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Abstract

Voltage-sensitive dye imaging (VSDi) has revealed fundamental prop-
erties of neocortical processing at macroscopic scales. Since for each
pixel VSDi signals report the average membrane potential over hun-
dreds of neurons, it seems natural to use a mean-field formalism to
model such signals. Here, we present a mean-field model of net-
works of Adaptive Exponential (AdEx) integrate-and-fire neurons,
with conductance-based synaptic interactions. We study here a net-
work of regular-spiking (RS) excitatory neurons and fast-spiking (FS)
inhibitory neurons. We use a Master Equation formalism, together
with a semi-analytic approach to the transfer function of AdEx neu-
rons to describe the average dynamics of the coupled populations.
We compare the predictions of this mean-field model to simulated
networks of RS-FS cells, first at the level of the spontaneous activity
of the network, which is well predicted by the analytical description.
Second, we investigate the response of the network to time-varying
external input, and show that the mean-field model predicts the re-
sponse time course of the population. Finally, to model VSDi signals,
we consider a one-dimensional ring model made of interconnected
RS-FS mean-field units. We show that this model can reproduce the
spatio-temporal patterns seen in VSDi of awake monkey visual cortex
as a response to local and transient visual stimuli.

1 Introduction

Recent advances in imaging technique, in particular voltage-sensitive dye imaging
(VSDi), have revealed fundamental properties of neocortical processing (Arieli
et al., 1996; Contreras and Llinas, 2001; Jancke et al., 2004; Ferezou et al.,
2006; Chen et al., 2006; Civillico and Contreras, 2012; Muller et al., 2014;
Gilad and Slovin, 2015): subthreshold responses to sensory inputs are locally
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homogeneous in primary sensory areas, depolarizations tend to spread across
spatially neighboring regions and responses to sensory stimuli are strongly
affected by the level of ongoing activity. It also appears as a great tool to unveil
how the spatio-temporal dynamics in the neocortex shape canonical cortical
operations such as normalization (Reynaud et al., 2012).

On the other hand, the literature lacks, to the best of our knowledge, theo-
retical models that provides a detailed account of those phenomena with a clear
relation between the biophysical source of the VSDi signal and network dynamics
at that spatial scale (i.e. at the millimeters or centimeters scale). Detailed model
of a neocortical column (i.e. ~0.5mm? scale) have been recently proposed, see
Chemla and Chavane (2010); Chemla and Chavane (2016) for the link with the
VSDi signal or more generally Markram et al. (2015), but their computational cost
impedes the generalization to higher spatial scale. The aim of the present commu-
nication is therefore to design a theoretical model of neocortical dynamics with the
following properties: 1) it should have a correlate in terms of single-cell dynamics
(in particular membrane potential dynamics), so that the model can directly gen-
erate predictions for the signal imaged by the VSDi technique (Berger et al., 2007)
and 2) it should describe both the temporal and spatial scale of optical imaging.
More specifically, as we intend to describe responses to salient sensory stimuli, our
study focuses on network dynamics in activated cortical states(Tan et al., 2014).
The desired model should therefore describe neocortical computation in the
asynchronous regime, where cortical activity is characterized by irregular firing
and strong subthreshold fluctuations at the neuronal level (Steriade et al., 2001;
Destexhe et al., 2003). The strategy behind the present model is to take ad-
vantage of the mean-field descriptions of network dynamics in this regime. Via
self-consistent approaches, those descriptions allow to capture the dynamical
properties of population activity in recurrent networks (Amit and Brunel, 1997;
Brunel and Hakim, 1999; Brunel, 2000; Latham et al., 2000; EI Boustani and
Destexhe, 2009). The present model thus relies on the following scheme: 1)
we consider the randomly connected network of 10000 neurons as a unit to
describe few cortical columns and 2) we embedded the analytical description of
this cortical column model into a ring geometry with physiological connectivity
profiles to model spatio-temporal integration on the neocortical sheet.

We first compare the analytical prediction of the model with numerical
simulations in order to evaluate the accuracy and/or weaknesses of our specific
analytical description (adapted from (El Boustani and Destexhe, 2009)). We
next investigate the integrative properties of the model, i.e. the relation between
the network response and the properties of the input. Finally, based on this
mean-field approach, we construct a spatio-temporal model for the dynamics
of superficial layers in neocortex by arranging mean-field units according to
a one-dimentional ring structure. We then compare this model’s response to
afferent inputs with VSDi recordings in the primary visual cortex (V1) of awake
monkey in response to a visual stimulus.

2 Material and Methods

Here, we describe the equations and parameters used for the neuronal, synaptic
and network modeling. We present our heuristic treatment of the neuronal transfer
functions: the quantity that accounts for the cellular computation in mean-field models
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of population activity. Then, we present the specific markovian model of population
activity used in this study and we construct a spatio-temporal model of neocortical
integration by embedding this description into a one-dimensional ring model.

2.1 Single neuron models

The neuronal model used in this study is the adaptative exponential and fire (AdEx)
model (Brette and Gerstner, 2005). The equation for the membrane potential and the
adaptation current therefore reads:

V—Vinre
Com % = 90 (BL = V) + Lya(Vit) + kae™ Fo o — I,
= (1)
Twﬁ:—fw-i-a.(V—EL)-i‘ Z bo(t—ts)

ts€{tspike}

where Ioyn(V,t) is the current emulating synaptic activity that will create the
fluctuations, I, accounts for the phenomena of spike-frequency adaptation as well
as subthreshold adaptation(McCormick et al., 1985). The spiking mechanism is the
following: when V(t) reaches Vinre + 5kq, this triggers a spike ts € {tspike}, this
increases the adaptation variable I,, by b, the membrane potential is then clamped
at Ep, for a duration Trefrac=5ms. We consider two versions of this model: a regular
spiking neuron for the excitatory cells and a fast spiking neuron for the inhibitory cells
(see Figure 2). The parameters of those two models can be found on Table 1.

