001)	 proposed	 the	 analogy	 of	 the	
“villainous	monster”.	Imagine	you	are	exploring	the	sea	with	an	underwater	vessel.	But	a	villainous	monster	
mixes	all	the	cables	and	so	all	the	sensors	and	actuators	are	now	related	to	the	external	world	in	a	new	way.	
How	can	you	know	anything	about	the	world?	The	only	way	is	to	analyze	the	structure	of	sensor	data	and	
their	 relationships	 with	 actions	 that	 you	 can	 perform.	 If	 dualism	 is	 rejected,	 then	 this	 is	 the	 kind	 of	
information	that	is	available	to	the	nervous	system.	A	salient	feature	of	this	notion	of	information	is	that,	
contrary	 to	 Shannon’s	 information,	 it	 is	 defined	 not	 as	 elements	 of	 a	 set	 but	 as	 relations	 or	 logical	
propositions:	if	I	do	action	A,	then	sensory	property	B	happens;	if	sensory	property	A	happens,	then	another	
property	B	will	happen	next;	if	I	do	action	A	in	sensory	context	B,	then	C	happens.	

James	Gibson	 previously	 developed	 a	 related	 psychological	 theory	 (Gibson,	 1986).	While	 criticizing	 the	
information-processing	view	of	perception,	he	argued	that	there	is	information	about	the	world	present	in	
the	 invariant	structure	of	sensory	signals:	“A	great	many	properties	of	the	[optical]	array	are	lawfully	or	
regularly	variant	with	change	of	observation	point,	and	this	means	that	in	each	case	a	property	defined	by	
the	law	is	invariant”.	Clearly,	the	word	“information”	is	not	meant	in	the	sense	of	communication	theory,	
but	rather	in	the	sense	of	scientific	knowledge.	A	set	of	observations	and	experiments	provides	information	
about	 the	world,	 in	 the	 form	 of	 laws	 that	 relate	 observables	 (sensory	 signals)	 between	 them	 and	with	
possible	 actions.	 This	 form	of	 information	 is	 intrinsic;	 I	 proposed	 to	 call	 this	 set	 of	 laws	 the	 subjective	
physics	of	the	world	(Brette,	2016).	A	related	view,	formalized	by	theoretical	biologist	Robert	Rosen	(Rosen,	
1985),	is	that	biological	organisms	build	an	internal	model	of	the	world,	in	which	the	variables	are	sensory	
signals.	This	view	addresses	the	symbol	grounding	problem	by	mapping	sensory	signals	to	elements	of	an	
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internal	model.	 The	 signals	make	 sense	 in	 reference	 to	 that	model;	 they	 are	 not	mapped	 to	 externally	
defined	properties.	

To	be	more	concrete,	 imagine	an	organism	with	a	 linear	 retina	 in	a	world	of	 tiny	objects	 (Fig.	4A).	The	
presence	of	 an	 object	 is	 signaled	by	 the	 firing	 of	 a	 retinal	 neuron,	whose	 identity	 indicates	 the	 object’s	
location	through	a	“labelled-line	code”.	However,	to	infer	location	from	neural	activity	requires	knowing	the	
relation	between	object	position	and	neuron	identity,	and	this	information	is	not	conveyed	by	the	flickering	
of	the	cells.	Therefore,	retinal	activity	alone	does	not	constitute	spatial	information	for	the	organism.	Now	
suppose	that	the	organism	can	move	its	retina	laterally.	It	can	then	observe	a	relation	between	muscular	
state	 (through	 proprioception	 or	 afferent	 copy)	 and	 neural	 activity	 (Fig.	 4B).	 Neural	 activity	 is	 now	
informative	of	which	neuron	would	become	active	if	a	given	action	were	performed.	Thus,	neural	activity	is	
intrinsic	information	to	the	extent	that	it	can	be	mapped	to	a	rich	internal	model.	We	note	that	this	model	
still	entails	a	very	poor	notion	of	space,	with	no	metric	structure.	A	richer	notion	would	require	the	ability	
to	perform	different	types	of	movements,	in	particular	movements	which	translate	the	entire	organism	(see	
Brette	(2016)).	The	key	point	in	this	example	is	that	neural	activity	conveys	the	same	extrinsic	information	
about	the	object’s	location	whether	the	organism	can	move	or	not,	yet	there	is	intrinsic	information	in	the	
latter	case	but	not	in	the	former.	

