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 21 
ABSTRACT  22 
Basal gene expression levels have been shown to be predictive of cellular response to cytotoxic 23 
treatments. However, such analyses do not fully reveal complex genotype-phenotype 24 
relationships, which are partly encoded in highly interconnected molecular networks. Biological 25 
pathways provide a complementary way of understanding drug response variation among 26 
individuals. In this study, we integrate chemosensitivity data from a recent pharmacogenomics 27 
study with basal gene expression data from the CCLE project and prior knowledge of molecular 28 
networks to identify specific pathways mediating chemical response. We first develop a 29 
computational method called PACER, which ranks pathways for enrichment in a given set of 30 
genes using a novel network embedding method. It examines known relationships among 31 
genes as encoded in a molecular network along with gene memberships of all pathways to 32 
determine a vector representation of each gene and pathway in the same low-dimensional 33 
vector space. The relevance of a pathway to the given gene set is then captured by the 34 
similarity between the pathway vector and gene vectors. To apply this approach to 35 
chemosensitivity data, we identify genes with basal expression levels in a panel of cell lines that 36 
are correlated with cytotoxic response to a compound, and then rank pathways for relevance to 37 
these response-correlated genes using PACER. Extensive evaluation of this approach on 38 
benchmarks constructed from databases of compound target genes, compound chemical 39 
structure, as well as large collections of drug response signatures demonstrates its advantages 40 
in identifying compound-pathway associations, compared to existing statistical methods of 41 
pathway enrichment analysis. The associations identified by PACER can serve as testable 42 
hypotheses about chemosensitivity pathways and help further study the mechanism of action of 43 
specific cytotoxic drugs. More broadly, PACER represents a novel technique of identifying 44 
enriched properties of any gene set of interest while also taking into account networks of known 45 
gene-gene relationships and interactions. 46 
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INTRODUCTION 63 

Large-scale cancer genomics projects, such as the Cancer Genome Atlas1, the Cancer Genome 64 
project2, and the Cancer Cell Line Encyclopedia project3, and cancer pharmacology projects 65 
such as the Genomics of Drug Sensitivity in Cancer project4 have generated a large volume of 66 
genomics and pharmacological profiling data. As a result, there is an unprecedented opportunity 67 
to link pharmacological and genomic data to identify therapeutic biomarkers5-7. In pursuit of this 68 
vision, significant efforts have been invested in identifying the genetic basis of drug response 69 
variation among individual patients. For instance, a recent study performed a comprehensive 70 
survey of genes with basal expression levels in cancer cell lines that correlate with drug 71 
sensitivity, revealing potential gene candidates for explaining mechanisms of action of various 72 
drugs8.  73 
 74 
While significant efforts have focused on specific genes that interact with compounds and confer 75 
observed cellular phenotypes, there has been relatively little progress in studying the synergistic 76 
effects of genes. These effects are key factors in comprehensively deciphering the mechanisms 77 
of action of compounds and understanding complex phenotypes9. Similarly, pathways, which 78 
comprise a set of interacting genes, have emerged as a useful construct for gaining insights into 79 
cellular responses to compounds. Analysis at the pathway level not only reduces the analytic 80 
complexity from tens of thousands of genes to just hundreds of pathways, but also contains 81 
more explanatory power than a simple list of differentially expressed genes10. Consequently, an 82 
important yet unsolved problem is the effective identification of pathways mediating drug 83 
response variation. Although the associated pathways for certain drugs have been studied 84 
experimentally11-13, in vitro pathway analysis is costly and inherently difficult, making it hard to 85 
scale to hundreds of compounds.  86 
 87 
Fortunately, a growing compendium of genomic, proteomic, and pharmacologic data allows us 88 
to develop scalable computational approaches to help solve this problem. Although statistical 89 
significance tests and enrichment analyses can be naturally applied to compound-pathway 90 
association identification (e.g., by testing the overlap between pathway members and 91 
differentially expressed genes), these approaches fail to leverage well-established biological 92 
relationships among genes14-17. Even when analyzing individual genes, molecular networks 93 
such as protein-protein interaction networks have been shown to play crucial roles in 94 
understanding the cellular drug response9, 18-21. Therefore, we propose to combine similar 95 
molecular networks with gene expression and drug response data for pathway identification. 96 
However, integrating these heterogeneous data sources is statistically challenging. Moreover, 97 
networks are high-dimensional, incomplete, and noisy. Thus, our algorithm needs to accurately 98 
and comprehensively identify pathway while exploiting suboptimal networks. 99 
 100 
In this work, we present PACER, a novel, network-assisted algorithm that identifies pathway 101 
associations for any gene set of interest. Additionally, we apply the algorithm to discover 102 
chemosensitivity-related pathways. PACER first constructs a heterogeneous network that 103 
includes pathways and genes, pathway membership information, and gene-gene relationships 104 
from a molecular network such as protein-protein interaction network. It then applies a novel 105 
dimensionality reduction algorithm to this heterogeneous network to obtain compact, low-106 
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dimensional vectors for pathways and genes in the network. Pathways that are topologically 107 
close to drug response-related genes in the network are co-localized with those genes in this 108 
low-dimensional vector space. Hence, PACER ranks each pathway based on its proximity in the 109 
low-dimensional space to genes that have basal expressions highly correlated with drug 110 
response. We evaluated PACER’s ability to identify compound-pathway associations with three 111 
‘ground truth’ sets built from compound target data8, compound structure data22, and LINCS 112 
differential expression data23. When comparing PACER to state-of-the-art methods that ignore 113 
prior knowledge of interactions among genes, we observed substantial improvement of the 114 
concordance with the chosen benchmarks. Even though we developed PACER and tested its 115 
ability to identify compound-pathway associations, the algorithm is applicable to any scenario in 116 
which one seeks to discover pathways related to a pre-specified gene set of interest, while 117 
utilizing a given gene network.  118 
 119 
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MATERIALS AND METHODS 147 