2.2 Synaptic model

The time- and voltage-dependent current that stimulate the neuron is made of the
sum of excitatory and inhibitory currents (indexed by s € {e,i} and having a reversal
potential F):
t—ts
Lygn(Vit)= Y > Qu(E.—V)e = H(t—t,) (2)
se{e,i} tse{ts}
where H is the Heaviside function.

This synaptic model is referred to as the conductance-based exponential synapse.
The set of events {t.} and {t;} are the set of excitatory and inhibitory events arriving
to the neuron. In numerical simulations of single neurons (performed to determine the
transfer function F of either excitatory or inhibitory neurons), it will be generated by
stationary Poisson processes. On the other hand, in numerical simulations of network
dynamics it will correspond to the set of spike times of the neurons connecting to the
target neurons, both via recurrent and feedforward connectivity.

2.3 Numerical network model

All simulations of numerical network were performed with the brian2 simulator (Good-
man and Brette, 2009), see http://brian2.readthedocs.org. For all simulations, the
network was composed of N¢,:=10000 neurons, separated in two populations, one
excitatory and one inhibitory with a ratio of g=20% inhibitory cells. Those two local
populations were randomly connected (internally and mutually) with a connectivity
probability e=5%.

Because this network did not display self-sustained activity (in contrast to Vogels
and Abbott (2005)), an excitatory population exerted an external drive to bring the
network out of the quiescent state. This population targeted both the excitatory and
inhibitory neurons. Note that the firing rate of this population was linearly increased
to avoid a too strong initial synchronization (see Figure 3). Finally, when studying
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Table 1: Model parameters.

Parameters Parameter Name Symbol | Value | Unit

cellular properties

leak conductance qgr, 10 | nS
leak reversal potential Ep -65 | mV
membrane capacitance Cm 150 | pF
leak reversal potential Ep -65 | mV
AP threshold Vibre -50 | mV
refractory period Trefrec 5 | ms
adaptation time constant Tw 500 | ms

excitatory cell

spike sharpness kq 2 | mV
adaptation current increment b 20 | pA
adaptation conductance a 4 | nS
inhibitory cell
spike sharpness ka 0.5 | mV
adaptation current increment b 0| pA
adaptation conductance a 0 | nS
synaptic properties
excitatory reversal potential E. 0| mV
inhibitory reversal potential E; -80 | mV
excitatory quantal conductance | Q. 1| nS
inhibitory quantal conductance | Q; 5 | nS
excitatory decay Te 5 | ms
inhibitory decay T 5 | ms
numerical network
cell number Niot 10000
connectivity probability € 5%
fraction of inhibitory cells g 20%
external drive ydrive 4 | Hz
ring model
total extent Lot 40 | mm
excitatory connectivity radius lege 5 | mm
inhibitory connectivity radius Linh 1 | mm
propagation delay Ve 300 | mm/s

responses to external inputs, an excitatory population of time varying firing rate was
added to evoke activity transients in the population dynamics. This last stimulation
targeted only the excitatory population. The number of neurons in those two excitatory
populations was taken as identical to the number of excitatory neurons (i.e. (1—g) Ntot)
and created synapses onto the recurrent network with the same probability €. After
temporal discretization, the firing rates of those afferent populations were converted
into spikes by using the properties of a Poisson process (i.e. eliciting a spike at ¢ with
a probability v(t) dt). All simulations were performed with a time-step dt=0.1ms.
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Figure 1: Modeling local cortical dynamics. (A) The complex cellular
assembly corresponding to a single pixel in VSD imaging is reduced to a local
excitatory-inhibitory network. (B) Schematic of the local network architecture.
The network is made of N, = (1 — g) Ny excitatory and N; = g Ny, inhibitory
neurons. All excitatory connections (afferent and recurrent) onto a neuron corre-
sponds to K, = € (1 — g) Ny synapses of weight Q.. All inhibitory connections
onto a neuron corresponds to K; = € g Ny, synapses of weight Q;.

2.4 Estimating the transfer functions of single neurons

The transfer function F of a single neuron is defined here as the function that maps
the value of the stationary excitatory and inhibitory presynaptic release frequencies to
the output stationary firing rate response, i.e. vour = F(Ve,v;). Note the stationary
hypothesis in the definition of the transfer function (see discussion in main text).

Because an analytical solution (of this function F) for the single neuron models
considered in our study is a very challenging mathematical problem, we adopted a
semi-analytical approach. We performed numerical simulations of single cell dynamics
at various excitatory and inhibitory presynaptic frequencies (ve and v; respectively)
(see the output in Figure 2) on which we fitted the coefficients of an analytical template
to capture the single cell model’s response.

The procedure relied on fitting a phenomenological threshold V;f:}; that accounts
for the single neuron non-linearities (spiking and reset mechanism, adaptation mech-
anisms) on top of the subthreshold integration effects (Zerlaut et al., 2016). This
phenomenological threshold is then plugged-in into the following formula (analogous to
Amit and Brunel (1997)) to become our firing response estimate:

1 Vef,‘j; A%
Vout = F(ve,v3) = CE -Erfc(“:[T) 3)

Where (uv,ov,Tv) are the mean, standard deviation and autocorrelation time
constant of the membrane potential fluctuations. How to calculate those quantities as
a response to a stationary stimulation is the focus of the next section.

