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Abstract	

Health	risk	factors	such	as	body	mass	index	(BMI),	serum	cholesterol	and	blood	pressure	are	

associated	with	many	common	diseases.	It	often	remains	unclear	whether	the	risk	factors	are	

cause	or	consequence	of	disease,	or	whether	the	associations	are	the	result	of	confounding.	

Genetic	methods	are	useful	to	infer	causality	because	genetic	variants	are	present	from	birth	and	

therefore	unlikely	to	be	confounded	with	environmental	factors.	We	develop	and	apply	a	

method	(GSMR)	that	performs	a	multi-SNP	Mendelian	Randomization	analysis	using	summary-

level	data	from	large	genome-wide	association	studies	(sample	sizes	of	up	to	405,072)	to	test	the	

causal	associations	of	BMI,	waist-to-hip	ratio,	serum	cholesterols,	blood	pressures,	height	and	

years	of	schooling	(EduYears)	with	a	range	of	common	diseases.	We	identify	a	number	of	causal	

associations	including	a	protective	effect	of	LDL-cholesterol	against	type-2	diabetes	(T2D)	that	

might	explain	the	side	effects	of	statins	on	T2D,	a	protective	effect	of	EduYears	against	

Alzheimer’s	disease,	and	bidirectional	associations	with	opposite	effects	(e.g.	higher	BMI	

increases	the	risk	of	T2D	but	the	effect	T2D	of	BMI	is	negative).	HDL-cholesterol	has	a	significant	

risk	effect	on	age-related	macular	degeneration,	and	the	effect	size	remains	significant	

accounting	for	the	other	risk	factors.	Our	study	develops	powerful	tools	to	integrate	summary	

data	from	large	studies	to	infer	causality,	and	provides	important	candidates	to	be	prioritized	

for	further	studies	in	medical	research	and	for	drug	discovery.	
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Introduction	

Health	risk	factors	such	as	body	mass	index	(BMI),	serum	cholesterol	and	blood	pressure	are	

associated	with	many	human	common	diseases	1,2,	e.g.	being	overweight	is	associated	with	

increased	risk	to	cardiovascular	diseases	(CVD)	3	and	type-2	diabetes	(T2D)	4.	These	

associations	are	usually	derived	from	observational	studies	that	cannot	distinguish	whether	the	

risk	factors	are	‘upstream’	causal	factors,	‘downstream’	consequences	of	the	diseases,	or	

confounding	factors	associated	with	both	the	exposures	and	outcomes.	The	randomized	

controlled	trial	(RCT)	is	considered	to	be	the	gold	standard	approach	to	test	for	causality.	For	

instance,	LDL	cholesterol	(LDL-c)	was	initially	found	to	be	associated	with	coronary	artery	

disease	(CAD)	in	an	observational	study	5,	and	the	association	was	subsequently	confirmed	to	be	

causal	by	RCTs	6,7.	However,	RCTs	are	time-consuming,	expensive,	and	sometimes	impractical	or	

even	unethical	8.	It	is	not	feasible	to	design	RCTs	that	can	test	many	different	interventions	

simultaneously.	Mendelian	Randomization	(MR)	is	an	instrumental	variable	analysis	that	uses	

genetic	variants,	which	are	expected	to	be	independent	of	confounding	factors,	as	instrumental	

variables	to	test	for	causality	9-11.	MR	can	be	used	to	infer	credible	causal	associations	when	

RCTs	are	not	feasible	or	as	a	strategy	to	rank	order	candidate	causal	associations	to	be	

prioritized	for	follow-up	in	RCTs.	MR	is	becoming	increasingly	efficient	and	cost-effective	given	

the	ever-growing	data	curated	from	recent	genome-wide	association	studies	(GWAS).	The	large	

amount	of	GWAS	data	available	in	the	public	domain	provide	a	great	opportunity	for	methods	

that	are	able	to	make	inference	about	causality	by	integrating	summary-level	GWAS	data	from	

different	studies	12-16.	We	have	previously	shown	that	the	power	of	MR	could	be	greatly	

improved	by	a	flexible	analysis	of	summary-level	GWAS	data	for	exposure	(e.g.	risk	factor)	and	

outcome	(e.g.	disease)	from	two	samples	of	large	sample	size	(summary-data-based	MR,	SMR),	

and	applied	the	SMR	method	to	test	if	the	effects	of	genetic	variants	on	a	phenotype	are	

mediated	by	gene	expression	17.		

	

In	this	study,	we	extend	the	SMR	approach	to	a	more	general	form	(generalized	SMR	or	GSMR)	

by	leveraging	power	from	multiple	genetic	variants	accounting	for	linkage	disequilibrium	(LD)	

between	the	variants,	and	demonstrate	by	simulation	that	GSMR	is	more	powerful	than	existing	

summary-data-based	MR	methods	12,13.	Separation	of	signals	of	causality	from	pleiotropy	(a	

single	locus	directly	affecting	multiple	phenotypes,	also	called	type-II	pleiotropy	18)	and	further	

separation	of	marginal	effect	from	conditional	effect	(the	net	effect	of	a	risk	factor	on	the	

outcome	accounting	for	the	effects	of	other	risk	factors,	e.g.	there	is	no	effect	of	HDL	cholesterol	

on	CAD	correcting	for	the	other	serum	cholesterol	levels	19,20)	are	recognized	issues	that	require	

careful	interpretation	in	MR	analyses	18.	We	develop	a	method	(HEIDI-outlier)	to	detect	and	

eliminate	genetic	instruments	that	have	apparent	pleiotropic	effects	on	both	risk	factor	and	
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disease,	and	another	method	(conditional	GSMR)	to	estimate	the	effect	of	a	risk	factor	on	disease	

conditioning	on	the	genetic	values	of	other	risk	factors.	All	methods	developed	in	this	study	only	

require	summary-level	data	(with	LD	between	genetic	variants	from	a	reference	sample	with	

individual-level	data),	providing	a	great	flexibility	to	integrate	data	from	multiple	studies.	We	

apply	the	methods	to	publicly	available	data	of	very	large	sample	sizes	(n	=	up	to	405,072	for	

risk	factors	and	184,305	for	diseases)	to	test	for	the	causal	associations	between	health	risk	

factors	such	as	BMI,	serum	cholesterol	levels	and	blood	pressure	levels	and	a	range	of	human	

common	diseases.		

		

Results	

Overview	of	the	methods	

Let	y	=	the	liability	of	a	disease	on	the	logit	scale,	x	=	a	risk	factor	in	standard	deviation	(SD)	

units	and	z	=	the	genotype	of	a	SNP	(coded	as	0,	1	or	2).	The	MR	estimate	of	the	causal	effect	of	

risk	factor	on	disease	9	is	𝑏!" = 𝑏!"/𝑏!" ,	where	bzy	is	the	effect	of	z	on	y	on	the	logit	scale	

(logarithm	of	odds	ratio,	logOR),	bzx	is	the	effect	of	z	on	x,	and	bxy	is	the	logOR	of	x	on	y	free	of	

confounding	from	non-genetic	factors	(see	below	for	the	caveats	in	interpreting	an	MR	

estimate).	SMR	is	a	flexible	and	powerful	MR	approach	that	is	able	to	estimate	and	test	the	

significance	of	bxy	using	the	estimates	of	bzx	and	bzy	from	independent	samples	17.	If	there	are	

multiple	independent	(or	nearly	independent)	SNPs	associated	with	x	and	the	effect	of	x	on	y	is	

causal,	then	all	the	x-associated	SNPs	will	have	an	effect	on	y	through	x	(Fig.	1a).	In	this	case,	bxy	

at	any	of	the	x-associated	SNPs	is	expected	to	be	identical	in	the	absence	of	pleiotropy	13,16,21	

because	all	the	SNP	effects	on	y	are	mediated	by	x	(Fig.	1b).	Therefore,	increased	statistical	

power	can	be	achieved	by	integrating	the	estimates	of	bxy	from	all	the	x-associated	SNPs	using	a	

generalized	least	squares	(GLS)	approach	(Online	Methods).	The	GSMR	method	essentially	

implements	SMR	analysis	for	each	SNP	instrument	individually,	and	then	integrates	the	bxy	

estimates	of	all	the	SNP	instruments	by	GLS,	accounting	for	sampling	variance	in	𝑏!" 	and	𝑏!"	for	

each	SNP	and	LD	among	SNPs.	We	demonstrate	using	simulations	that	there	is	no	inflation	in	the	