Compound response data and gene expression data 148 

We obtained a large-scale compound response screening dataset from Rees et al.8, which 149 
spans 481 chemical compounds and 842 human cancer cell lines encompassing 25 lineages. 150 
These 481 compounds were collected from different sources including clinical candidates, FDA-151 
approved drugs and previous chemosensitivity profiling experiments. Area under the drug 152 
response curve (AUC) was used by the authors of that study to measure cellular response to 153 
individual compound. We also obtained gene expression profiles for these cell lines from the 154 
Cancer Cell Line Encyclopedia (CCLE) project3, profiled using the GeneChip Human Genome 155 
U133 Plus 2.0 Array. Since these expression measurements were done in each cell line without 156 
any drug treatment, they are referred to as ‘basal’ expression levels. In contrast, the expression 157 
profiling of a cell line was performed after treatment with a drug in certain studies23. We 158 
obtained the SMILE specification of each drug from PubChem22 and then calculated the 159 
Tanimoto similarity scores between all pairs of drugs based on their SMILE specifications. 160 

STRING-based molecular network and NCI pathway collection 161 

We obtained a collection of six human molecular networks from the STRING database v9.124. 162 
These six networks include experimentally derived protein-protein interactions, manually 163 
curated protein-protein interactions, protein-protein interactions transferred from model 164 
organism based on orthology, and interactions cmputed from genomic features such as fusion-165 
fusion events, functional similarity and co-expression data. There are 16,662 genes in the 166 
network. We used all the STRING channels except “text-mining” and used the Bayesian 167 
integration method provided by STRING. Since our approach can deal with different edge 168 
weights, we did not set a threshold to remove low confidence edges. We referred to this 169 
integrated network as the ‘STRING-based molecular network’. To test whether genes that are 170 
highly correlated with many compounds tend to have higher degrees in the network, we formed 171 
two groups of genes. One group contained genes that are correlated with over 100 compounds, 172 
and the other group contained the remaining genes. We then used the Wilcoxon signed-rank 173 
test to test whether the degrees of genes in these two groups were from the same distribution. 174 
We obtained a collection of 223 cancer-related pathways from the National Cancer Institute 175 
(NCI) pathway database. These manually curated pathways include human signaling and 176 
regulatory pathways as well as key cellular processes25. 177 
 178 
The PACER Framework 179 

PACER integrates pathway information with the STRING-based molecular network described 180 
above by constructing a heterogeneous network of genes and pathways. An edge exists 181 
between two genes if they are connected in the network. An edge exists between a pathway 182 
and a gene if the gene belongs to the pathway. There are no direct pathway-pathway edges in 183 
the heterogeneous network. PACER adopts diffusion component analysis (DCA), a recently 184 
developed network representation algorithm to learn a low-dimensional vector for each node in 185 
the network26. Because of its ability to handle noisy and missing edges in the biological network, 186 
DCA has achieved state-of-the-art results in different tasks26, 27. Since compounds are not 187 
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nodes in the constructed heterogeneous network, only genes and pathways are projected onto 188 
the low-dimensional space. After learning the low-dimensional representations of all nodes 189 
(genes and pathways), DCA ranks pathways based on the weighted cosine similarities between 190 
a pathway and the set of 250 genes most correlated with response to a compound. We 191 
henceforth refer to this set of genes as ”response-correlated genes” (RCG) for the compound. 192 
These genes’ expression values are most significantly correlated with chemosensitivity. We 193 
found that the performance of the PACER method is stable for different choices (200, 250, and 194 
300) for the number of RCGs considered in this step (Suppl. Figure 7-9.).  195 