The expression for the phenomenological threshold was the following:
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Table 2: Fitted coefficients of the transfer functions (see Figure 2).

Coeflicients (mV)

CAl [Py [P [ Pow [P [Bew [P [ Pe | Pz | Paer | Bovrw | Povme
RS | -51.4 | 6.103 | 7de3 | 5805 | -1.be-d | 5.604 | 2704 | 5.3c4 | -6.8e-4 | 4.904 | 10e3
FS | -546 | 4.60-3 | -1.803 | 6.60-4 | -3.0e-4 | 3.96-4 | 5.1e4 | 6406 | -1.de-3 | -4.9e-4 | -3.60-4
e m_‘ro H
Villwov ) =Rt 3 P (T ) + P los(S)
e€{pv,ov, 7}
(4)

z—a°\ (y—y°
2 e (5e) (50)

zye{nv,ov, 7 }?

We took a second order polynomial in the three dimensional space (uv,ov,7v)
combined with a term capturing the effect of total conductance on the effective threshold
(Platkiewicz and Brette, 2010). The normalization factors p%=-60mV, dul=10mV,
0% =4mV, §6¥ = 6mV, 7v=10ms and §7y= 20ms arbitrarily delimits the fluctuation-
driven regime (a mean value z and an extent dz, Vz € {uv,ov, T‘I/V}) They render the
fitting of the phenomenological threshold easier, as they insure that the coefficients
take similar values. It is kept constant all along the study. The phenomenological
threshold was taken as a second order polynomial and not as a linear threshold, for
two reasons: 1) unlike in an experimental study (Zerlaut et al., 2016), we are not
limited by the number of sampling points, the number of fitted coefficients can thus be
higher as the probability of overfitting becomes negligible 2) it gives more flexibility
to the template, indeed the linear threshold was found a good approximation in the
fluctuation-driven regime, i.e. when the diffusion approximation holds, however, for
low values of the presynaptic frequencies, we can be far from this approximation, the
additional coefficients are used to capture the firing response in those domains. Those
coefficients are listed on Table 2 for the two cell types (RS & FS).

The fitting procedure was identical to Zerlaut et al. (2016), it consisted first in a
linear regression in the phenomenological threshold space of Equation 4, followed by a
non-linear optimization of Equation 3 on the firing rate response. Both fitting were
performed with the leastsq method in the optimize package of SciPy.

2.5 Calculus of the subthreshold membrane potential fluc-
tuations

Here, we detail the analytical calculus that translate the input to the neuron into

the properties of the membrane potential fluctuations. The input is made of two

Poisson shotnoise: one excitatory and one inhibitory that are both convoluted with an
exponential waveform to produce the synaptic conductances time courses.

2.5.1 Conductances fluctuations

From Campbell’s theorem (Papoulis, 1991), we first get the mean (uge, pai) and
standard deviation (oge,0a:) of the excitatory and inhibitory conductance:
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,UGE(Ve7 Vi) =ve KeTe Qe

[ve Ke Te
O'Ge(l/eﬂ/i) = TQ&

(5)
MGi(VeyVi) =v Ki 1 Qi
13 Ki Ti
O'Gi(Ve,Vi) = TQ'L

The mean conductances will control the input conductance of the neuron pue and
therefore its effective membrane time constant 7,,:

ue(Ve, Vi) = pae + ai + gr
Cm (6)

Tm Ve, Vi) = ——
(1) = 22

2.5.2 Mean membrane potential

Following Kuhn et al. (2004), the mean membrane potential is obtained by taking the
stationary solution to static conductances given by the mean synaptic bombardment
(for the passive version of Equation 1, i.e. removing the adaptation and spiking
mechanisms). We obtain:

_ HGe FEe+pei Bi+9g1 Er (7)
HG
We will now approximate the driving force E; — V (¢) of synaptic events by the
level resulting from the mean conductance bombardment: Es — py. This will enable
an analytical solution for the standard deviation oy and the autocorrelation time oy
of the fluctuations.

/LV(Vev Vi)

2.5.3 Power spectrum of the membrane potential fluctuations

Obtaining oy and 7y is achieved by computing the power spectrum density of the
fluctuations. In the case of Poisson processes, the power spectrum density of the
fluctuations resulting from the sum of events PSPs(t) at frequency Ksvs can be
obtained from shotnoise theory (Daley and Vere-Jones, 2007):

Po(f)= > Kov.|PSP.(f)I (8)

se{e,i}

where PSP (f) is the Fourier transform of the time-varying function PSP(t). Note
that the relations presented in this paper rely on the following convention for the
Fourier transform: F/(f) = fR F(t)e 2/t qg.

After fixing the driving force to Es — pv, the equation for a post-synaptic membrane
potential event s around py is:

dPSP,
dt
where Us = 9= (F, — puyv) and H(t) is the Heaviside function.