	

Figure	4.	 Information	 in	 sensorimotor	 structure.	A,	Each	neuron	on	a	 linear	retina	 fires	when	an	object	 is	
presented	 at	 a	 specific	 location.	 From	 the	 brain’s	 viewpoint,	 these	 are	 blinks	 from	 different	 cells	 with	 no	
intrinsic	notion	of	space.	B,	If	the	organism	can	move	the	retina,	then	object	position	is	defined	as	the	relation	
between	neural	activity	and	proprioceptive	 state	of	 the	retina.	The	 firing	of	a	cell	 informs	 the	organism	of	
which	 cell	would	 fire	 if	 the	 retina	were	moved	 in	particular	directions.	 C,	 Piano	keys	are	 encoded	 into	 the	
acoustical	 signals.	 Beyond	 Shannon	 information,	 there	 is	 intrinsic	 information	 in	 the	 form	of	 sensory	 laws	
followed	 by	 the	 signals.	 For	 example,	 the	 signal	 produced	 by	 a	 key	 is	 periodic,	 with	 a	 specific	 period,	
independently	of	how	hard	the	key	is	struck.	The	same	sensory	law	is	obeyed	by	the	signal	produced	by	a	key	
an	octave	higher,	providing	a	natural	topology.	

	

3.3.	Information	in	a	single	stimulus	

In	the	coding	metaphor,	a	code	constitutes	information	in	the	sense	of	a	translation	dictionary.	But	there	is	
more	information	in	the	sensory	signals	than	implied	by	this	metaphor.	Imagine	a	world	of	sounds	made	by	
various	piano	keys	(Fig.	4C).	From	the	coding	point	of	view,	there	is	extrinsic	information	in	the	acoustical	
signals	about	which	piano	key	is	played,	in	the	sense	that	there	is	a	one-to-one	mapping	between	piano	keys	
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and	 signals.	 From	 the	 organism’s	 viewpoint,	 this	 information	 is	 poor	 since	 the	 mapping	 is	 unknown.	
However,	there	is	much	more	information	in	these	sensory	signals	than	what	the	classical	coding	paradigm	
suggests,	 if	 we	 take	 the	 viewpoint	 of	 information	 as	 sensory	 laws.	 It	 can	 be	 said	 for	 example	 that	 the	
acoustical	signals	S(t)	follow	the	law	S(t+T)	=	S(t)	for	some	delay	T.	The	striking	difference	with	the	extrinsic	
notion	of	information	conveyed	by	the	coding	metaphor	is	that	something	can	be	said	of	a	single	stimulus:	
a	(tentative)	model	of	a	single	stimulus	can	be	built	–	despite	the	problem	of	induction,	building	a	model	
from	finite	observations	is	tentative	but	possible	to	the	extent	that	science	is	possible	(see	(Brette,	2016)	
for	 a	 discussion).	 This	 relates	 to	 another	 theoretical	 concept	 of	 information	 known	 as	 Kolmogorov	
complexity.	Kolmogorov	complexity	is	the	size	of	the	shortest	program	that	produces	the	signal.	In	this	case,	
the	program	could	be	to	repeat	the	waveform	of	one	period.	This	program	is	a	type	of	information	that	is	
absent	from	the	coding	metaphor,	which	considers	information	in	a	set-theoretic	sense:	a	stimulus	is	just	
one	element	of	a	set	of	possible	stimuli.	

But	a	stimulus	is	not	just	an	element	of	a	set:	it	can	have	structure	(laws	or	generative	program)	and	this	
structure	constitutes	information.	In	particular,	the	structure	has	predictive	value:	a	law	postulated	on	the	
basis	of	the	beginning	of	a	signal	can	be	tested	on	the	rest	of	the	signal;	or	a	program	can	produce	the	rest	
of	the	signal.	Structure	also	defines	relations	between	different	stimuli.	For	example,	consider	two	musical	
notes	that	differ	by	an	octave	(Fig.	4C).	In	the	coding	view,	these	are	just	two	distinct	labels.	However,	there	
is	a	relation	between	the	two	signals	stemming	from	the	fact	that	the	period	of	the	lower	note	is	twice	the	
period	of	the	higher	note.	This	implies	that	the	sensory	model	associated	with	the	lower	note	(S(t)	=	S(t+T))	
is	also	valid	for	the	higher	note	(but	not	conversely),	which	defines	a	relation	of	similarity	between	these	
two	notes.	This	topology	does	not	exist	in	the	classical	coding	view,	because	each	signal	is	seen	as	an	element	
of	an	unstructured	set.	It	turns	out	that	these	similarities	in	structure	match	perceptual	similarities,	with	
some	qualifications	(Zheng	and	Brette,	2017):	 two	notes	played	by	different	 instruments	elicit	 the	same	
pitch	if	they	have	the	same	periodicity	but	different	spectral	content.	