LINCS drug perturbation profiles 196 

LINCS is a data repository of over 1.3 million genome-wide expression profiles of human cell 197 
lines subjected to a variety of perturbation conditions, which include treatments with more than 198 
20 thousand unique compounds at various concentrations. Each perturbation experiment is 199 
represented by a list of differentially expressed genes that are ranked based on z-scores of 200 
perturbation expression relative to basal expression. For each gene, we first took the difference 201 
between its expression in a perturbation condition and its expression in a control condition (i.e., 202 
treatment with pure DMSO solvent). We then considered the differential expression of the gene 203 
in multiple perturbation experiments involving that compound (i.e., different concentrations, time 204 
points, and cell lines). We used the maximum differential expression to represent the 205 
compound’s effect on that gene’s expression. All genes were then ranked by their differential 206 
expression on treatment with the compound, and the top 250 genes were treated as 207 
differentially expressed genes (DEGs) of the compound, provided their z-score has an absolute 208 
value greater than 2.  209 
 210 
Comparison with method of Huang et al.  211 
We implemented the method of Huang et al.16 ourselves using the exact same input (i.e., 212 
chemosensitivity and gene expression data) as PACER. We first computed a gene’s correlation 213 
to a drug by calculating the Pearson correlation coefficient between the gene’s expression 214 
values and the drug response values across cell lines. Let the set of genes in pathway � be 215 
denoted by ��, and their correlation values to a drug � by ���� , ��. Conversely, the set of genes 216 

not in pathway � is denoted as �����, and their correlation values to � as �	�����, �
. We then 217 

performed the Kruskal-Wallis H-test, following Huang et al., to test if the medians of ���� , �� 218 

and �	�����, �
 were significantly different. We used the resulting p-value to rank pathways for 219 

each drug. 220 
 221 
Software availability: 222 
The PACER software is currently available at https://github.com/KnowEnG/PACER. It will also 223 
be available through the cloud-based analysis framework KnowEnG (knoweng.org) upon 224 
publication.   225 
  226 
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RESULTS 227 

Global analysis of correlations between basal gene expression and compound response   228 

Following the work of Rees et al.8, we first examined correlations between the compound 229 
sensitivity and basal gene expression profiles across hundreds of cell lines. We calculated 230 
Pearson correlation coefficients between each gene’s expression and the cellular response 231 
(measured as the area under the curve or AUC) to each compound, across different cell lines 232 
(Figure 1A). Compared to the IC50 and EC50 scores, AUC simultaneously captures the 233 
efficacy and potency of a drug. Of the ~8.7 million pairs of genes and compounds tested, we 234 
found 294,789 to be significantly correlated (p-value < 0.0001 after Bonferroni correction, 235 
corresponding to a Pearson correlation coefficient of 0.215). Within these significantly correlated 236 
pairs, 1,749 genes were correlated with over 100 compounds (Figure 1B, Suppl. Table 1). We 237 
note that these key genes tend to be high-degree nodes in STRING-based molecular network 238 
(Wilcoxon rank sum test p-value < 9.6e-14, see Methods). We also found that some (10 of 481) 239 
compounds were significantly correlated (Pearson correlation p-value < 0.0001 after Bonferroni 240 
correction) with more than 3,200 genes (Figure 1C). Five of these ten compounds are 241 
chemotherapeutic agents (Suppl. Table 2). In contrast, about 100 compounds were not 242 
significantly correlated with any genes; these compounds are mostly probes that either lack 243 
FDA approval or are not clinically used. The large disparity among the examined compounds in 244 
terms of the number of correlated genes reflects the diversity of these 481 small molecules. 245 
While many of them are chemotherapeutic, which can affect the expression of a large number of 246 
genes, some compounds may be targeting specific mutations, post-translational modifications, 247 
or protein expression. A closer examination revealed that the compounds with the highest 248 
cytotoxicity had the fewest gene correlations (i.e., fewest genes whose expression correlates 249 
with cytotoxic response were mostly those with low cytotoxicity) (Suppl. Figure 1). This 250 
suggests that the strategy of identifying compound-associated genes by correlating basal gene 251 
expression profiles with cytotoxicity is likely to be more effective for more potent compounds, for 252 
which average response is stronger. Note that the gene expression profiles used here are basal 253 
and not in response to treatment with compound, hence it was not clear a priori that more 254 
effective compounds would have larger numbers of gene correlates. In summary, examination 255 
of individual genes’ correlations with chemical response confirmed previous reports4, 8, 28 that 256 
basal gene expression significantly correlates with cytotoxicity across cell lines, especially for 257 
effective cytotoxic drugs. 258 
 259 