GSMR	test-statistics	under	the	null	hypothesis	that	bxy	=	0	(Supplementary	Fig.	1),	that	the	

estimate	of	bxy	from	GSMR	is	unbiased	under	the	alternative	hypothesis	that	bxy	≠	0		

(Supplementary	Table	1),	and	that	bxy	approximately	equals	to	logOR	(where	OR	is	the	effect	of	

risk	factor	on	disease	in	observational	study	without	confounding)	(Supplementary	Fig.	2).	In	

comparison	with	the	existing	summary-data-based	MR	methods	12,	GSMR	is	more	powerful	as	

demonstrated	by	simulation	(Supplementary	Fig.	3)	especially	when	the	number	of	SNP	

instruments	is	large,	and	has	the	advantage	of	accounting	for	LD	if	the	SNP	instruments	are	not	

fully	independent.		
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Pleiotropy	is	an	important	potential	confounding	factor	that	could	bias	the	estimate	and	often	

leads	to	an	inflated	test-statistic	in	a	MR	analysis	9,10,13,18.	We	propose	a	method	(called	HEIDI-

outlier)	to	detect	the	SNP	outliers	that	are	more	consistent	with	pleiotropic	effects	on	both	

exposure	and	outcome,	and	remove	them	from	the	GSMR	analysis	(Online	Methods	and	

Supplementary	Fig.	4).	We	further	develop	an	approximate	method	that	only	requires	

summary	data	to	conduct	a	conditional	GWAS	analysis	for	a	phenotype	given	other	phenotypes.	

The	purpose	of	developing	this	method	is	to	estimate	the	effect	of	a	risk	factor	on	disease	

correcting	for	other	risk	factors	(Online	Methods	and	Supplementary	Fig.	5),	which	helps	to	

infer	whether	the	marginal	effect	of	the	risk	factor	on	disease	depends	on	other	risk	factors	or	

not,	and	to	predict	the	joint	effect	of	multiple	risk	factors	on	disease.	

	

Causal	associations	between	7	health	risk	factors	and	common	diseases	

We	applied	the	methods	to	test	for	causal	associations	between	7	health	risk	factors	and	

common	diseases	using	data	from	multiple	large	studies.	The	risk	factors	are	BMI,	waist-to-hip	

ratio	adjusted	for	BMI	(WHRadjBMI),	HDL	cholesterol	(HDL-c),	LDL-c,	triglycerides	(TG),	systolic	

blood	pressure	(SBP)	and	diastolic	blood	pressure	(DBP).	We	chose	these	risk	factors	because	of	

the	availability	of	summary-level	GWAS	data	from	large	samples	(n	=	108,039	to	322,154)	

(Supplementary	Table	2).	We	accessed	data	for	BMI,	WHRadjBMI,	HDL-c,	LDL-c	and	TG	from	

published	GWAS	22-24	and	data	for	SBP	and	DBP	from	the	subgroup	of	UK	Biobank	(UKB)	25	with	

genotyped	data	released	in	2015.	We	selected	near-independent	SNPs	at	a	genome-wide	

significance	level	(PGWAS	<	5×10–8)	using	the	clumping	algorithm	(r2	threshold	=	0.05	and	

window	size	=	1	Mb)	implemented	in	PLINK	26	(Online	Methods).	Note	that	the	GSMR	method	

accounts	for	the	remaining	LD	not	removed	by	the	clumping	analysis.	There	were	m	=	84,	43,	

159,	141,	101,	28	and	29	near-independent	SNPs	for	BMI,	WHRadjBMI,	HDL-c,	LDL-c,	TG,	SBP	

and	DBP,	respectively,	after	clumping.	The	summary-level	GWAS	data	for	the	diseases	were	

computed	from	two	independent	community-based	studies	with	individual-level	SNP	genotypes,	

i.e.	the	Genetic	Epidemiology	Research	on	Adult	Health	and	Aging	27	(GERA)	(n	=	53,991)	and	the	

subgroup	of	UKB	25	(n	=	108,039).	We	included	in	the	analysis	22	common	diseases	as	defined	in	

the	GERA	data	(Supplementary	Table	3).	We	added	an	additional	phenotype	related	to	

comorbidity	by	counting	the	number	of	diseases	affecting	each	individual,	i.e.	Disease	Count,	as	a	

crude	index	to	measure	the	general	health	status	of	an	individual	(Supplementary	Table	3).	We	

performed	genome-wide	association	analyses	of	the	23	disease	phenotypes	in	GERA	and	UKB	

separately	(Online	Methods).	We	assessed	the	genetic	heterogeneity	of	a	disease	between	the	

two	cohorts	by	a	genetic	correlation	(rg)	analysis	using	the	bivariate	LD	score	regression	(LDSC)	

approach	28.	The	estimates	of	rg	across	all	the	diseases	(excluding	Disease	Count)	varied	from	

0.75	to	0.99	with	a	mean	of	0.91	(Supplementary	Table	3),	suggesting	strong	genetic	overlaps	
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for	the	diseases	between	the	two	cohorts.	We	therefore	meta-analyzed	the	data	of	the	two	

cohorts	to	maximize	power	using	the	inverse-variance	meta-analysis	approach	29.	

	

Since	the	GSMR	method	only	requires	summary-level	data,	we	further	applied	the	GSMR	analysis	

to	11	diseases	for	which	there	were	summary	data	available	from	published	case-control	studies	

(n	=	18,759	to	184,305)	(Supplementary	Table	4).	The	estimated	SNP	effects	and	SE	for	age-

related	macular	degeneration	(AMD)	were	not	available	in	the	summary	data	30,	which	were	

estimated	from	z-statistics	using	an	approximate	approach	(Supplementary	Note).	We	applied	

the	HEIDI-outlier	approach	to	remove	SNPs	that	showed	pleiotropic	effects	on	both	risk	factor	

and	disease,	significantly	deviated	from	a	causal	model	(Online	Methods).	Although	this	

method	might	not	be	fail-safe	against	all	threats	to	causality	18,31	and	could	potentially	reduce	

power	of	GSMR	(we	use	a	threshold	p-value	of	0.01	for	the	HEIDI-outlier	analysis	which	removes	

1%	of	the	SNPs	by	chance	if	there	is	no	pleiotropic	outlier)	(Supplementary	Fig.	4),	it	enhances	

the	credibility	of	the	analysis.	The	LD	correlations	between	pairwise	SNPs	were	estimated	from	

the	Atherosclerosis	Risk	in	Communities	(ARIC)	data	32	(n	=	7,703	unrelated	individuals)	

imputed		to	1000	Genomes	(1000G)	33.	Using	the	large	data	sets,	we	identified	from	GSMR	

analyses	45	significant	causative	associations	between	risk	factors	and	diseases	

(Supplementary	Table	5	and	Fig.	2).	We	controlled	the	family-wise	error	rate	(FWER)	at	0.05	

by	Bonferroni	correction	for	231	tests	(PGSMR	threshold	=	2.16×10–4).		