	

3.4.	Encoding	intrinsic	information	

In	 the	 neural	 coding	 literature,	 variations	 of	 the	 coding	 paradigm	 have	 been	 proposed	 to	 address	 the	
question	of	intrinsic	information.	An	interesting	proposition	is	predictive	information,	which	is	the	mutual	
(Shannon)	information	between	the	past	and	future	of	a	signal	(Bialek	et	al.,	2001;	Palmer	et	al.,	2015).	This	
should	not	to	be	confused	with	“predictive	coding”	(Rao	and	Ballard,	1999;	Clark,	2013),	which	is	a	variation	
of	 the	 efficient	 coding	 paradigm	 where	 neurons	 encode	 the	 difference	 between	 the	 signal	 and	 the	
expectation	of	the	signal	based	on	other	observations	(either	previous	observations	or	the	activity	of	other	
neurons).	Suppose	for	example	that	there	is	some	acoustical	noise	in	addition	to	the	musical	notes.	In	the	
predictive	coding	paradigm,	neurons	encode	only	the	difference	with	expectations,	i.e.,	mostly	the	noise.	It	
is	considered	efficient	because	the	code	is	meant	to	stand	for	the	original	signal,	which	includes	noise.	This	
is	paradoxical	because	noise	cannot	constitute	information	for	the	organism	in	any	meaningful	sense.	This	
paradox	occurs	because	the	predictive	coding	paradigm	(and	more	generally	the	efficient	coding	paradigm)	
does	 not	 distinguish	 between	 what	 is	 meaningful	 and	 what	 constitutes	 noise.	 Predictive	 information	
improves	on	this	by	proposing	that	what	should	be	encoded	is	only	the	part	of	the	signal	that	is	informative	
about	the	future.	In	our	example,	predictive	information	would	only	include	information	about	the	piano	
key	being	played	and	not	acoustical	noise.	

However,	predictive	information	comes	with	the	same	limitation	as	more	classical	forms	of	coding	in	that	
what	is	encoded	is	not	the	structure	of	signals;	the	encoded	messages	are	note	labels.	The	prediction	of	the	
future	signal	can	be	made	by	the	encoder,	but	not	by	those	who	read	the	encoded	message.	The	fact	that	
two	 notes	 separated	 by	 an	 octave	 are	 structurally	 similar	 is	 not	 communicated.	 Thus,	 the	 fundamental	
problem	in	this	and	more	classical	coding	paradigms	is	that	all	the	meaningful	structure	(the	sensory	model	
or	the	program)	is	private	to	the	encoding	process,	while	only	the	encoded	message	is	communicated.		
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3.5.	Representation	of	structure	and	structure	of	representations	

Thus,	 for	 the	 coding	metaphor	 to	be	biologically	meaningful,	 this	 intrinsic	 information,	 the	 structure	of	
signals,	 should	 be	 encoded	 and	 communicated.	 There	 are	 in	 fact	 a	 few	 examples	 in	 the	 neuroscience	
literature,	although	they	are	not	usually	cast	in	this	way.	One	is	the	Jeffress	model	of	ITD	coding	(Jeffress,	
1948)	(Figure	5A).	In	that	model,	neurons	receive	inputs	from	monaural	neurons	on	the	two	sides,	with	
different	conduction	delays.	When	input	spikes	arrive	simultaneously,	the	neuron	spikes.	Thus,	the	neuron	
spikes	when	the	two	acoustical	signals	at	the	two	ears	are	such	that	SL(t)	=	SR(t-d),	where	d	is	the	conduction	
delay	mismatch	between	the	two	ears.	Physically,	this	corresponds	to	a	sound	source	placed	at	a	position	
such	that	it	produces	an	ITD	equal	to	d.	In	this	model,	the	neuron	encodes	a	sensory	law;	more	precisely,	it	
indicates	whether	 signals	 satisfy	 a	 particular	 sensory	 law.	 Its	 spikes	 cannot	 be	 used	 to	 reconstruct	 the	
original	signals.	