Identifying compound-specific pathways via enrichment tests 260 

The above evidence for correlations between basal gene expression and chemical response 261 
raised the possibility that one might discover important biological pathways associated with the 262 
response by a systems-level analysis of gene expression data. To explore this, we considered a 263 
collection of 223 cancer-related pathways from the National Cancer Institute (NCI) pathway 264 
database25 and used Fisher’s exact test to quantify the overlap between the set of genes in a 265 
pathway p and (RCGs). A significantly large overlap between the two sets indicates an 266 
association between the pathway and the compound. We performed a multiple hypothesis 267 
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correction on all pathway association tests for each compound, using FDR � 0.05. The results 268 
of this baseline method for predicting pathway associations are shown in Figure 1D (distribution 269 
of the number of compounds that are significantly associated with each pathway) and Figure 1E 270 
(distribution of the number of pathways significantly associated with each compound). Both 271 
distributions revealed a long tail. For instance, while each pathway was associated with an 272 
average of 18 compounds (of the 481 tested), there were 10 pathways that were associated 273 
with over 150 compounds (Suppl. Table 3). Likewise, while each compound was associated 274 
with an average of eight pathways, there were 12 compounds associated with over 25 pathways 275 
(Suppl. Table 4). We show the details of these long tails in Suppl. Figure 2. 276 

A new method for identifying pathways associated with chemical response, based on 277 
network embedding  278 