	

Obesity	and	common	diseases	

Results	from	analyses	of	the	community-based	data	showed	that	BMI	had	risk	effects	on	T2D	

(odds	ratio,	OR	=	3.29),	hypertensive	disease	(OR	=	1.85),	dermatophytosis	(i.e.	tinea)	(OR	=	

1.67),	peripheral	vascular	diseases	(PVD)	(OR	=	1.59),	osteoarthritis	(OR	=	1.50),	dyslipidemia	

(OR	=	1.37),	asthma	(OR	=	1.35)	and	CVD	(OR	=	1.30).	The	risk	effects	of	BMI	on	T2D,	CVD	and	

hypertensive	disease	have	been	confirmed	by	RCT	34	(Supplementary	Table	5),	providing	

proof-of-principle	validation.	The	interpretation	of	OR(!"#→!"#) = 3.29	is	that	people	whose	

BMI	are	1	SD	(SD	=	3.98	for	BMI	in	European	men	corresponding	to	~12kg	of	weight	for	men	of	

175cm	stature;	see	Supplementary	Table	6	for	SD	for	the	other	risk	factors)	above	the	

population	mean	will	have	3.29	times	increase	in	risk	to	T2D	compared	with	the	population	

prevalence	(~8%	in	the	US).	It	is	interesting	to	note	that	the	estimate	of	bxy	at	the	TCF7L2	locus	

strongly	deviated	from	those	at	the	other	loci	(Fig.	3),	suggesting	that	the	TCF7L2	SNP	has	

pleotropic	effects	on	BMI	and	T2D.	The	TCF7L2	SNP	was	detected	as	an	outlier	by	the	HEIDI-

outlier	method	and	removed	from	the	GSMR	analysis.	In	addition,	the	risk	effect	of	BMI	on	

asthma	is	in	line	with	the	result	from	a	recent	MR	study	(using	a	weighted	genetic	allele	score	as	

the	instrument)	that	higher	BMI	increases	the	risk	of	childhood	asthma	35.	Moreover,	we	
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identified	a	protective	effect	of	BMI	against	osteoporosis	(OR	=	0.68),	consistent	with	the	

observed	associations	in	previous	studies	36,37.		

	

The	estimated	risk	effect	of	BMI	on	T2D	in	the	community	data	(OR	=	3.29)	was	similar	to	that	in	

the	case-control	data	(OR	=	3.12,	Fig.	2b	and	Supplementary	Table	5).	We	also	observed	a	

strong	risk	effect	of	BMI	on	coronary	artery	disease	(CAD)	in	the	case-control	data	(OR	=	1.70),	

in	line	with	the	risk	effect	of	BMI	on	CVD	(OR	=	1.30)	in	the	community	data.	Our	result	confirms	

a	negligibly	small	effect	of	BMI	on	major	depressive	disorder	(MDD),	consistent	with	a	previous	

MR	study	that	uses	a	SNP-derived	genetic	risk	score	as	a	single	instrument	in	a	smaller	sample	
38,	while	noting	that	the	MDD	GWAS	data	are	currently	underpowered	as	assessed	by	the	limited	

number	of	genome-wide	significant	(GWS)	loci	currently	detected.	

	

Being	overweight	is	a	risk	factor	for	general	health	outcomes	as	indicated	by	its	risk	effect	on	

Disease	Count	(𝑏!" = 0.41)	in	the	community	data.	The	question	is	then	how	bxy	for	Disease	

Count	should	be	interpreted.	We	have	shown	in	Supplementary	Fig.	6	that	the	estimate	of	bxy	

for	Disease	Status	(a	dichotomous	phenotype	to	indicate	whether	an	individual	is	affected	by	

any	of	the	22	diseases)	was	very	similar	to	that	for	Disease	Count.	Although	Disease	Status	and	

Disease	Count	are	two	distinct	phenotypes	and	the	analysis	of	Disease	Count	is	more	powerful,	

for	the	ease	of	interpretation,	bxy	for	Disease	Count	can	be	approximately	interpreted	as	logOR	

for	Disease	Status.	Hence,	𝑏!" = 0.41	for	Disease	Count	is	approximately	equivalent	to	OR	=	1.51	

for	Disease	Status,	meaning	an	increase	of	BMI	by	1	SD	will	increase	the	probability	of	being	

affected	by	any	of	the	22	diseases	by	a	factor	of	~1.5.		

	

We	included	in	the	analysis	two	obesity-related	traits,	BMI	and	WHRadjBMI.	BMI	is	a	measure	of	

the	amount	of	tissue	mass	and	WHRadjBMI	is	a	measure	of	body	fat	distribution.	Previous	

studies	suggest	that	BMI-	and	WHRadjBMI-associated	genetic	loci	are	enriched	for	genes	

expressed	in	central	nervous	system	22	and	adipose	tissue	23,	respectively,	which	implies	

potentially	different	genetic	aetiologies	of	the	two	traits.	We	found	that	the	effects	of	

WHRadjBMI	and	BMI	on	disease	were	largely	concordant	(Supplementary	Fig.	7a),	suggesting	

that	the	genetic	etiologies	of	the	two	traits	may	differ	but	their	effects	on	health	outcomes	are	

similar.	Note	that	WHRadjBMI	has	been	adjusted	for	BMI	so	that	that	effect	sizes	of	WHRadjBMI	

on	diseases	should	be	independent	of	BMI.	Nevertheless,	the	effect	sizes	of	WHRadjBMI	on	

diseases	were	smaller	than	those	of	BMI,	and	WHRadjBMI	was	detected	with	significant	effects	

on	only	4	diseases	(T2D,	dyslipidemia,	hypertension	and	CAD)	(Fig.	2),	although	the	smaller	

number	of	detections	could	be	because	of	the	smaller	number	of	instruments	used	for	
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WHRadjBMI	(m	=	43)	than	for	BMI	(m	=	84)	as	the	power	of	GSMR	is	proportional	to	the	number	

of	instruments	(Supplementary	Fig.	3).	

	

“Good”	vs.	“bad”	cholesterol	

LDL-c	is	a	known	causative	risk	factor	for	CAD	as	confirmed	by	RCTs	6,7.	We	found	that	LDL-c	

had	a	significant	risk	effect	on	dyslipidemia	(OR	=	3.36)	and	CVD	(OR	=	1.22)	in	the	community	

data,	and	CAD	(OR	=	1.50)	in	the	case-control	data	(Fig.	2).	TG	had	a	significant	risk	effect	on	

dyslipidemia	(OR	=	2.09),	hypertensive	disease	(OR	=	1.24)	and	CVD	(OR	=	1.14)	in	the	

community	data,	and	CAD	(OR	=	1.33)	in	the	case-control	data	(Fig.	2).	The	effects	of	TG	on	

diseases	were	largely	consistent	with	those	for	LDL-c	(Supplementary	Fig.	7b),	despite	the	

modest	phenotypic	correlation	between	the	two	traits	(rp	=	0.19	in	the	ARIC	data).	Both	LDL	and	

TG	had	significant	risk	effects	on	Disease	Count	in	the	community	data	(Fig.	2).		