	

Figure	5.	Neural	 representation	of	 structure	 (adapted	 from	Brette	 (2012)).	A,	The	 Jeffress	model	of	 sound	
localization.	The	sound	arrives	at	the	two	ears	with	delays	dL	and	dR.	It	is	then	transduced	into	spike	trains	that	
arrive	at	a	binaural	neuron	with	delays	dL	and	dR.	Synchrony	occurs	when	dR	-	dL	= dL	-	dR,	making	the	neuron	
fire.	B,	The	synchrony	receptive	field.	The	response	of	a	neuron	to	a	stimulus	 is	described	as	filtering	of	the	
sensory	signal	S	through	the	receptive	field	N,	followed	by	spiking.	The	synchrony	receptive	field	of	two	neurons	
A	and	B	with	different	receptive	fields	NA	and	NB	is	defined	as	the	set	of	stimuli	that	elicit	synchronous	responses	
in	these	neurons.	

This	model	can	be	generalized.	I	recently	proposed	a	computational	theory	of	synchrony	in	sensory	systems	
(Brette,	2012),	 in	which	synchrony	reflects	the	structure	of	sensory	signals	(Fig.	5B).	One	considers	two	
neurons	A	and	B	which	convert	 their	 time-varying	 inputs	 into	precisely	 timed	spike	 trains,	where	 their	
inputs	 are	 seen	 as	 transformed	 versions	 NA(S)	 and	 NB(S)	 of	 the	 stimulus	 S	 (NA	 and	 NB	 are	 fixed	 and	
correspond	to	the	receptive	fields	of	the	neurons).	Synchrony	between	A	and	B	then	reflects	the	sensory	
law	NA(S)	 =	NB(S).	 The	 synchrony	 receptive	 field	 of	 A	 and	B	 is	 the	 set	 of	 stimuli	 that	 elicit	 synchronous	
responses	 in	 these	 two	 neurons:	 it	 is	 the	 set	 of	 sensory	 signals	 that	 satisfy	 a	 particular	 law.	 A	 neuron	
receiving	inputs	from	A	and	B	would	then	fire	when	the	stimulus	is	in	the	synchrony	receptive	field	of	A	and	
B,	that	is,	when	it	satisfies	a	particular	sensory	law.	One	can	then	see	synchrony	patterns	or	the	firing	of	
postsynaptic	neurons	as	 a	 code	 for	 sensory	 laws.	This	 framework	has	been	applied	 to	pitch	perception	
(Laudanski	et	al.,	2014)	and	to	sound	localization	in	realistic	environments	where	sounds	are	diffracted	by	
the	head	(Goodman	and	Brette,	2010;	Benichoux	et	al.,	2015).	
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However,	the	concept	of	synchrony	receptive	fields	captures	a	rather	elementary	notion	of	structure.	For	
example,	it	does	not	capture	predictive	sensorimotor	propositions	such	as:	“if	I	do	action	A,	then	property	
B	should	be	true”.	In	fact,	when	perceptual	information	is	understood	as	propositions	about	sensorimotor	
signals,	 it	appears	that	the	information	to	be	represented	by	the	brain	is	much	richer	than	suggested	by	
coding	theory.	For	example,	in	a	visual	scene,	there	could	be	Paul,	a	person	I	know,	wearing	a	new	shirt,	
driving	a	 car	 (Fig.	 6).	What	 is	 important	here	 is	 that	 a	 scene	 is	not	 just	 a	 “bag	of	objects”:	 objects	have	
relationships	with	each	other,	and	there	are	many	possible	different	relationships.	For	example	there	is	a	
car	 and	 there	 is	Paul,	 and	Paul	 is	 in	 a	 specific	 relationship	with	 the	 car,	 both	 a	physical	 relationship	 (a	
particular	posture	within	the	car)	and	a	functional	relationship	(driving	it).	Thus,	a	neural	“code”	of	a	scene	
should	 not	 only	 represent	 the	 individual	 objects	 but	 also	 specific	 relationships	 between	 these	 objects,	
possibly	in	a	recursive	way.	Since	phenomenal	experience	is	at	least	as	complex	as	what	can	be	consciously	
described	with	language,	neural	representations	of	perception	should	be	at	least	as	structured	as	language:	
it	should	have	syntax,	as	recently	proposed	(Buzsáki,	2010).	