We observed above that key RCGs – those correlated with many compounds – tend to be 279 
enriched in high degree nodes of the STRING-based molecular network. This suggests that an 280 
analysis combining this network with pathway enrichment tests might provide additional insights. 281 
We therefore developed a novel network-based method, called PACER, for scoring compound-282 
pathway associations. PACER (Figure 2A) first constructs a heterogeneous network consisting 283 
of genes and pathways as nodes. In this network, gene-pathway edges denote pathway 284 
memberships based on a compendium of pathways and gene-gene edges from the STRING-285 
based molecular network introduced above (also see Methods). PACER then creates a low-286 
dimensional vector representation for each gene and pathway node in the heterogeneous 287 
network, reflecting the node’s position in this heterogeneous network. This is done by the 288 
Diffusion Component Analysis (DCA) approach reported in previous work26, 27. Nodes (i.e., 289 
pathways or genes) will have similar vector representations if they are near each other in the 290 
network. For instance, two pathway nodes will have similar vector representations if the 291 
pathways share genes and/or their genes are related by the STRING-based molecular network. 292 
In a similar vein, two genes will have similar representations if they belong to the same 293 
pathway(s) and/or exhibit the same network neighbors. A gene and a pathway can also be 294 
compared in the low-dimensional space, and will be deemed similar if the gene is in the 295 
pathway and/or the gene is related by network to other genes of the pathway. DCA performs 296 
network-based embedding without utilizing gene expression or chemical response data. Next, 297 
PACER identifies RCGs as a fixed number of genes the expression of which shows the greatest 298 
correlation with chemical response to a specific compound. Finally, it scores a pathway based 299 
on the average cosine similarity between the vector representation of the pathway and those of 300 
the RCGs. A pathway can thus be found to be associated with a compound if, in the network, 301 
the pathway genes are closely related to the compound’s RCGs; this association can be 302 
discovered even if the pathway does not actually include the RCGs. We note that scores 303 
assigned by PACER are not statistical significance scores and are meant only to rank pathways 304 
for association with a given compound. Also, a negative score assigned to a compound-305 
pathway pair does not imply a negative correlation between expression levels of pathway genes 306 
and chemosensitivity. Rather, it only implies a lack of evidence for an association between the 307 
compound-pathway pair. 308 
 309 
The PACER association scores for all combinations of 481 compounds and 223 NCI signaling 310 
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pathways are shown in Figure 2B. The pathways cluster into many distinct groups, each with 311 
different compound association profiles. One group (cyan branches in the row dendrogram), 312 
associated with more than half of the compounds, consists of pathways describing various 313 
integrin cell surface interactions (e.g., ‘Integrins in angiogenesis’ pathway, ‘Alpha 4 Beta1 314 
integrin cell surface interactions’ pathway). These pathways are known to play crucial roles in 315 
communications among cells in response to small molecules29. Notably, integrins are a major 316 
family of cell surface adhesion receptors, and are involved in major pathways that contribute to 317 
cancer cell survival and resistance to chemotherapy30. PACER found 329 of the 481 318 
compounds to be associated with the “integrin family cell surface interactions” pathway. Since 319 
PACER scores are not easily assigned statistical significance levels, we chose for each 320 
compound n pathways with the highest PACER scores, where n is the number of statistically 321 
significant pathway associations (FDR ≤ 0.05) found by the baseline method above for the same 322 
compound. We found literature support for some of these associations. For example, ruxolitinib, 323 
a JAK/STAT inhibitor, is associated with integrin pathways by PACER analysis. In a previous 324 
study, it was shown that beta 4 integrin enhances activation of the transcription factor STAT3, 325 
which is a target of ruxolitinib31. Furthermore, vorinostat, a member of a larger class of 326 
compounds that inhibit histone deacetylases (HDAC), can induce integrin α5β1 expression and 327 
activate MET, leading to resistance32. Figure 2C reveals another example of functionally related 328 
pathways being grouped together. The pathways ‘VEGFR1 specific signals’, ‘ErbB4 signaling 329 
events’, ‘EGFR-dependent Endothelin signaling events’, ‘ErbB receptor signaling network’, and 330 
‘PDGF receptor signaling network’ form one group (red branches in row dendrogram), and are 331 
associated with masitinib (PDGFRB inhibitor) and RAF265 (VEGFR2 inhibitor), among other 332 
compounds (see Suppl. Table 5). Vascular endothelial growth factor receptor (VEGFR inhibitor) 333 
and platelet-derived growth factor receptor (PDGFR inhibitor) are both members of the family of 334 
58 known tyrosine kinase receptors in humans33. Tyrosine kinases have various modulatory 335 
functions in growth factor signaling and several of their inhibitors are known for their anti-tumor 336 
activity34. 337 
 338 
Figure 2B also shows compounds clustered into different groups based on their associations 339 
with pathways. We found that many compounds with similar structure were grouped together. 340 
For example, teniposide and etoposide had a Tanimoto similarity score of 0.94 between their 341 
SMILE specifications, which was substantially higher than the average Tanimoto similarity score 342 
of 0.3716 for all pairs of drugs. They were clustered together in the same group (Figure 2D, 343 
also marked as a rectangle in Figure 2B), which had seven compounds. This group is 344 
associated with a set of similar pathways, including ‘p53 pathway’, ‘Direct p53 effectors’, 345 
‘Signaling mediated by p38-alpha and p38-beta’, and ‘Signaling mediated by p38-gamma and 346 
p38-delta’. We found support in the literature in favor of some of these associations. For 347 
example, a previous study reported that etoposide activates p38MAPK and can be used as a 348 
new combined treatment approach when used with p38MAPK inhibitor SB20358035. To take 349 
another example, temsirolimus and tacrolimus, which are both epipodophyllotoxins and inhibit 350 
topoisomerase II, have a Tanimoto similarity score of 0.82, and are grouped closely in Figure 351 
2B. 352 
 353 
PACER improves pathway identification  354 
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 355 
We noted a substantial degree of complementarity between the top predictions of PACER and 356 
those of the baseline method that uses Fisher’s exact test between RCGs and pathway genes 357 
(see Suppl. Table 5). For instance, PACER found that PD153035, an ErbB2 inhibitor, is 358 
associated with the ‘C-MYC pathway’, reflecting the fact that PD153035 is able to reduce c-Myc 359 
protein levels in breast tumor cells36. The baseline approach did not find this association to be 360 
significant. Similarly, PACER reported that the ‘EGFR-dependent Endothelin signaling events’ 361 
pathway is associated with EGFR inhibitor gefitinib37 , while the baseline method did not. 362 
 363 
For a more systematic comparison between the two methods, we evaluated PACER based on a 364 
database of known compound targets. We performed the evaluation under the assumption that 365 
a pathway containing at least one known target is an associated pathway. Huang et al. used 366 
and suggested this approach16. We used it here to evaluate PACER, the baseline method, as 367 
well as a third method presented by Huang et al.16 Although this third method was proposed to 368 
detect association between pathways and drug clades, it can directly detect pathway-compound 369 