	

There	was	another	example	where	the	HEIDI-outlier	approach	detected	strong	effects	due	to	

pleiotropy.	The	effect	of	LDL-c	on	Alzheimer’s	disease	(AD)	was	highly	significant	without	

HEIDI-outlier	filtering	(OR	=	1.35	and	PGSMR	=	7.8×10–16)	(Fig.	4).	The	HEIDI-outlier	analysis	

flagged	16	SNPs,	12	of	which	are	located	in	the	APOE	gene	region	(LD	r2	among	these	SNPs	<	

0.05)	and	all	of	which	had	highly	significant	effects	on	both	LDL-c	and	AD.	Excluding	these	SNPs	

makes	a	more	conservative	GSMR	test	because	if	there	is	a	true	causal	relationship	of	increased	

LDL-c	with	AD,	then	the	GSMR	test	should	remain	significant	based	on	evidence	from	other	LDL-

c	associated	SNPs.	In	fact,	after	removing	the	16	pleiotropic	SNPs,	the	effect	of	LDL-c	on	AD	was	

not	significant	(OR	=1.03,	PGSMR	=	0.47).	Nevertheless,	the	multiple	pleiotropic	signals	clustered	

at	the	APOE	locus	are	worth	further	investigation	(Supplementary	Fig.	8).		

	

We	identified	a	significant	protective	effect	of	LDL-c	against	T2D	(OR	=	0.84,	PGSMR	=	1.1×10–4)	in	

the	case-control	data,	which	might	explain	the	observation	from	a	previous	study	that	lowering	

LDL-c	using	statin	therapy	is	associated	with	a	slightly	increased	risk	of	T2D	39.	The	estimate	was	

not	significant	in	the	community	data	(likely	due	to	the	lack	of	power)	but	in	a	consistent	

direction	(OR	=	0.95,	PGSMR	=	0.08).	Given	the	strong	genetic	correlation	between	the	two	T2D	

data	sets	(rg	=	0.98,	SE	=	0.062)	as	estimated	from	the	bivariate	LDSC	analysis	28,	we	meta-

analyzed	the	two	data	sets	using	the	inverse-variance	approach,	and	performed	the	GSMR	

analysis	to	re-estimate	the	effect	of	LDL-c	on	T2D	using	the	T2D	meta-analysis	data.	The	effect	

size	was	highly	significant	(OR	=	0.88,	PGSMR	=	3.0×10-7).	

	

The	consequences	of	HDL-c	on	health	outcomes	are	controversial	40.	Observational	studies	

suggest	that	HDL-c	is	associated	with	a	reduced	risk	to	CAD	41	whereas	genetic	studies	show	that	
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the	effect	of	HDL-c	on	CAD	is	not	significant	conditional	on	LDL-c	and	TG	19,20.	We	found	that	

HDL-c	had	protective	effects	against	T2D	(OR	=	0.83),	hypertensive	disease	(OR	=	0.88),	CVD	(OR	

=	0.88)	and	Disease	Count	(OR	=	0.94)	in	the	community	data,	and	T2D	(OR	=	0.81)	and	CAD	(OR	

=	0.84)	in	the	case-control	data.	However,	none	of	these	effects	remained	significant	

conditioning	on	the	other	risk	factors,	suggesting	that	the	marginal	effects	of	HDL-c	on	diseases	

are	dependent	of	the	other	risk	factors	(see	below	for	details	of	the	results	from	conditional	

analyses).	The	effect	of	HDL-c	on	dyslipidemia	is	negative	(𝑏!" = −0.21	and	OR	=	0.81),	which	is	

obvious	because	one	of	the	diagnostic	criteria	for	dyslipidemia	is	an	abnormally	low	level	of	

HDL-c.	In	addition,	there	was	a	highly	significant	risk	effect	(OR	=	1.36)	of	HDL-c	on	age-related	

macular	degeneration	(AMD)	in	the	case-control	data.	The	associations	between	lipids	and	AMD	

are	controversial	and	results	from	different	observational	studies	are	inconsistent	42.	Our	results	

support	the	observations	that	increased	HDL-c	is	associated	with	increased	risk	of	AMD	42-44.	It	

should	also	be	noted	that	LDL-c	and	TG	also	appeared	to	be	associated	with	AMD	before	HEIDI-

outlier	filtering	but	the	effects	were	not	significant	after	HEIDI-outlier	filtering	(Supplementary	

Fig.	9),	implying	that	the	observed	association	between	LDL-c	(or	TG)	and	AMD	in	

epidemiological	studies	42	might	be	due	to	pleiotropy.	

	

Blood	pressure	and	common	diseases	

We	identified	significant	risk	effects	of	SBP	on	hypertensive	disease	(OR	=	4.38),	dyslipidemia	

(OR	=	1.50),	CVD	(OR	=	1.40)	and	Disease	Count	(OR	=	1.43)	in	the	community	data,	and	CAD	

(OR	=	1.73)	in	the	case-control	data.	The	results	for	SBP	and	DBP	were	highly	concordant	(Fig.	2	

and	Supplementary	Fig.	7c).	The	risk	effect	of	blood	pressure	on	CAD	is	known	to	be	causal	as	

confirmed	by	RCTs	45,46.	Note	that	the	power	of	the	GSMR	analysis	for	blood	pressure	was	likely	

to	be	limited	given	the	small	number	of	instruments	used	(m	<	30).	

	

Conditional	effects	of	risk	factors	on	diseases		

We	have	identified	(from	the	analyses	above)	45	significant	causal	associations	between	health	

risk	factors	and	diseases	(Fig.	2).	Since	the	risk	factors	are	not	independent,	we	further	sought	

to	estimate	the	effect	of	a	risk	factor	on	a	disease	conditioning	on	other	risk	factors,	which	helps	

to	infer	the	mediating	effects	between	risk	factors	18.	To	do	this,	we	first	performed	GSMR	

analysis	to	test	for	causal	associations	among	the	risk	factors.	We	detected	19	significant	

associations	among	the	7	risk	factors	at	a	FWER	of	0.05	(PGSMR	<	1.2×10–3)	(Supplementary	Fig.	

10).	For	example,	BMI	had	a	significant	negative	effect	on	HDL-c	(𝑏!" = −0.29),	and	positive	

effects	on	TG	(𝑏!" = 0.28)	and	DBP	(𝑏!" = 0.15).		

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/168674doi: bioRxiv preprint 

https://doi.org/10.1101/168674
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

We	developed	a	novel	approach	called	mtCOJO	(multi-trait-based	conditional	and	joint	analysis)	

to	perform	a	GWAS	analysis	for	a	trait	conditioning	on	other	traits	using	GWAS	summary	data	

(Online	Methods	and	Supplementary	Fig.	5).	We	then	re-ran	the	GSMR	analysis	using	GWAS	

summary	data	from	the	mtCOJO	analysis	(Online	Methods).	The	mtCOJO	analysis	requires	the	

estimates	of	rg	among	the	covariate	risk	factors,	rg	between	covariate	risk	factors	and	disease,	

SNP-based	heritability	(ℎ!"#! )	for	covariate	risk	factors	and	disease,	and	effect	sizes	of	covariate	

risk	factors	on	the	target	risk	factor	and	disease,	all	of	which	can	be	computed	from	summary	

data	using	the	univariate	47	and	bivariate	28	LDSC	approaches	(Online	Methods,	and	

Supplementary	Tables	8-10).	Given	the	similar	GSMR	results	between	BMI	and	WHRadjBMI	

and	between	SBP	and	DBP	(Supplementary	Fig.	7),	we	did	not	include	DBP	and	WHRadjBMI	in	

the	conditional	analysis	to	avoid	over-correction.		

	

Results	from	conditional	analyses	were	largely	consistent	with	those	from	unconditional	

analyses	(Fig.	5	and	Supplementary	Table	11),	suggesting	that	most	of	the	marginal	effects	are	

independent	of	the	other	risk	factors	analyzed	in	this	study.	Conditioning	on	the	other	risk	

factors,	SBP,	LDL-c	and	BMI	were	the	three	major	risk	factors	for	CAD,	BMI	was	still	a	large	risk	

factor	for	T2D	and	the	protective	effect	of	LDL-c	on	T2D	remained	largely	unchanged	

(Supplementary	Fig.	11).	The	effect	of	BMI	on	T2D	and	the	effect	of	TG	on	dyslipidemia	

decreased	substantially	in	the	conditional	GSMR	analyses	(Supplementary	Table	11),	

suggesting	that	these	effects	partly	depend	on	the	other	risk	factors.		