. o G
Its solution is:

Tm

+ PSP, = U, H(t) e )

=

PSP, () = Us —=— (e7m — e ) H(t) (10)

m — Ts

We take the Fourier transform:
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N Ts Tm Ts
P Ps = Us . - 3 1
SPs(f) UTm_Ts (ZZTrme+1 217Tf7's+1) -

We will need the value of the square modulus at f = 0:
IPSP(0)||? = (Us - 75)? (12)
As well as the integral of the square modulus:

(Us - 7:)°

o
Jarmesecon = ;8

2.5.4 Standard deviation of the fluctuations

The standard deviation follows:

<wf:/#mw> (14)

Using Equation 13, we find the final expression for oy :

2.5.5 Autocorrelation-time of the fluctuations

We defined the global autocorrelation time as (Zerlaut et al., 2016):

1 L PN
TV = 5 (T(O)) (16)
Using Equations 13 and 12, we find the final expression for 7y :
Ks Vs Us s 2
TV (Ve, Vi) = ( 2 ( (Us - 7o) ) ) (17)
ZS (Ks Vs (Us : 7'3)2/(7'1%ff + Ts))

Therefore the set of Equations 7, 15 and 17 translates the presynaptic frequencies
into membrane fluctuations properties puv, oy, Tv.

The previous methodological section allowed to translate the fluctuations proper-
ties puv,ov,Tv into a spiking probability thanks to a minimization procedure. The
combination of the present analytical calculus and the previous fitting procedure (on
numerical simulations data) constitute our semi-analytical approach to determine the
transfer function of a single cell model: Vot = F(ve, vi).

2.6 Master equation for local population dynamics

An analytical description of the cellular transfer function is the core of theoretical
descriptions of asynchronous dynamics in sparsely connected random networks (Amit
and Brunel, 1997; Brunel, 2000; Renart et al., 2004).

Because we will investigate relatively slow dynamics (7>25-50ms) (and because
of the stationary formulation of our transfer function), we will use the Markovian
description developed in El Boustani and Destexhe (2009), it describes network activity
at a time scale T, for which the network dynamics should be Markovian. The choice of
the time-scale T is quite crucial in this formalism, it should be large enough so that
activity can be considered as memoryless (e.g. it can not be much smaller than the
refractory period, that would introduce memory effects) and small enough so that each
neuron can fire statistically less than once per time interval T'. Following El Boustani
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and Destexhe (2009), we will arbitrarily take T=5ms all along the study as it offers a
good compromise between those two constraints.

The formalism describes the first and second moments of the population activity
for each populations. We consider here two populations: one excitatory and one
inhibitory, the formalism thus describes the evolution of five quantities: the two means
ve(t) and v;(t) of the excitatory and inhibitory population activity respectively (the
instantaneous population firing rate, i.e. after binning in bins of T'=5ms, see discussion
in El Boustani and Destexhe (2009)), the two variances ce.(t) and c¢;;(t) of the the
excitatory and inhibitory population activity respectively and the covariance ce;(t)
between the excitatory and inhibitory population activities. The set of differential
equations followed by those quantities reads (El Boustani and Destexhe, 2009):

v 9*F,
T—E = - = K
ot~ STt g om g
1o}
T g;" =Axng + (Fx —va) (Fy —vg)+ (18)
OF, OF,
Cap 31/5 + Cunaiy: — 2¢ap
with:
]-A(I/T*]‘-A) it =7
A)ﬂ? = N)\ (19)
0 otherwise

Note that, for the concision of the expressions, we used Einstein’s index summation
convention: if an index is repeated in a product, a summation over the whole range
of value is implied (e.g. we sum over A € {e,i} in the first equation, note that,
consequently, A does not appear in the left side of the equation). Also the dependency
of the firing rate response to the excitatory and inhibitory activities has been omitted:
yielding F,, instead of F,,(ve,vs), Vi € {e, i}.

We will also use the reduction to first order of this system (for the ring model).
This yields:

v,

TSk = Fu = v (20)

2.7 Afferent stimulation
The afferent input was represented by the following piecewise double Gaussian waveform:

t—tg )2

z/;’ff(t) —A (67(\/571

—( t—tg )2

V27y

Hto—t) + e H(t — to)) (21)

In this afferent input, we can independently control: 1) the maximum amplitude A
of the stimulation, its rising time constant 71 and its decay time constant 7».

2.8 Ring model

To model VSDi experiments (See Figure 1A), we embed the mean-field model of
population dynamics in a ring geometry to model spatio-temporal integration on
the neocortical sheet. The ring geometry corresponds to a one dimensional spatial
description with an invariance by translation, i.e. for all quantities f, f(z) = f(z +
L)(also termed one dimensional periodic boundary conditions), where L is the length
of the ring model. For simplicity, we consider here only the first moments of the
second-order description: i.e. the means of the excitatory and inhibitory population
activities: ve(t) and v;(t) respectively.
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We use a Gaussian connectivity profile (see Figure 7) to define the connectivity
across cortical columns (i.e. local networks described in the previous section):

1 (=2 1 (== )2
Ne )= —¢ " V20eze ; M )= ——— e  V2linn 22
(z) G (z) i (22)
where Il and l;,, are the excitatory and inhibitory extent of the connectivity profiles
respectively.

We also introduce the effect of a finite axonal conduction speed wv., this will
introduce delays for the propagation of activity across cortical columns: for a network
at a distance z, the afferent activity will arrive delayed by z/vc.

Finally, the equations that govern the activity in space and time are given by:

Vi (1) —prive 4 / dy No(z — ) ve(y, ¢ — Iy — ] foe)
R

Y (g ) = / dy N (@ — ) vy, — Iy — ] /v2)
R

Ove(x,t (23)
T% = — Ve(x,t)+
Foel (m,t) + v (1), vI"P (2, 1))
g at in, inpu
T% == Vi(ﬂ]‘,t) +Fi(ye pUt(x7t)7Vi b t($7t))
where v27¢ is the external drive and v2/f(x,t) is the afferent (thalamic) stimulation.