associations. We implemented the method ourselves (see Methods) and included it in our 370 
evaluations. We obtained the known targets for 246 compounds in our compound set from Rees 371 
et al.8 We then computed the AUROC of pathway predictions made by PACER for each 372 
compound, and plotted this information alongside analogous information for the baseline 373 
method and the method of Huang et al.16 As shown in Figure 2E, PACER identified pathways 374 
with higher AUROC compared to the other two methods. For example, PACER identified 375 
pathways with an AUROC greater than 0.75 for 22 different compounds, while the baseline 376 
method achieved this level of AUROC for only 7 compounds. Table 1 shows the 10 compounds 377 
for which PACER achieved highest AUROC. We present a closer examination of PACER 378 
predictions for two of these compounds: ‘cyclophosphamide’ (0.80 AUROC) and ‘nsc23766’ 379 
(0.84 AUROC) in Table 2 and Table 3, respectively. These tables also show the 380 
complementarity between PACER predictions and those of the baseline method.  381 
 382 
We note that the AUROC values reported here are likely to be underestimates, as there is 383 
literature evidence for some of the reported pathways being associated with the compound, 384 
even though the pathway does not include a known target (and is thus considered a false 385 
positive in our AUROC estimate). For example, our method identified the ‘Fanconi anemia 386 
pathway’ as being associated with compound ‘cyclophosphamide’ (Table 2). The Fanconi 387 
anemia pathway is one of the major DNA damage response pathways disrupted in breast 388 
cancer38, and is known to play an important role in cancer treatment by DNA crosslinking agents 389 
such as cyclophosphamide39, 40. PACER also identified ‘EPO signaling pathway’ to be 390 
associated with cyclophosphamide. Cyclophosphamide treatment has been reported to affect 391 
EPO receptor expression in murine erythropoiesis41. Although we found no existing study to 392 
corroborate the PACER-predicted association between cyclophosphamide and the ‘ATR 393 
signaling pathway’, the cyclophosphamide analogue, mafosfamide, has been reported to 394 
activate the ATM/ATR-Chk1/Chk2 pathway42. In addition, the predicted association of 395 
cyclophosphamide with ‘Class I PI3K signaling events’ is supported by reports of the compound 396 
activating the PI3K/Akt/mTOR signaling pathway in the ovary43.   397 
 398 
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The Rac1-specific inhibitor nsc23766 was also identified by PACER as being associated with 399 
several pathways that include a known target (Table 3), as well as some pathways that do not 400 
but whose association is supported by literature evidence. For example, the pathway ‘Beta5 401 
beta6 beta7 and beta8 integrin cell surface interactions’ was predicted as being associated with 402 
this compound, and even though the latter’s known target is not in this pathway, various lines of 403 
evidence support the association. A study of cholangiocarcinoma found beta6 integrin to 404 
promote invasiveness by activating Rac1, and that the compound nsc23766 is able to suppress 405 
this invasiveness44 and can be used to identify poor prognostic HER2 amplified breast cancer 406 
patients45. Beta8 integrin influences Rac1 levels to promote cell invasiveness in glioblastoma46. 407 
Also, Beta8 integrin is reported to activate Rac1 signaling in endometrial epithelial cells47. In 408 
addition, ncs23766 was predicted to be associated with ‘a4b7 Integrin signaling’. While this 409 
pathway does not directly include the compound’s target, Rac1 was previously shown to induce 410 
a4b7-mediated T cell adhesion to MAdCAM-148, supporting the predicted association. 411 
Furthermore, ‘Plexin-D1 Signaling pathway’ was found by PACER to be associated with 412 
ncs23766. Plexin-D1 is a receptor for SEMA4A which inhibits Rac activation49. Thus, the 413 
anecdotal observations made above suggest that compound-pathway predictions made by 414 
PACER may sometimes be worth pursuing even if the compound’s target is not included in the 415 
pathway. 416 
 417 
We further evaluated PACER based on the identified pathways for compounds with similar 418 
chemical structures. We performed this evaluation under the assumption that compounds with 419 
similar chemical structures tend to be associated with the same pathways. To this end, we 420 
calculated the Tanimoto similarity between each pair of compounds according to their SMILE 421 
specifications. We regarded two compounds as having similar chemical structures if their 422 
Tanimoto similarity is larger than 0.8. This threshold was used in previous work to indicate high 423 
Tanimoto similarity50. For a given compound, we used PACER to rank other compounds 424 
according to the Spearman correlation coefficient between their rankings of pathways, and 425 
asked if this ranking was predictive of chemical structure similarity. For each compound, an 426 
AUROC score was computed to measure this predictive ability. We repeated this evaluation 427 
with the three different methods of ranking pathways for a compound: PACER, the baseline 428 
method, and the method of Huang et al. Figure 2F shows the number of compounds for which 429 
the AUROC is above a specified threshold, for each of the three methods. We found that 430 
PACER achieves better performance in identifying compounds with similar chemical structure 431 
based on similarity of pathway ranking. For example, 21 (of 42) compounds yielded an AUROC 432 
greater than 0.8 when using PACER, compared to 10 compounds meeting the same criterion 433 
when using the baseline method. As compounds with similar chemical structure tend to be 434 
functionally similar, our results demonstrate that PACER can be used to identify similar 435 
compounds by integrating prior network information into chemosensitivity data. 436 
 437 
We also compared the associations predicted by the three methods to those identified from an 438 
external data set. To this end, we mined the Library of Integrated Network-Based Cellular 439 
Signatures (LINCS) L1000 data23, which reports genes differentially expressed upon treatment 440 
of various cell lines with a compound. For each compound in our analysis that is also included 441 
as a perturbagen in the L1000 compendium, we established a LINCS-based benchmark of 442 
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significantly associated pathways. This was based on a Fisher’s exact test (p-value ≤ 0.05) 443 
between pathway genes and the most differentially expressed genes from treatments with the 444 
same compound (see Methods). We required this criterion to be met in at least one of the cell 445 
lines for which data was available from LINCS. We then assessed the concordance between 446 
this set of LINCS-based compound-pathway associations and those predicted by either method 447 
presented above. We recognize that this is not an ideal benchmark: LINCS data points to genes 448 
(and, indirectly, to pathways) that are differentially expressed in response to treatment, while 449 
PACER and the compared methods base their pathway predictions on genes that have basal 450 
expression levels across cell lines that correlate with chemical response. At the same time, we 451 
expect the pathways affected by chemical treatment to also be, to an extent, involved in 452 
interpersonal variation of chemosensitivity, making this a suitable evaluation procedure. This 453 
was inspired by similar observations in cancer biology: genes and pathways disrupted in cancer 454 
tissues overlap with genes and pathways whose mutation status in germline non-tumor samples 455 
is informative about disease susceptibility and progression. 456 
 457 
To test whether the significant pathways identified from LINCS data agree with the pathways 458 
predicted by one of the methods being evaluated (based on chemical response variation in 459 
CCLE cell lines), we counted the compounds for which the two sets of predicted pathways 460 