	

We	show	above	that	the	GSMR	analyses	identified	significant	protective	effects	of	HDL-c	against	

CVD,	CAD,	T2D	and	hypertension	(Supplementary	Fig.	12).	However,	all	the	effects	became	

non-significant	conditional	on	the	covariate	risk	factors	(i.e.	BMI,	LDL-c,	TG	and	SBP),	suggesting	

that	the	marginal	effects	of	HDL-c	on	the	diseases	were	likely	to	be	mediated	or	driven	by	the	

covariates	due	to	the	complex	bidirectional	causative	associations	between	HDL-c	and	the	other	

risk	factors	as	illustrated	in	Supplementary	Fig.	10.	It	is	difficult	to	distinguish	whether	the	

effects	of	HDL-c	on	the	diseases	are	mediated	or	driven	by	the	covariates	(Supplementary	Fig.	

13)	because	both	HDL-c	and	some	of	the	covariates	showed	a	significant	effect	on	the	diseases	in	

either	unconditional	or	conditional	GSMR	analysis	(Fig.	5).	Nevertheless,	there	might	be	an	

exception,	that	is,	the	association	between	HDL-c	on	AMD,	because	HDL-c	is	the	only	risk	that	

showed	a	significant	effect	on	AMD	(OR	=	1.36	with	PGSMR	=	5.9×10–16)	and	the	effect	size	

remained	highly	significant	conditioning	on	the	covariates	(conditional	OR	=	1.52	with	PGSMR	=	

4.4×10–22).	We	hypothesize	that	HDL-c	is	likely	to	be	a	direct	risk	factor	for	AMD	and	the	effect	

size	is	largely	independent	of	the	covariate	risk	factors	analyzed	in	this	study.	Note	that	the	

estimate	of	conditional	effect	was	slightly	larger	than	that	of	marginal	effect,	possibly	because	
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part	of	the	marginal	effect	of	HDL-c	on	AMD	was	masked	by	the	negative	effects	of	the	covariates	

on	HDL-c	(Supplementary	Fig.	10).	

	

Given	the	estimates	from	conditional	GSMR	analyses	(Fig.	5	and	Supplementary	Table	11),	we	

could	use	an	approximate	approach	to	calculate	the	aggregate	effect	of	multiple	risk	factors	on	a	

disease,	i.e.	log OR = [𝑥! log OR! ].	Here	is	a	hypothetical	example.	If	all	the	risk	factors	

increase	by	1	SD	(i.e.,	~4	kg/m2	for	BMI,	~1	mmol/L	for	LDL-c,	~1	mmol/L	for	TG	and	~19	

mmHg	for	SBP),	we	would	have	an	increased	risk	of	approximately	2.3-fold	to	T2D	(e1.03-0.21),	and	

4.3-fold	to	CAD	(e0.44+0.44+0.58).	

	

Effects	of	other	phenotypes	on	diseases	

Having	identified	a	number	of	causal	associations	between	7	modifiable	risk	factors	and	

common	diseases,	we	then	sought	to	test	whether	there	were	causative	associations	between	

other	phenotypes	and	diseases.	We	included	in	the	analysis	two	traits,	height	48	and	years	of	

schooling	49	(EduYears),	for	which	there	were	a	large	number	of	instruments	owing	to	the	large	

GWAS	sample	sizes.	We	selected	811	and	119	near-independent	GWS	SNPs	for	height	and	

EduYears,	respectively,	using	the	clumping	analysis	(Online	Methods).	The	threshold	PGSMR	after	

Bonferroni	correction	was	7.6×10–4	correcting	for	66	tests.	The	large	number	of	instruments	for	

height	gave	us	sufficient	power	to	detect	a	small	effect.	Results	showed	that	height	had	

significant	protective	effects	against	irritable	bowel	syndrome	(OR	=	0.82),	dyslipidemia	(OR	=	

0.84),	osteoporosis	(OR	=	0.85),	acute	reaction	to	stress	(OR	=	0.85),	hypertensive	disease	(OR	=	

0.86),	T2D	(OR	=	0.86)	and	asthma	(OR		=	0.90)	in	the	community	data,	and	CAD	(OR	=	0.77),	

T2D	(OR	=	0.84),	AD	(OR	=	0.85)	and	AMD	(OR=0.91)	in	the	case-control	data	(Fig.	6	and	

Supplementary	Table	12).	It	is	interesting	to	note	that	height	was	protective	against	AD	which	

was	not	affected	by	any	of	the	7	health	risk	factors	described	above.	Results	also	showed	that	

height	had	a	risk	effect	on	varicose	veins	(OR	=	1.38),	dermatomycosis	(OR	=	1.24),	peripheral	

vascular	disease	(PVD,	OR	=	1.15),	cancer	(OR	=	1.09),	osteoarthritis	(OR	=	1.09)	and	CVD	(OR	=	

1.07)	in	the	community	data,	and	rheumatoid	arthritis	(RA,	OR	=	1.29)	in	the	case-control	data.	

The	inconsistent	effects	of	height	on	CAD	(OR	=	0.77)	and	CVD	(OR	=	1.07)	implies	

heterogeneous	effects	of	height	on	vascular	outcomes	consistent	with	results	from	some	of	the	

observational	studies	50-52	and	a	previous	MR	study	53.	Height	was	the	only	risk	factor	that	

showed	a	significant	risk	effect	on	cancer	(PGSMR	=	3.1×10–7)	in	this	study,	in	line	with	the	results	

from	previous	observational	and	MR	studies	54,55.		

	

Our	results	also	showed	that	EduYears	had	protective	effects	against	almost	all	the	diseases	(Fig.	

6	and	Supplementary	Table	12).	It	showed	protective	effect	against	PVD	(OR	=	0.54),	
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hypertensive	diseases	(OR	=	0.62),	T2D	(OR	=	0.64),	dyslipidemia	(OR	=	0.71)	and	CVD	(OR	=	

0.73)	in	the	community	data,	and	RA	(OR	=	0.44),	AD	(OR	=	0.61)	and	CAD	(OR	=	0.63)	in	the	

case-control	data.	It	also	showed	significant	protective	effect	on	Disease	Count	(OR	=	0.74),	

suggesting	that	educational	attainment	is	protective	for	general	health	outcomes.	The	protective	

effect	of	EduYears	against	AD	is	consistent	with	the	observed	association	from	epidemiological	

studies	56.	On	the	other	hand,	however,	EduYears	showed	a	strong	risk	effect	on	autism	

spectrum	disorder	(ASD,	OR	=	2.30),	which	is	not	influenced	by	SNP	outliers	(Supplementary	

Fig.	14)	and	consistent	with	a	positive	estimate	of	genetic	correlation	(rg	=	0.28,	SE	=	0.038)	

from	a	bivariate	LD	score	regression	analysis.	Since	ASD	is	mostly	diagnosed	in	childhood	prior	

to	completion	of	education,	the	risk	effect	of	EduYears	on	ASD	is	probably	because	EduYears	is	a	

genetic	proxy	for	IQ.	While	ASD	is	associated	with	cognitive	deficits	in	executive	function,	the	

relationship	with	IQ	is	complex	57.	Our	results	are	consistent	with	those	from	a	Danish	study	of	

more	than	160,000	male	conscripts	58	which	found	that	brothers	of	those	with	ASD	had	a	

significantly	higher	than	average	IQ	score	(whereas	brothers	of	those	with	every	other	recorded	

psychiatric	disorder	had	significantly	lower	than	average	IQ	scores).	We	note	that	GSMR	analysis	

tests	the	effect	of	EduYears	on	ASD	rather	the	reverse	direction.	It	is	possible	that	the	effects	are	

bi-directional	and	opposite	(see	below	for	such	examples	from	the	reverse	GSMR	analysis),	

suggesting	a	U-shaped	relationship	between	ASD	and	cognition.	