	

Figure	6.	Perceptual	scenes	are	highly	structured.	For	example,	there	is	Paul	(person	I	know),	driving	a	car,	
and	wearing	a	new	shirt.	Representing	this	scene	by	the	firing	of	neural	assemblies	raises	two	issues:	1)	it	may	
be	 difficult	 to	 split	 active	 neurons	 into	 the	 correct	 assemblies	 (superposition	 catastrophe),	 and	 more	
importantly	2)	the	structure	of	the	scene	(relations	shown	by	arrows)	cannot	be	represented	in	this	way.	

Unfortunately,	 this	 does	 not	 fit	 well	 with	 the	 concept	 of	 “neural	 assemblies”,	 which	 is	 the	mainstream	
assumption	about	how	things	we	perceive	are	represented	in	the	brain.	If	it	is	true	that	any	given	object	is	
represented	by	the	firing	of	a	given	assembly	of	neurons,	then	several	objects	should	be	represented	by	the	
firing	of	a	bigger	assembly	of	neurons,	the	union	of	all	assemblies,	one	for	each	object.	Several	authors	have	
noted	that	this	may	lead	to	the	“superposition	catastrophe”	(von	der	Malsburg,	1999),	 i.e.,	 there	may	be	
different	sets	of	objects	whose	representations	are	 fused	 into	 the	same	big	assembly.	Even	without	 this	
segmentation	problem,	the	representation	of	a	scene	could	still	be	nothing	else	than	an	unstructured	“bag	
of	objects”,	for	there	are	no	relationships	between	objects	in	the	assembly	representation.	Mathematically,	
the	appropriate	representation	is	a	graph	with	labeled	edges	and	vertices,	not	an	unstructured	set.	

Thus	 there	 is	 a	 fundamental	 problem	 with	 the	 concept	 of	 neural	 assembly,	 which	 is	 that	 there	 is	 no	
representation	of	relations,	only	of	things	to	be	related.	This	remark	has	been	made	in	the	past,	essentially	
in	the	context	of	the	binding	problem.	It	has	led	several	authors	to	postulate	that	synchrony	is	used	to	bind	
the	features	of	an	object	represented	by	neural	firing	(Singer,	1999;	von	der	Malsburg,	1999).	This	avoids	
the	 superposition	 catastrophe	 because	 at	 a	 given	 time,	 only	 one	 object	 is	 represented	 by	 neural	 firing.	
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However,	 this	 is	 insufficient	 because	 only	 one	 type	 of	 relation	 can	 be	 represented	 in	 this	 way,	 and	 a	
symmetrical	one:	does	Paul	drive	the	car,	or	does	the	car	run	over	Paul?	

At	this	point,	there	is	no	strong	alternative	representational	theory	that	would	solve	all	these	issues.	The	
analogy	 of	 language	 shows	 nevertheless	 that	 this	 is	 possible	 in	 principle:	 it	 is	 conceptually	 possible	 to	
represent	structures	as	complex	as	linguistic	structure	by	using	the	order	of	words;	in	the	same	way,	it	is	
conceptually	possible	to	represent	sensory	structure	by	using	the	order	of	spikes.	

To	conclude	this	part,	if	the	neural	code	is	to	be	meaningful	for	the	organism,	then	what	is	encoded	should	
not	 be	 objective	 properties	 of	 the	 world	 but	 internal	 sensorimotor	 models.	 This	 implies	 that	 neural	
representations	themselves	must	be	structured,	rather	than	“bags	of	neurons”.	