overlapped significantly (Fisher’s exact test p-value ≤ 0.05). As shown in Figure 2G, the 461 

PACER approach predicts pathways concordant with the corresponding LINCS-based 462 
benchmark for more compounds, compared to the baseline method and that of Huang et al.16 463 
For instance, when the baseline method used an FDR threshold of 10% to designate significant 464 
pathway associations for each drug, and the PACER method predicted the same number of 465 
pathways, the latter’s predictions were concordant with the LINCS-based benchmark for 110 of 466 
the 481 compounds, a nearly two-fold improvement over the baseline method’s predictions. Our 467 
evaluations actually provide evidence for the above-mentioned possibility that pathways 468 
predictive of drug sensitivity overlap with genes that mediate drug response. In fact, we found 469 
86 compounds for which the pathways identified from basal expression correlations and the 470 
pathways identified from LINCS signatures overlap with FDR < 5%.  471 
 472 
After observing the substantial improvement of PACER, we then investigated whether the 473 
performance of PACER is stable when only using experimental derived protein-protein 474 
interactions as input. We found that the performance of PACER, as per the three evaluations 475 
presented above, was stable when only using experimental derived protein-protein interactions 476 
as input (Suppl. Figure 4-6). We further demonstrated that the result of our method is robust to 477 
different numbers of top response-correlated genes used in PACER, as shown in Suppl. 478 
Figures 7-9. We compared different values for k in the top k genes chosen by PACER. We 479 
found that for two of the three evaluation schemes, results were comparable when using k=100, 480 
150, 200, 250 and 300. For the third evaluation scheme, results were comparable when using 481 
k=200, 250, and 300. This demonstrates the stability of the algorithm’s performance to different 482 
but reasonable values of k in its choice of top k response-correlated genes.  483 
 484 
 485 
  486 
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DISCUSSION AND CONCLUSION 487 

We have shown that embedding prior knowledge in a gene network can more accurately identify 488 
compound-pathway. Our new method, called PACER, identified many compound-pathway 489 
associations that are supported by known compound targets as well as literature evidence. Due 490 
to its unique ability to incorporate any suitable compendium of gene interactions, our approach 491 
may provide complementary insights into drug mechanisms of action.  492 
 493 
Historically, pathways associated with a particular gene set are identified by using popular 494 
statistical methods such as Gene Set Enrichment Analysis51, Fisher’s exact test (DAVID52) or 495 
the Binomial test (Reactome53). These tools test the overlap between differentially expressed 496 
genes and pathway members. They may also be applied to the set of drug-response-correlated 497 
genes (RCGs) analyzed here. Ingenuity Pathway Analysis54 is another related tool, which 498 
utilizes information about causal interactions between pathway members. Our study is similar to 499 
the above tools in that PACER also seeks to find pathways implicated by a gene set. However, 500 
our approach differs from these existing tools in that known molecular interactions (e.g., PPI) 501 
among different genes are taken into consideration. Thus, a gene set, be it the RCGs of a 502 
compound or the members of a pathway, is not treated merely as the sum of its parts, but also 503 
includes the relationships among those parts. Since the dominant theme in existing approaches 504 
is assessment of overlaps between two gene sets (MSigDB, DAVID, and Reactome adopt 505 
variations on this theme), our extensive comparisons between PACER and the baseline method 506 
of Fisher’s exact test shed light on the relative merits of the new approach. A related line of work 507 
aims to identify differentially expressed subnetworks in a given interaction network, e.g., 508 
KeyPathwayMiner55, but these studies are only superficially relevant to our work since we aim to 509 
prioritize existing pathways instead of finding new pathways. 510 
 511 
We consider two potential reasons for the strong performance of PACER. First, it is widely 512 
appreciated that a chemical compound not only affects individual genes, but also combinations 513 
of genes in molecular networks corresponding to core processes, such as cell proliferation and 514 
apoptosis. Our method postulates that even if the RCGs and a pathway may only have a few 515 
genes in common, they may be close to each other in the network. Although current compound 516 
pathway maps are incomplete, much relevant information is available in public databases of 517 
human molecular networks. While traditional pathway enrichment analysis methods like Fisher’s 518 
exact test identify pathways according to the number of shared genes, PACER prioritizes 519 
pathways based on their proximities to RCGs in molecular networks. Second, manually curated 520 
pathways may have arbitrary boundaries due to the need to capture knowledge at different 521 
levels of detail. Consequently, identifying drug related pathways might be hindered by pathway 522 
boundaries. By leveraging the prior knowledge in molecular networks, PACER is more robust to 523 
pathways with different boundaries, thus improving the sensitivity of detecting compound-524 
pathway associations. 525 
 526 
We see many opportunities to improve upon the basic concept of PACER in future work. First, 527 
although the current PACER framework was developed in an unsupervised fashion, the scores 528 
assigned to each pathway for the given gene set can be used as the feature and plugged into 529 
off-the-shelf machine learning classifiers for compound-pathway association identification. 530 
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Second, although this study focused on chemosensitivity response, the PACER method is 531 
broadly applicable to testing the association between two sets of genes according to their 532 
proximity in the network. Finally, although we use gene expression data as the molecular profile 533 
of each cell line, it might be interesting to test our method based on other molecular data such 534 
as somatic mutations and copy number alterations.  535 
 536 
 537 
  538 
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FIGURE LEGENDS 539 
 540 
Figure 1. Global analysis of correlations between basal gene expression and compound 541 
response. (A) Heatmap of the Pearson correlation coefficient between genes (expression) and 542 
compounds (chemosensitivity, measured by AUC values). (B) Histogram of the number of 543 
compounds associated with each gene. The y-axis shows the number of genes associated with 544 
k compounds, where k is shown on the x-axis. (C) Histogram of the number of genes associated 545 
with each compound. The y-axis shows the number of compounds associated with k genes, 546 
where k is shown on the x-axis. (D) Histogram of the number of compounds significantly 547 
associated with each pathway (Fisher’s exact test FDR � 0.05). (E) Histogram of the number of 548 
pathways significantly associated with each compound (Fisher’s exact test FDR � 0.05). 549 
 550 
Figure 2. Identifying pathways associated with chemical response using PACER. 551 
(A) Schematic description of PACER. (B) Heat map of associations between compounds and 552 
pathways (PACER scores). Rows are pathways and columns are compounds. (C) Detailed view 553 
of a subset of the red branch cluster of pathways, marked by ‘C’ in Figure 2B. (D) Detailed view 554 
of a subnet of purple branch cluster of compounds, marked by a rectangle in Figure 2B. (E) 555 
Comparative evaluation of different methods for predicting compound-pathway associations. 556 
The ground truth used here is the pathways that contain any known target gene of the 557 
compound. (F) Comparison of PACER, Fisher’s exact test and Huang et al. on predicting 558 
compounds with similar chemical structure. The y-axis shows the number of compounds with an 559 
AUROC larger than k, where k is shown on the x-axis. Compound structure similarity is 560 
determined by the Tanimoto similarity score calculated based on their SMILE specifications. 561 
Prediction is made according to the Spearman correlation between the pathway rankings of two 562 
compounds. (G) Number of compounds with significant overlap (p < 0.05) between pathways 563 
from LINCS and pathways from PACER, from Huang et al. 2005 and from the baseline method 564 
(Fisher’s exact test) respectively, at different levels of stringency in pathway prediction. 565 
Stringency refers to the FDR control used by the baseline method in determining significant 566 
pathways. Both PACER and the Huang et al. 2005 method were used to predict the same 567 
number of (highest scoring) pathways as the baseline method, for a fair comparison.  568 
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TABLES 569 