	

Reverse	GSMR	analysis	

It	is	important	to	note	that	the	causative	associations	identified	from	the	GSMR	analyses	above	

are	unlikely	to	be	explained	by	reverse	causality	for	two	reasons.	First,	the	individuals	used	in	

GWAS	for	risk	factors	were	independent	of	the	individuals	used	in	GWAS	for	diseases	(the	only	

exception	was	that	the	blood	pressure	GWAS	data	set	was	part	of	the	community-based	disease	

GWAS	data).	Secondly,	if	the	associations	presented	above	are	driven	by	reverse	causality,	we	

would	expect	to	see	strong	association	signals	of	the	instruments	with	the	diseases,	which	is	not	

the	case	as	demonstrated	in	Supplementary	Fig.	15,	an	idea	not	too	dissimilar	to	the	

asymmetry	analysis	21	that	has	been	used	to	infer	causality	in	a	previous	study	16.	Nevertheless,	

it	is	interesting	to	investigate	the	changes	in	risk	factors	after	development	of	the	diseases.	To	do	

this,	we	selected	instruments	for	diseases	from	the	disease	GWAS	data	(note	that	the	

instruments	used	in	the	reverse-GSMR	analysis	were	distinct	from	those	used	in	the	forward-

GSMR	analysis).	We	performed	a	reverse-GSMR	analysis	of	the	risk	factors	and	diseases	for	

which	there	was	a	significant	association	in	the	forward-GSMR	analysis	above	(Supplementary	

Note).	We	identified	10	significant	reverse	effects	(i.e.	the	effect	of	disease	on	risk	factor)	in	the	

community	data	and	4	in	the	case-control	data	at	a	FWER	of	0.05	(Preverse-GSMR	<	1.0×10–3)	

(Supplementary	Table	13).	The	estimates	of	reverse	effects	were	very	small	compared	with	
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those	of	the	forward	effects.	Interestingly,	there	were	two	cases	where	the	estimated	forward	

and	reverse	effects	were	in	opposite	directions,	i.e.	𝑏!"(!"#→!"#) = 1.19	and	𝑏!"(!"#→!"#) =

−0.07 (𝑃 = 3.6×10!!");	𝑏!"(!"#→!"#$%&%!'(%)) = 0.32	and	𝑏!"(!"#$%&%!'(%)→!"#) = −0.03 (𝑃 =

2.0×10!!"),	meaning	that	although	BMI	is	risk	factor	for	the	two	diseases,	patients	who	have	

developed	the	diseases	tend	to	lose	weight.		

	

Discussion	

We	proposed	a	flexible	and	powerful	approach	that	performs	a	MR	analysis	with	multiple	near-

independent	instruments	(i.e.,	GWS	SNPs)	to	test	for	causal	association	between	a	risk	factor	(or	

phenotype)	with	a	disease	using	summary-level	GWAS	data	from	independent	studies.	We	have	

implemented	the	method	in	an	R	package	(URLs).	The	method	and	software	tool	are	general	and	

can	be	applied	more	broadly	to	test	for	causality	in	other	fields	such	as	behavioral	sciences.	We	

applied	the	method	to	summary	data	from	GWAS	of	very	large	sample	size,	and	identified	a	large	

number	of	causal	associations	between	risk	factors	and	common	diseases.	As	the	effect	sizes	of	

SNPs	on	risk	factor	and	disease	used	in	the	GSMR	analysis	were	from	independent	GWAS	data	

sets,	the	effect	of	risk	factor	on	disease	estimated	from	GSMR	was	very	unlikely	to	be	

confounded	by	environmental	factors.	The	result,	however,	could	be	biased	if	there	are	SNPs	

that	have	strong	pleiotropic	effects	on	both	risk	factor	and	disease.	For	example,	the	result	for	

LDL-c	and	Alzheimer’s	disease	could	have	been	biased	due	to	16	pleiotropic	SNPs	(Fig.	4).	There	

are	four	lines	of	evidence	that	our	results	are	not	driven	by	pleiotropy	between	risk	factor	and	

disease.	First,	as	demonstrated	in	the	example	above,	we	have	used	the	HEIDI-outlier	approach	

that	could	effectively	remove	instruments	with	strong	putative	pleiotropic	effects	(Figs.	3	and	

4).	After	the	HEIDI-outlier	filtering,	the	instruments	selected	for	risk	factors	did	not	show	strong	

associations	with	the	diseases	except	for	those	highly	related	diseases	and	traits	(e.g.	lipids	and	

dyslipidemia;	blood	pressures	and	hypertensive	disease)	(Supplementary	Fig.	15).	Note	that	

the	test-statistics	decreased	slightly	after	filtering	SNPs	by	HEIDI-outlier	(Supplementary	Fig.	

4b),	indicating	that	the	result	from	the	analysis	with	HEIDI-outlier	filtering	is	more	conservative.	

Second,	if	the	results	were	driven	by	pleiotropy,	we	would	expect	the	estimates	of	bxy	from	

reverse-GSMR	comparable	with	those	from	GSMR,	which	is	not	what	we	observed	

(Supplementary	Table	13).	Third,	the	estimates	of	bxy	were	highly	consistent	with	the	slopes	

from	Egger	regression	that	are	considered	to	be	free	of	confounding	from	pleiotropy	13	(MR-

Egger)	(Supplementary	Fig.	16).	Note	that	we	used	GSMR	for	the	main	analyses	because	in	

comparison	with	MR-Egger	and	inverse-variance	weighted	method	(MR-IVW,	equivalent	to	MR-

Egger	without	intercept)	12,	GSMR	gains	power	by	taking	the	sampling	variation	of	𝑏!" 	and	𝑏!"	

into	account	as	demonstrated	in	simulations	(Supplementary	Fig.	3),	and	GSMR	also	has	the	

advantage	of	accounting	for	LD	among	SNPs	not	removed	by	the	clumping	analysis,	a	property	
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that	is	important	specially	when	the	number	of	instruments	is	large.	Fourth,	the	intercepts	from	

MR-Egger	(a	significant	deviation	of	the	intercept	from	0	is	evidence	for	the	presence	of	

pleiotropy)	were	very	small	relative	to	the	slopes	(Supplementary	Fig.	17),	and	there	was	no	

inflation	in	the	test-statistics	(Supplementary	Figs.	17b	and	17c),	suggesting	that	the	degree	of	

pleiotropy	was	negligible	if	there	was	any.		

	

We	have	shown	above	that	our	results	were	not	driven	by	pleiotropy	and	reverse-causality.	In	

some	cases,	the	relationship	between	a	risk	factor	and	a	disease	could	be	a	mixture	of	multiple	

models.	For	example,	we	have	shown	above	that	BMI	had	a	risk	effect	on	T2D,	which	has	been	

confirmed	by	RCT	34,	that	T2D	had	a	significant	reverse	effect	on	BMI	and	effect	size	was	

negative,	and	that	there	was	a	SNP	(at	the	TCF7L2	gene	locus)	that	appeared	to	have	pleiotropic	

effects	on	T2D	and	BMI	(Fig.	3),	a	mixture	model	of	causality,	reverse	causality	and	pleiotropy.	