The local correlate in terms of mean membrane potential uv(x,t) is given by
Equation 7. Because VSDi provides a variation with respect to the fluorescence baseline
(Berger et al., 2007) (i.e. the relative membrane potential deflection of a population
with respect to mean the membrane potential at the level of spontaneous network

activity), we also present the variations of a normalized membrane potential quantity:
py (@)= Vet
in the model (see Figure 3).

, where Vf”t is the mean membrane potential during spontaneous activity

3 Results

The results are organized as follows. We construct the analytical model that
describes the dynamics of a population of RS and FS cells. We start by describing
the semi-analytical workflow that enables the derivation of the cellular transfer
function: the core of this population model. Next, we investigate whether the
analytical description accurately describe population dynamics by comparing
its prediction to numerical simulations. We also investigate the response of the
network model subject to an external input. Finally, we build a 1-dimensional
ring model made of interconnected RS-FS mean-field units and investigate if
this model can reproduce the visually-evoked patterns of activity seen in VSDi
of awake monkey visual cortex.

3.1 Modeling a local cortical population

We adopt a simplistic description of a local cortical population (see Figure 1).
The complex cellular assembly is reduced to a two population network model:
one excitatory and one inhibitory comprising 8000 and 2000 neurons respectively.
All neurons within the two population synaptically interconnect randomly to each
other with a connectivity probability of 5%. The excitatory and inhibitory cells

10


https://doi.org/10.1101/168385
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168385; this version posted July 26, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

50ms
-65mV -65mV |
> [ >
N
o Z
a 24| » * & B 2 o 24¢
8; f 4 6 # 2 Lg
* s o .
= 16 1 1S4 £ 167
© P A4 ' a
¢
:C; ] 4y S ¢ =
457 y F 4 4 4 t o 8,
o t P & +©
0 s ° 3
5 ‘ . ‘ N ol ‘ ‘ ,
A 0 6 12 18 0 4 8 12

v exc freq. (H2) oy v, exc. freq. (Hz)
29 86 14.3 20.0
y; inh. freq. (Hz)

Figure 2: Single cell models of the excitatory and inhibitory popula-
tions. Top: response to a current step of 200pA lasting 300ms. Bottom: transfer
function of the single cell, i.e. output firing rate as a function of the excitatory
(x-axis) and inhibitory (color-coded) presynaptic release frequencies. Note that
the range of the excitatory and frequencies assumes numbers of synapses (K.=40
and K;=10 for the excitation and inhibition respectively). (A) Excitatory cells.
Note the presence of spike-frequency adaptation and subthreshold adaptation.
(B) Inhibitory cells. Note the very narrow spike initiation dynamics. Also, note
the steepest relation to excitation (with respect to the excitatory cell) at various
inhibitory levels as a result of the increased excitability of the inhibitory cell
(with respect to the excitatory cell).
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have the same passive properties. We nonetheless include an asymmetry between
the excitatory and inhibitory populations: because the inhibitory population
includes Fast-Spiking cells that can exhibit very high firing frequencies (Markram
et al., 2004), we set its spiking mechanism sharper (more precisely its sodium
activation activation curve is steeper, see Methods) than that of excitatory cells,
additionally we add a strong spike-frequency adaptation current in excitatory
cells that is absent in inhibitory cells. Those two effects render the inhibitory
neurons more excitable (see the different responses to the same current step in
Figure 2). All parameters of the cortical column can be found in Table 1.

3.2 A Markovian model to describe population dynamics

We now want to have an analytical description of the collective dynamics
of this local network. We adopted the formalism presented in El Boustani
and Destexhe (2009). Two reasons motivated this choice: 1) because 10000
neurons is still far from the large network limit, finite-size effects could have a
significant impact on the dynamics and 2) because of the relative complexity of
the cellular models, an analytic treatment of the type Amit and Brunel (1997)
is, to our knowledge, not accessible and would be extremely challenging to
derive. The Markovian framework proposed in El Boustani and Destexhe (2009)
positively respond to those two constraints: it is a second-order description of
population activity that describes fluctuations emerging from finite-size effects
and it is applicable to any neuron model as long as its transfer function can
be characterized. In a companion study (Zerlaut et al., 2016), we developed
a semi-analytical approach to characterize those transfer functions (see next
section), we will therefore incorporate this description into the formalism.

Nonetheless, the study of El Boustani and Destexhe (2009) only investigated
the ability of the formalism to describe 1) the stationary point of the network
activity and 2) in a situation where the neuronal models models had an analytic
estimate for the transfer function (current-based integrate-and-fire model). As
a prerequisite, investigating whether this description generalizes to transient
dynamics and transfer functions estimated with a semi-analytical approach is
investigated in the next sections.

3.3 Transfer functions of excitatory and inhibitory cells

We briefly describe here the semi-analytical approach used to characterize the
transfer function (see details in the Methods). The transfer function F of a single
neuron is defined here as the function that maps the value of the stationary
excitatory and inhibitory presynaptic release frequencies to the output stationary
firing rate response, i.e. Vot = F(Ve, ;). This kind of input-output functions
lie at the core of mean-field models of population dynamics (reviewed in Renart
et al. (2004)) and is consequently the main ingredient of the formalism adopted
here (El Boustani and Destexhe, 2009). Note here that the formulation of the
transfer function imply a stationary hypothesis: both for the input (stationary
Poisson processes) and the output firing (a stationary firing rate). We will study
in the following what are the limitations introduced by this stationary hypothesis
in the description of the temporal dynamics of network activity.