Table 1. Compounds for which PACER predicted pathways with greatest precision. Evaluation was 570 
performed with known targets. 571 

Compound AUROC 

bms-536924  0.936652 

ml239 0.869446 

kx2-391 0.846667 

skepinone-l 0.844854 

mgcd-265 0.841279 

nsc23766 0.835607 

vorapaxar 0.834101 

pf-3758309 0.824359 

cyclophosphamide 0.798150 

pf-573228 0.792370 

 572 
 573 

 574 

Table 2. Top 10 pathways predicted by PACER for the compound ‘cyclophosphamide’ 575 

 576 
Pathway Contains 

known 
target? 

P-value of pathway 
(baseline method) 

Fanconi anemia pathway NO 0.2670 
CXCR4-mediated signaling events YES 1 

TCR signaling in naive CD4+ T cells YES 1 
IL2 signaling events mediated by PI3K YES 1 

ATR signaling pathway NO 1 
TCR signaling in naive CD8+ T cells YES 1 

Class I PI3K signaling events NO 1 
p53 pathway YES 0.3185 

BARD1 signaling events NO 1 
EPO signaling pathway NO 1 

 577 
  578 
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 579 

Table 3. Top 10 pathways predicted by PACER for the compound ‘nsc23766’ 580 

 581 
Pathway Contains  

known target? 
P-value of pathway 
(baseline method) 

Signaling events mediated by focal adhesion 
kinase  

YES 0.0001 

Integrins in angiogenesis YES 0.0716 
Alpha4 beta1 integrin signaling events YES 0.0084 

a4b7 Integrin signaling NO 0.1006 
Nectin adhesion pathway YES 0.0521 

Integrin-linked kinase signaling YES 0.4421 
Neurotrophic factor-mediated Trk receptor 

signaling 
YES 0.0080 

Integrin family cell surface interactions NO 0.0003 
Beta5 beta6 beta7 and beta8 integrin cell 

surface interactions 
NO 0.0013 

Plexin-D1 Signaling NO 0.0364 
 582 
  583 
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