	

4.	Spikes:	messages	or	actions?	

4.1.	The	brain	as	a	Tower	of	Babel	

In	his	seminal	book	on	vision,	David	Marr	(1982)	wrote:	“If	we	are	capable	of	knowing	what	is	where	in	the	
world,	our	brains	must	somehow	be	capable	of	representing	this	information.”.	That	is,	if	we	consider	that	
perception	 emerges	 from	 states	 of	 matter,	 then	 there	 must	 be	 a	 correspondence	 between	 mental	
representations	 and	 neural	 representations,	 states	 of	 the	 brain.	 We	 have	 argued	 that	 the	 kind	 of	
representations	that	the	brain	manipulates	must	be	structured	representations	of	 internal	sensorimotor	
models,	not	objective	representations	from	the	perspective	of	an	external	observer.	

Despite	 this	 shift	 in	 perspective,	 seeing	 neural	 activity	 as	messages	 remains	 problematic.	 A	message	 is	
something	 that	 a	 reader	 makes	 sense	 of.	 But	 to	 make	 sense	 of	 a	 message	 requires	 understanding	 the	
language	of	the	message.	In	the	coding	metaphor,	that	language	is	the	mapping	from	original	to	encoded	
message,	and	it	is	private	to	the	encoder,	not	communicated.	Thus,	the	receiver	of	the	message	cannot	be	
presumed	to	read	it	unless	it	knows	that	language.	Mathematically,	original	message	=	encoded	message	+	
code,	but	only	one	term	of	this	equation	is	communicated.	If	we	consider	in	addition	that	those	messages	
are	coded	efficiently,	then	each	neuron	uses	its	own	private	language	on	the	basis	of	its	personal	history	of	
inputs.	

Thus,	in	the	neural	coding	metaphor,	the	code	is	private	to	each	neuron.	If	we	follow	this	metaphor,	this	
means	that	all	neurons	speak	a	different	language,	a	language	that	might	allow	expressing	concepts	very	
concisely	but	that	no	one	else	can	understand.	Thus,	the	neural	coding	metaphor	leads	to	the	conclusion	
that	the	brain	is	a	Tower	of	Babel.	

These	 difficulties	 arise	 when	 neural	 activity	 is	 seen	 as	messages.	 Another	 possible	 view	 is	 that	 neural	
activity	is	indeed	activity,	and	action	potentials	are	actions.	Each	spike	has	an	effect	on	target	neurons;	it	
pushes	other	neurons	 in	some	direction.	Does	 the	heart	send	messages	 to	 the	blood	about	how	fast	 the	
organism	runs,	or	does	it	move	blood	in	the	vascular	system?	Do	neurons	read	each	other’s	spike	trains,	or	
do	they	interact	with	each	other?	

	

4.2.	Coding	vs.	acting	

I	will	now	discuss	a	concrete	biological	example	where	both	the	coding	and	acting	metaphors	can	be	applied.	
Paramecium	is	a	unicellular	organism	that	swims	in	stagnant	fresh	water	using	cilia	and	feeds	on	bacteria.	
It	 uses	 different	 kinds	 of	 sensory	 signals,	 including	mechanical	 signals	 to	 avoid	 obstacles	 and	 chemical	
signals	to	localize	food	(Jennings,	1906).	To	a	first	approximation,	it	alternates	between	straight	courses	
and	sudden	random	changes	in	direction	(Fig.	7A).	It	turns	out	that	each	change	in	direction	is	triggered	by	
a	spike	produced	by	voltage-gated	calcium	channels	(Fig.	7B)	(Eckert,	1972).	To	 find	a	chemical	source,	
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Paramecium	 uses	 a	 simple	 method:	 when	 concentration	 decreases,	 the	 membrane	 is	 depolarized	 by	
chemical	 receptors	 and	 a	 spike	 is	 produced	 (with	 some	 stochasticity),	 triggering	 a	 change	 of	 direction	
(similar	to	chemotaxis	in	E.	Coli)	.	This	is	of	course	a	simplified	description	of	Paramecium	physiology	and	
behavior,	but	for	the	sake	of	the	argument	we	shall	consider	an	organism	that	functions	in	this	simple	way.	

	

Figure	7.	Spatial	cognition	in	Paramecium,	a	“swimming	neuron”.	A,	Paramecium	finds	a	chemical	source	by	
switching	to	a	new	random	direction	when	concentration	decreases.	B,	Each	direction	change	is	triggered	by	
an	action	potential,	which	transiently	inverts	cilia	beating	through	a	calcium	pathway	(adapted	from	(Eckert	
and	Naitoh,	1970)).	