In a previous communication (Zerlaut et al., 2016), we found that the firing
rate response of several models (including the adaptative exponential integrate
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and fire considered in this study) would be captured by a fluctuations-dependent
threshold in a simple approximation of the firing probability (see Methods).
The semi-analytical approach thus consisted in making numerical simulations
of single-cell dynamics for various presynaptic activity levels (i.e. scanning
various v, v; configurations) and measuring the output firing rate v4,;. All those
configurations corresponded to analytical estimates of (uy,ov,7y), we then
fitted the fluctuations-dependent threshold that bring the analytical estimate to
the measured firing response. This procedure resulted in the analytical estimates
shown in Figure 2 and compared with the results of numerical simulations.

3.4 Accuracy of the description of the spontaneous activ-
ity state

We now compare the numerical simulation (Figure 3) to the prediction of the
Markovian description for the stationary behavior of the network. First, we
see that there is a transient period of ~ 400ms resulting from the onset of the
external drive (see Figure 3B-D), we will therefore evaluate stationary properties
after discarding the first 500ms of the simulation. After this initial transient,
the population activities (v, and v;) fluctuates around the stationary levels (see
Figure 3). The Markovian description predicts this phenomena as it contains the
impact of finite size effects (the network comprises 10000 neurons). In Figure
4A, we can see that the distributions of the excitatory and inhibitory population
activities are rather well predicted by the formalism: it slightly overestimates
the means of the population activities, but it reproduces well the difference of
firing between RS and F'S cells in the network activity.

We also investigated whether the average neuronal and synaptic quantities
were well predicted by the Markovian formalism. Indeed, we found a very good
match for all quantities (see Figure 4B,C, mean and variance of membrane poten-
tial and synaptic conductances). Only the standard deviation of the membrane
potential fluctuations was underestimated (Figure 4C). This discrepancy does
not appear detrimental to the formalism as the V,,, standard deviation is a key
quantity of the transfer function and the formalism still shows a good match.
Indeed, this discrepancy might only be due to the presence of threshold-and-reset
mechanism or to the low amount of residual synchrony in such finite networks.

3.5 Description of the response to time-varying input

We now examine whether the formalism captures the response to time-varying
input. Here again, we set the input and examine the response after 500ms of
initial simulation to discard transient effects.

We first choose an afferent input of relatively low frequency content (~
[5-20]Hz, 71=60ms and 75=100ms in Equation 21). The afferent input waveform,
formulated in terms of firing rate, was translated into individual afferent spikes
targeting the excitatory population. The response of the network to this input is
shown in Figure 5 in comparison with the prediction of the Markovian formalism.
The excitatory population activity raises and immediately entrains an increase
of the inhibitory population activity. The analytical description captures well
the order of magnitude of the deflection, it only slightly underestimates the
peak value (Figure 5B). But the numerical simulations also show a marked
hyperpolarization after the stimulation, the return to the baseline level happens
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Figure 3: Numerical simulations of the dynamics of a recurrent network
of 10000 neurons (see parameters in Table 1). Note that all plots have
the same x-axis: time. (A) Sample of the spiking activity of 500 neurons (green,
400 excitatory and red, 100 inhibitory). (B) Population activity (i.e. spiking
activity sampled in 5ms time bins across the population) of the excitatory (green)
and inhibitory (red) sub-populations. We also show the applied external drive
(vdrive(t), black line), note the slow linear increase to reach v9"=4Hz in order
to reduce the initial synchronization that would result from an abrupt onset. (C)
Membrane potential (top) and conductances (bottom, excitatory in green and
inhibitory in red) time courses of three randomly chosen inhibitory neurons. (D)
Membrane potential and conductances time courses of three randomly chosen

excitatory neurons.

only ~ 200-300 ms after the end of the stimulus, and not immediately as predicted
by the Markovian framework. Here this strong hyperpolarization is the result of
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Figure 4: Mean field prediction of the stationary activity. Those quan-
tities are evaluated after discarding the initial 500ms transient. (A) Gaussian
predictions of the population activities (filled curve) compared to those observed
in numerical simulations (empty bars). (B) Mean of the membrane potential
and conductances time courses. Evaluated over 3 cells for the numerical simula-
tions (empty bars, mean and standard deviation). (C) Standard deviation of
membrane potential and conductances time courses.

the strong spike-frequency adaptation current in excitatory cells that persists as
a repercussion of the high activity evoked by the stimulus. In the Markovian
there is no memory of the previous activity and therefore this phenomena can
not be accounted for. This typically illustrates a limitation of the analytical
description provided here.

To study more precisely the temporal validity of the formalism, we modulated
the network activity by sinusoidal input and compared the response predicted
by the analytical description. First, the hyperpolarization phenomena discussed
above has a correlate in terms of frequency-dependency. Network activity is
overestimated by the mean-field prediction and one can see a discrepancy with
respect to numerical simulations at very low frequencies (visible in the [0.01,1]Hz
range , see inset in Figure 6A). Additionally, the numerical simulations showed
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Figure 5: Network response to a time-varying input and associated
prediction of the Markovian formalism. For all plots, the x-axis corre-
sponds to time. Shown after 500ms of initial stimulation. (A) Sample of the
spiking activity of 500 neurons (green, 400 excitatory and red, 100 inhibitory).
(B) Population activity (in 5ms bins) of the excitatory (green) and inhibitory
(red) sub-populations. Superimposed is the mean and standard deviation over
time predicted by the Markovian formalism. We also show the applied external
stimulation (v2/f(t), dotted line). (C) Membrane potential time courses of three
excitatory cells (green, top) and three inhibitory cells (red, bottom) with the
prediction of the mean and standard deviation in time. (D) Conductance time
courses of the six cells in C with the predictions of the fluctuations superimposed.