In	addition,	we	demonstrated	by	the	conditional	GSMR	analyses	that	the	mediation	effects	(i.e.	

the	effect	size	of	a	risk	factor	on	disease	mediated	or	driven	by	other	risk	factors)	are	apparently	

small	for	most	risk	factors	except	for	HDL-c	(Fig.	5	and	Supplementary	Table	11).		

	

Nevertheless,	there	are	a	few	several	caveats	in	interpreting	the	GSMR	results.	First,	if	the	

exposure	is	a	composite	trait	that	comprises	multiple	sub-phenotypes,	we	could	not	rule	out	the	

possibility	that	the	effect	of	exposure	on	disease	is	driven	by	one	of	the	sub-phenotypes.	For	

instance,	we	have	identified	from	the	GSMR	analysis	that	EduYears	had	effects	on	many	diseases	

(Fig.	6).	A	conservative	interpretation	is	that	these	are	the	effects	of	the	genetic	component	of	

EduYears	(e.g.	cognitive	ability	and	personality)	on	health	outcomes.	If	we	express	EduYears	=	g	

+	e	where	g	is	the	genetic	component	of	EduYears	and	e	is	the	residual	component	that	includes	

environmental	influence,	then	the	SNPs	identified	from	GWAS	for	EduYears	are	those	associated	

with	g	rather	than	e,	meaning	that	the	GSMR	analysis	for	EduYears	was	performed	on	g	rather	

than	e	and	thus	did	not	provide	any	evidence	whether	e	also	has	effects	on	diseases.	Therefore,	

strictly	speaking,	the	causative	associations	identified	in	this	study	are	not	definitive	and	need	to	

be	confirmed	by	follow-up	RCTs	in	the	future,	if	practical.	Second,	the	effect	of	a	risk	factor	on	

disease	can	be	non-linear	(e.g.	the	relationship	between	BMI	and	mortality	is	a	U-shaped	curve	3,	

suggesting	that	both	underweight	and	overweight	are	risk	factors	of	death)	whereas	we	used	a	

linear	approximation	to	estimate	the	effect	because	of	the	limited	information	that	we	had	

access	to	from	GWAS	summary	data.	Therefore,	the	bxy	estimates	need	to	be	interpreted	with	

cautions	at	extremes.	Third,	although	we	have	identified	a	large	number	of	associations,	we	

would	expect	that	associations	of	small	effect	size	would	be	missed	in	our	study	(e.g.	the	

instrument	for	SBP	was	based	on	only	28	SNPs).	The	power	can	be	improved	in	the	future	with	

GWAS	results	based	on	larger	sample	sizes.	Fourth,	our	analyses	ignored	age-specific	and	sex-
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specific	effects	because	of	the	lack	of	data	from	age-	and	sex-stratified	analyses.	Last	but	not	

least,	we	used	estimates	of	SNP	effects	estimated	from	population-based	studies	to	approximate	

those	in	case-control	studies	(e.g.	we	used	SNP	effects	from	the	GIANT	meta-analysis	to	

approximate	those	in	the	T2D	case-control	studies),	which	might	explain	the	difference	between	

the	GSMR	estimates	in	the	community	and	case-control	data	(Fig.	2).	

	

We	present	here	summary-data-based	MR	analysis	approaches	that	leverage	the	large	amount	

of	GWAS	data	from	independent	studies	to	detect	the	effect	of	a	risk	factor	on	diseases	and	

assess	the	effect	size	conditional	on	the	other	risk	factors.	All	the	data	used	in	this	study	were	

from	the	public	domain,	which	demonstrates	the	power	of	an	integrative	analysis	of	existing	

data	to	make	novel	discoveries.	The	causal	associations	identified	in	this	study	not	only	provided	

important	candidates	to	be	prioritized	in	RCTs	in	the	future	but	also	provided	fundamental	

knowledge	to	understand	the	biology	of	the	diseases.	Our	findings	of	the	effects	of	risk	factors	on	

common	diseases	could	have	a	significant	influence	on	medical	research,	pharmaceutical	

industry	and	public	health.		

	

Online	Methods	

The	GSMR	method	

Mendelian	randomization	is	a	method	that	uses	genetic	variants	as	instrumental	variables	to	test	

for	causative	association	between	an	exposure	and	an	outcome	9.	Let	z	be	a	genetic	variant	(e.g.	

SNP),	x	be	the	exposure	(e.g.	health	risk	factor)	and	y	be	the	outcome	(e.g.	disease).	If	z	is	

significantly	associated	with	x,	the	effect	of	x	on	y	can	be	estimated	using	a	two-step	least	

squares	(2SLS)	approach	59	

𝑏!" = 𝑏!"/𝑏!" 	with	var 𝑏!" = var(𝑦)(1 − 𝑅!"! )/ 𝑛var 𝑥 𝑅!"! 		

where	n	is	the	sample	size,	𝑅!"! 	is	the	variance	in	y	explained	by	x,	and	𝑅!"! 	is	the	variance	in	x	

explained	z.	This	analysis	requires	individual-level	data	so	that	the	statistical	power	could	be	

limited	if	bxy	is	small.	We	have	previously	proposed	an	approach	that	only	requires	summary-

level	data	to	estimate	bxy	so	that	the	power	can	be	greatly	improved	if	bzy	and	bzx	are	estimated	

from	independent	studies	of	large	sample	size	17,	i.e.,	𝑏!" = 𝑏!"/𝑏!" 	with	

𝑣𝑎𝑟(𝑏!") ≈
!!"!

!!"!
[!"# !!"

!!"!
+ !"# !!"

!!"!
].	We	called	this	approach	a	summary-data	based	Mendelian	

randomization	(SMR)	analysis	17.	We	have	also	shown	previously	that	a	SMR	analysis	using	a	

single	genetic	variant	is	unable	to	distinguish	between	causality	(the	effect	of	SNP	on	outcome	is	

mediated	by	exposure)	and	pleiotropy	(the	SNP	has	distinct	effects	on	exposure	and	outcome).	

Here,	we	extend	the	SMR	method	to	use	all	the	top	associated	SNPs	at	a	genome-wide	

significance	level	for	the	exposure	as	instrumental	variables	to	test	for	causality.	We	call	this	
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method	a	generalized	SMR	(GSMR)	analysis.	The	basic	idea	of	GSMR	is	that	if	x	is	causal	for	y,	any	

SNP	associated	with	x	will	have	an	effect	on	y,	and	the	expected	value	of	𝑏!"(!)	at	any	SNP	i	will	

be	identical	in	the	absence	of	pleiotropy.	Let	m	be	the	number	of	GWS	top	SNPs	associated	with	x	

after	clumping.	We	have	𝐛!" = { 𝑏!" ! , 𝑏!" ! ,⋯ , 𝑏!"(!)}	with	𝑏!"(!) = 𝑏!"(!)/𝑏!"(!),	and	

𝐛!"~𝑁(𝟏𝑏!" ,𝐕)	where	1	is	an	m×1	vector	of	ones	and	V	is	the	variance-covariance	matrix	of	

𝐛!" .	We	have	derived	previously	that	the	ij-th	element	of	V	is	

cov 𝑏!" ! , 𝑏!" ! ≈ !
!!" ! !!" !

var 𝑏!" ! var 𝑏!" ! + 𝑏!" ! 𝑏!" !
! !"# !!" ! !"# !!" !

!!" ! !!" !
−

!"# !!" ! !"# !!" !

!!"(!)
! !!"(!)

! ,	where	subscripts	i	and	j	represent	SNP	i	and	j,	respectively,	r	is	LD	

correlation	between	the	two	SNPs	(not	available	in	the	summary	data	but	can	be	estimated	from	

a	reference	sample	with	individual-level	genotypes).	The	i-th	diagonal	element	of	V	is	

var 𝑏!" ! = 𝑏!"(!)! [!"# !!" !
!!" !
! +

!"# !!" !