Thus,	Paramecium	is	a	sort	of	swimming	neuron,	where	spikes	can	be	seen	both	as	encoding	sensory	signals	
(concentration)	and	as	producing	an	action	(change	of	direction).	The	same	could	be	said	of	any	neuron	in	
a	nervous	system,	except	the	action	of	a	neuron	is	generally	on	other	neurons	and	only	indirectly	on	the	
environment.	We	can	now	expose	the	difficulties	of	the	coding	metaphor	in	this	context.	

We	may	argue	that	if	the	organism	can	navigate	efficiently	in	its	environment,	then	the	spikes	must	contain	
information	 about	 that	 environment.	 Therefore,	 it	 makes	 sense	 to	 apply	 the	 coding	 metaphor	 to	 this	
situation.	How	should	sensory	signals	be	encoded	into	spikes?	This	question	raises	two	issues.	First,	the	
primary	goal	of	the	organism	is	not	to	maximize	information	but	to	take	appropriate	action.	But	is	coding	
efficiency	the	same	as	behavioral	performance?	In	general	no,	because	coding	efficiency	only	depends	on	
the	sensory	signals	while	behavioral	performance	depends	on	what	you	want	to	do:	to	move	towards	or	
away	from	a	source,	to	look	for	food	or	to	sleep,	or	to	look	for	a	mate.	Therefore,	an	efficient	code	(in	terms	
of	signal	representation)	is	not	in	general	a	good	code	(in	terms	of	behavior).	

There	is	a	second	fundamental	issue.	The	input	to	the	organism	is	not	the	environment	but	the	signals	it	
captures.	It	follows	that	sensory	signals	are	not	given	a	priori:	they	depend	on	the	organism’s	actions,	and	
therefore	on	the	encoding.	Thus,	the	very	notion	of	coding	is	ill-defined	because	the	relation	between	“input”	
and	“output”	is	not	a	mapping	but	a	circular	relation.	This	affects	the	coding	framework	in	two	ways.	First,	
if	we	consider	organism	and	environment	as	two	coupled	dynamical	systems,	then	what	can	be	said	is	that	
the	organism’s	action	at	a	given	instant	depend	on	the	previous	sensory	signals,	and	possibly	on	internal	
states.	But	the	input	signal	is	not	mapped	as	a	whole	to	an	output	signal,	because	the	signal	is	not	given	a	
priori	independently	of	the	outputs.	Second,	one	may	define	an	efficient	code	on	the	basis	of	the	statistics	of	
the	sensory	signal,	but	choosing	that	code	changes	the	sensory	signal.	Thus,	it	is	not	possible	to	answer	the	
question:	“what	is	the	most	efficient	way	to	encode	the	sensory	signals?”.	A	possible	solution	would	be	to	
see	it	as	a	fixed-point	problem,	for	example	by	iteratively	looking	for	an	efficient	code	until	signal	statistics	
are	stable.	But	 this	would	 lead	to	cells	 looking	 for	regions	of	space	where	sensory	signals	are	easiest	 to	
reconstruct,	with	no	guarantee	that	it	matches	the	organism’s	goals.	Although	the	circularity	is	particularly	
evident	in	the	Paramecium	example,	it	is	a	general	feature	of	biological	organisms	(Ahissar	and	Assa,	2016);	
for	example,	visual	signals	both	trigger	and	depend	on	eye	movements.	

This	 example	 illustrates	 the	 fact	 that	 spikes	 are	 not	 just	 messages.	 They	 are	 an	 integral	 part	 of	 the	
sensorimotor	loop,	with	each	spike	produced	by	a	neuron	triggering	changes	on	the	neighboring	network,	
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on	the	environment	and	ultimately	on	its	input.	Thus,	failures	of	efficient	coding	may	occur	not	because	the	
brain	is	not	efficient,	but	because	the	brain	does	not	really	code.	

	

5.	Conclusion	

A	metaphor	is	not	true	or	false:	it	is	insightful	or	misleading	(Lakoff	and	Johnson,	2008).	How	insightful	is	
the	coding	metaphor	for	the	brain?	