a marked resonance at ~50Hz. Given the relatively high strength (compared to
the external input) of the excitatory-inhibitory loop, the network is close to a
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Figure 6: Limitations of the Markovian description in the frequency
domain. Response of the network (numerical simulation and analytical descrip-
tion) to sinusoidal stimulation of the form v¢// = 5Hz (1 — cos(2m f(t — t0))) /2.
The stimulation was set on at tg=500ms. The response was fitted by a function of
the form v(t) = A (1 —cos(2m f(t —to) — ¢)) /2. (A) Amplitude of the sinusoidal
response (A in the fitted response) for various frequencies. In the inset, we show
the [0.01, 1]Hz range. (B) Phase shift of the sinusoidal response (¢ in the fitted
response) for various frequencies.

bifurcation toward oscillations that are typically in the gamma range (Brunel
and Wang, 2003). A sinusoidal input therefore amplifies those frequencies
(Ledoux and Brunel, 2011). Because the individual excitatory and inhibitory
post-synaptic currents approximately match each other, the theoretical study of
Brunel and Wang (2003) would predict oscillations at 50-60Hz (the bifurcation
would be achieved by reducing 7.), thus compatible with the present observation.
An important insight of this analysis is to show that the network can track
very fast temporal variations in the input, even at time scales smaller than the
integration time constant of the single neurons (van Vreeswijk and Sompolinsky,
1996). Recurrent neural networks globally behave as low-pass filters (though
see Ledoux and Brunel (2011) for a detailed treatment of the appearance of
resonances), but with a high cutoff frequency compared to the frequency content
of thalamic input for classical artificial stimuli (e.g. in the visual system: drifting
gratings, supra-10ms flashes, etc...). Again, in vivo experiments in awake mice
suggested that V1 cortical networks had a high cut-off frequency (~100Hz in
Reinhold et al. (2015)).

Thus, by comparing numerical simulations of network dynamics and the
Markovian formalism, we highlighted the accuracies and discrepancies of this
analytical framework to describe both the spontaneous activity and the response
of a sparsely connected recurrent network of distinct excitatory and inhibitory
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Figure 7: Modeling mesoscopic cortical dynamics. A mesoscopic model of
the spatial organization of neocortical populations (A) is constructed by inter-
connecting the local networks with continuous connectivity profiles of excitatory
and inhibitory interactions (B). The lateral connectivity follows two Gaussian
profiles of extent l.,.=5mm and [;,,=1mm for the excitation and inhibition
respectively.

cells. We conclude that, given the frequency content of visually evoked network
responses in V1 (Muller et al., 2014) (5-20Hz), those limitations would seem to
poorly affect the description of such phenomena.

3.6 One-dimensional ring model to model VSD imaging

We now embed this local population dynamics description into a spatial model to
investigate the emergence of spatio-temporal patterns of activity. The ring model
(see e.g. (Hansel and Sompolinsky, 1996)) offers a simple framework to implement
such interactions. The local balanced network units are interconnected to each
other via two Gaussian connectivity profiles (see Fig. 7 and Methods) according
to anatomical connectivity estimates (Buzas et al., 2006). Importantly, we
integrate distance-dependent propagation delays due to the finite velocity of
axonal conduction of action potentials (see Methods), we took here an axonal
conduction velocity of 0.3m/s.

We stimulated this large-scale model with an external input mimicking
thalamic stimulation. We took a separable spatio-temporal waveform as an
input. In space, the profile was a Gaussian curve of extent ls;,, , in time, it was
a piecewise double Gaussian function. This corresponds to the following input:

t—tg

_ T—xQ 2 _ t—t 2 _ 2
vt (2,4)) = Ae” Vo) (e D Ut — ) + e VEn) H(t—to)> (24)

Despite its various amplitude over space (its attenuation from the local
maximum), it should be emphasized that this input does not propagate: its
maximum is achieved at all position at the same time. To highlight this feature,
we implemented a simple analysis of propagation: we normalize the responses
with respect to their local amplitude and we look for a specific crossing of the
normalized amplitude. To focus on early responses, we highlight the first crossing
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of the level corresponding to 25% of the maximum amplitude, we will refer to
this quantity as the early response line (drawn with a white dashed-line, see
Fig. 8). In Fig. 8A(i), the horizontal early response line indeed shows that the
input does not propagate, the fourth of the maximum of the normalized response
is achieved everywhere at the same time.

The response of the model in terms of population dynamics showed a marked
propagation (see the V-shape of the early response line in Fig. 8A(ii)). This
is naturally the result of the local connectivity profiles implemented in the
model (see Fig. 1 and Table 1), the excitation has a broad spatial extent, it
can depolarizes neighboring locations and evoke spiking (both of excitatory and
inhibitory populations). This propagated activity nonetheless exhibits a very
strong attenuation over space, this is due to the strong non-linear relationship
between depolarizations and firing response. Confirming this picture, the normal-
ized membrane potential responses indeed exhibits the same propagation profile
but with a much weaker attenuation over space. Naturally, the propagation
dynamics in the model is led by the conduction velocity, see its representation

model predicts that the detectability of responses in multiunit recordings have a
lower spatial extent than for VSDi responses (see the lower range of the early
response line that stops when the maximum local response is below 1% of the
maximum response).