There	are	two	ways	in	which	the	neural	coding	metaphor	is	used.	One	is	when	we	say	that	neurons	encode	
sensory	 signals,	 for	example	when	we	say	 that	 retinal	 spike	 trains	encode	visual	 signals.	Discussions	of	
efficient	 coding,	 predictive	 coding	 and	 predictive	 information	 belong	 to	 this	 category.	 In	 essence,	 the	
proposition	means	nothing	more	than	there	is	a	mapping	from	X	to	neural	activity,	and	we	are	interested	in	
properties	of	 that	mapping.	Thus,	 it	 implicitly	 frames	 the	problem	of	perception	as	one	of	 representing	
inputs	 that	 are	 given	 to	 the	 organism.	 But	 inputs	 are	 not	 given	 to	 the	 organism.	 On	 the	 contrary,	 the	
organism	 actively	 captures	 sensory	 signals	 in	 order	 to	 obtain	 information	 about	 the	 environment.	 This	
makes	 the	 relation	 between	 sensory	 signals	 and	 neural	 activity	 circular,	 for	 any	 neuron	 along	 the	
sensorimotor	 loop.	 Consequently,	 normative	 discussions	 framed	 exclusively	 in	 terms	 of	 coding	 are	
problematic	 (how	 should	 neurons	 encode	 sensory	 signals?),	 because	 inputs	 are	 not	 independent	 from	
outputs,	and	coding	efficiency	is	not	a	priori	the	same	as	behavioral	performance.	

Presumably,	an	organism	is	not	so	much	interested	in	reconstructing	the	sensory	signals	as	in	obtaining	
information	about	the	environment,	and	capturing	signals	is	only	a	means	to	that	end.	Thus,	a	second	way	
to	 use	 the	neural	 coding	metaphor	 is	when	we	 say	 that	 neurons	 encode	 some	 abstract	 property	 of	 the	
environment.	Such	propositions	are	highly	misleading	when	the	property	 is	an	experimental	parameter,	
because	in	that	case	the	communication	channel	is	made	of	both	the	biological	and	experimental	systems.	
If	the	interpretation	of	the	neural	code	depends	on	experimental	context,	then	the	code	is	not	neural	after	
all,	but	rather	neuro-experimental.	This	qualification	certainly	affects	the	insightfulness	of	the	metaphor	for	
understanding	brain	function.	

Thus,	speaking	of	a	neural	code	for	an	abstract	property	is	meaningful	to	the	extent	that	the	implied	decoder	
is	insensitive	to	elements	of	context.	But	who	reads	the	neural	code?	If	we	consider	that	neurons	encode	
objective	properties	of	the	world	and	the	brain	reads	the	code,	then	the	neural	coding	metaphor	is	dualist.	
What	does	it	mean	to	say	that	neurons	encode	the	direction	of	a	sound	source,	does	the	brain	know	about	
radians?	 To	 avoid	 the	 homunculus	 fallacy,	what	 is	 to	 be	 encoded	 and	manipulated	 cannot	 be	 objective	
properties	 (radians)	 but	 internal	 models	 that	 relate	 sensory	 signals	 together	 and	 with	 the	 organism’s	
actions.	 It	 follows	 that	 a	biologically	 relevant	 concept	of	 information	 cannot	be	Shannon’s	unstructured	
notion	of	information	(an	input	as	an	element	of	an	unstructured	set).	Intrinsic	information	must	take	the	
form	of	structured	models,	in	which	not	only	elements	but	also	relations	between	elements	are	represented.	
It	follows	that	neural	assemblies	(“bags	of	neurons”)	cannot	be	the	basis	of	mental	representations.	

Ultimately,	the	view	that	spikes	are	messages	leads	to	a	perplexing	view	of	neural	activity.	A	message	is	only	
a	message	for	someone	who	knows	its	language.	But	in	the	neural	coding	metaphor,	each	neuron	has	its	
own	language	(the	encoding)	and	only	the	message	is	communicated.	Thus,	the	brain	is	a	Tower	of	Babel.	
Perhaps	more	relevant	is	the	view	that	an	action	potential	is	an	action	on	other	neurons,	that	producing	a	
spike	is	a	way	of	doing	rather	than	of	communicating,	and	that	neurons	interact	with	each	other	and	with	
the	environment,	rather	than	speak	to	each	other.	After	all,	we	do	speak	of	neural	“activity”.	
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