Figure 8 also compares visually-evoked propagating waves between the model
and VSDi experimnents in the primary visual cortex of awake monkey. A recent
phase-based analysis applied at single-trial level (Muller et al., 2014) showed
that such propagating waves appear either in spontaneous activity or following
visual stimulation. Using a 2-dim space-time representation applied similarly in
the data(Fig. 8B(iii)) and in the model (Fig. 8A(iii)) shows that the ring model
can reproduce the qualitative features of the propagating wave. To highlight this
qualitative similarity between model and in vivo VSDi recordings, the spatio-
temporal parameters of the input (73 =50ms, 75=150ms, l.,.=1.5mm) have been
manually calibrated to reproduce the properties of the response observed as a
response to a single Gaussian blob in the visual space of 0.125° spatial extent.

4 Discussion

In the present study, we investigated a mean-field model of networks with
different electrophysiological properties, described using the AdEx model with
conductance-based synapses. We found that the Markovian formalism proposed
in El Boustani and Destexhe (2009) was able to describe the steady-state and
temporal dynamics of such networks. Though this formalism was shown to
be a relatively accurate description of the response simulated in numerical
networks, we also showed the limits of this formalism. The relative complexity
of the theoretical problem should be stressed: our model includes non-linear
phenomena such as spike-frequency adaptation or a voltage-dependent activation
curve for spike emission. The proposed semi-analytical approach thus offers a
convenient description for theoretical models where an exact analytical treatment
would not be achievable.

Unlike previous studies (Brunel, 2000; Vogels and Abbott, 2005; Kumar et
al., 2008; El Boustani and Destexhe, 2009), we considered networks of non-
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Figure 8: Comparison of evoked activity patterns (A) in the model
as a response to a stationary waveform and (B) observed in awake
monkey under voltage-sensitive dye experiments as a response to a
visual stimulus . (A) (i) Afferent stimulation: an input of the form Equation
24 with the parameters A=15Hz, 71=50ms, 75=150ms and l.;.=1.5mm. An
early response line (white dashed line, see main text) indicates whether the
signal exhibits propagation over space (vertical meaning no propagation). Model
response in terms of population activity (ii) and normalized membrane potential
(iii) where the V,, quantity has been normalized with respect to its value during
spontaneous activity V”St, see Methods). The thin white line on the right
of each plot represents to conduction velocity (v.=300mm/s) for comparison.
The red line represents the field of view imaged in VDSi experiments (Biii)
for comparison. (B) (i) A gaussian of luminance with angular extent 0.125°
is presented in the visual space at 1° (left) and 3° (bottom) from the fixation
point. (ii) A one-dimensional region of interest (ROI) is selected surrounding
the cortical receptive-field (RF). (iii) VDS imaging response following the visual
stimulation. To illustrate the propagation around the center of the evoked
response, we arbitrarily splitted the space in three regions (bottom-center-top)
and performed a linear fitting over space of the temporal crossing of the 25%
level of the local maximum. Note that this early response line is of the order
of the propagation speed ve in the model (thin dashed line). Note also the
difference in spatial scale between the model and experiments (see red line in
Aiii), the model has a lower scale to show the spread over the entire ring model.
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linear integrate-and-fire neurons with asymmetric electrophysiological properties
between excitatory and inhibitory cells. This type of network is more realistic
because it includes the adaptation properties of excitatory cells, and the fact that
inhibitory cells are more excitable and fire at higher rates. We could demonstrate
the relative accuracy of the Markovian formalism (with the semi-analytical
approach) in a situation including this increased complexity. The mean-field
model obtained was able to predict the level of spontaneous activity of the
network, as well as its response to external time-varying inputs.

This versatile theoretical description of the local cortical network could be
improved. For example the strong hyperpolarization of population activity
after a transient rise (see Figure 5B) was shown to be missed by the mean-field
formalism. Indeed, this version does not have a memory of the previous activity
levels and thus can not account for the effect of the long-lasting spike-frequency
adaptation mechanism that has been strongly activated by the activity evoked by
the stimulus. One could design another version of the Markovian formalism to
capture such adaptation-mediated effects. Instead of accounting for adaptation
within the transfer function (i.e. accounting only for its stationary effects),
one can introduce a new variable with a dependency on time and activity: a
“population adaptation current”, that can directly be derived from the equation
of the AdExp model. Additionally, recent semi-analytical work (Augustin et al.,
2016) in current-based networks yielded very accurate descriptions of network
activity both at low and high frequency content, translating those results to
conductance-based networks could overcome the limitations of our description.
Investigating such formalisms and their accuracy should be the focus of future
work.

We further showed that the present mean-field approach can be used to
model VSDi data. Not only the present mean-field framework gives access
to the mean voltage and its time evolution, but it can easily be extended to
model VSDi signals. The present model represents a local population of cortical
excitatory and inhibitory neurons, and thus can be thought to represent a “pixel”
of the VSDi. The full VSDi model was obtained by embedding the present local
population description within a spatial model, under the form of a ring-like
arrangement of RS-FS mean-field units (see Fig. 8). In this simple model, a
localized input led to propagating-wave activity, very similar to experiments (see
Fig. 8). This demonstrates that the present mean-field approach can be used
to model VSDi experiments. This study thus constitutes a "proof of concept"
validated on the spatio-temporal pattern of neocortical activity evoked by a
single stimulus. Investigating whether the present theoretical model yield deeper
insight into neocortical computation is the focus of current work.
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