!!" !
! − !"#! !!" !

!!" !
! ].	Therefore,	we	can	estimate	bxy	from	all	

the	instruments	using	the	generalized	least	squares	approach	as	𝑏!" = (𝟏!𝐕!!𝟏)!!𝟏!𝐕!!𝐛!"	

with	var(𝑏!") = (𝟏!𝐕!!𝟏)!!.	The	statistical	significance	of	𝑏!"	can	be	tested	by	𝑇!"#$ =

𝑏!"! /var(𝑏!")	which	follows	a	χ2	distribution	with	1	degree	of	freedom.	

	

HEIDI-outlier:	an	approach	to	remove	pleiotropic	outliers	

We	have	shown	above	that	under	a	causal	model	the	expected	value	of	𝑏!"	estimated	at	any	of	

the	SNP	instruments	is	identical	in	the	absence	of	pleiotropy.	If	there	are	SNPs	that	have	

pleiotropic	effects	on	x	and	y,	𝑏!"	estimated	at	these	SNPs	will	deviate	from	the	expected	value	

under	a	causal	model,	and	hence	will	present	as	outliers.	We	previously	proposed	an	approach	

(heterogeneity	in	dependent	instrument,	HEIDI)	to	test	for	heterogeneity	in	bxy	estimated	at	

multiple	correlated	instruments	17.	Here,	we	extend	this	approach	to	detect	heterogeneity	in	bxy	

estimated	at	m	independent	instruments	(the	method	accounts	for	LD	if	there	are	remaining	LD	

not	removed	by	clumping)	and	then	to	remove	outliers.	The	basic	idea	is	to	test	where	there	is	a	

significant	difference	between	bxy	estimated	at	an	instrument	i	(i.e.	bxy(i))	and	bxy	estimated	at	the	

SNP	that	shows	the	strongest	association	with	exposure	in	the	third	quintile	of	the	𝑏!"	

distribution	(i.e.	bxy(top)).	If	we	define	di	=	bxy(i)	-	bxy(top),	we	will	have	var 𝑑! = var 𝑏!" ! −

𝑏!" !"# = var 𝑏!" ! + var 𝑏!" !"# − 2cov(𝑏!" ! , 𝑏!" !"# ),	where	cov 𝑏!" ! , 𝑏!" !"# =

!! !"#(!!" ! )!"#(!!" !"# )

!!"(!)!!"(!"#)
+ 𝑏!"(!)𝑏!"(!"#)[

!! !"# !!" ! !"# !!" !"#

!!" ! !!" !"#
−

!"# !!" ! !"# !!" !"#

!!" !
! !!" !"#

! ],	and	r	is	the	

LD	correlation	between	the	two	SNPs	(estimated	from	a	reference	sample	with	individual-level	
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genotypes).	We	can	test	the	deviation	of	each	SNP	from	the	causal	model	using	the	χ2-statistic	

𝑇 = 𝑑!!/var(𝑑!)	,	and	remove	the	SNPs	with	p-values	<	0.01.	We	call	this	approach	HEIDI-outlier.	

The	number	of	tests	involved	in	this	analysis	could	be	large	if	m	is	large.	To	retain	as	much	

power	as	possible	to	detect	heterogeneity,	we	do	not	apply	the	stringent	Bonferroni	correction	

but	use	a	modest	threshold	0.01.	Therefore,	the	‘false	positive	rate’	is	0.01,	meaning	that	even	if	

there	is	no	pleiotropic	outlier,	we	will	remove	~1%	of	the	instruments,	a	very	small	proportion	

that	is	very	unlikely	to	lead	a	substantial	decrease	of	power	in	the	subsequent	GSMR	analysis.	

We	demonstrated	by	simulation	that	the	difference	in	power	with	and	without	HEIDI-outlier	

filtering	was	subtle	under	a	causal	model	without	pleiotropy	(Supplementary	Fig.	4a).	The	test-

statistics	from	real	data	analyses	with	HEIDI-outlier	filtering	were	slightly	smaller	than	that	

without	HEIDI-outlier	filtering	(Supplementary	Fig.	4b),	suggesting	that	the	analysis	with	

HEIDI-outlier	filtering	is	more	conservative	in	terms	of	claiming	causality.	

	

Multi-trait-based	conditional	GWAS	analysis	using	summary	data	

To	test	whether	the	effect	of	a	risk	factor	(𝑥!)	on	a	disease	(𝑦)	depends	on	other	risk	factors	

(𝐱 = {𝑥!, 𝑥!,⋯ , 𝑥!}),	we	usually	perform	a	joint	analysis	based	on	the	model	below	

	𝑦 = 𝑥!𝑏! + 𝐱𝐛!" + 𝑒	

where	𝑏!	is	the	effect	of	𝑥!	on	y,	𝐛!" = {𝑏!!!}	is	a	t-length	vector	with	𝑏!!!	being	the	effect	of	a	

covariate	𝑥! 	on	y,	and	e	is	the	residual.	Such	an	analysis	is	equivalent	to	a	two-step	analysis	with	

the	first	step	to	adjust	both	𝑥!	and	𝑦	by	𝐱	and	the	second	step	to	estimate	the	effect	of	adjusted	

𝑥!	on	adjusted	𝑦.	We	therefore	can	estimate	the	effect	size	of	𝑥!	on	𝑦	accounting	for	x	by	a	GSMR	

analysis	using	SNP	effects	on	𝑥!	and	𝑦	conditioning	on	x.	

	

The	conditional	GWAS	analysis	usually	requires	individual-level	genotype	and	phenotype	data,	

which	are	not	always	available.	Here,	we	propose	a	method	to	perform	an	approximate	multi-

trait-based	conditional	GWAS	analysis	that	only	requires	summary	data.	Since	GWAS	summary	

data	for	risk	factors	and	disease	are	often	from	multiple	independent	studies,	the	analysis	has	to	

be	performed	conditioning	on	the	genetic	values	of	the	covariate	risk	factors	(denoted	by	

𝐠! = {𝑔!! ,𝑔!! ,⋯ ,𝑔!!}).	Following	the	method	that	uses	GWAS	summary	data	to	perform	a	

multi-SNP-based	conditional	and	joint	analysis	(GCTA-COJO)	60,	if	we	assume	each	covariate	has	

been	standardized	with	mean	0	and	variance	1,	the	SNP	effect	on	the	disease	accounting	for	𝐠! 	

can	be	expressed	as		

𝑏!"|𝐛!" = 𝑏!" − 𝐛!"! 𝐛!"	

where	𝑏!"	is	the	SNP	effect	on	the	disease	on	the	logit	scale	(i.e.	logOR),	𝐛!"	is	a	t-length	vector	

with	the	i-th	element	𝑏!!!	being	the	effect	of	𝑔!! 	on	the	disease	when	all	the	covariates	are	fitted	
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jointly	28,47,	and 𝐛!" 	is	a	t-length	vector	of	SNP	effects	on	x.	We	know	from	previous	studies	60	

that	the	joint	effects	of	𝐠! 	on	y	(𝐛!")	can	be	transformed	from	the	marginal	effects	(𝛃!"),	i.e.	

𝐛!" = 𝐃!
!
!𝐑!!!𝐃

!
!𝛃!"	

where	𝐑! = {𝑟!(!!,!!)}	is	a	𝑡×𝑡	matrix	with	𝑟!(!!,!!)	being	the	genetic	correlation	between	

covariates	i	and	j,	𝐃	is	a	𝑡×𝑡	diagonal	matrix	with	the	i-th	diagonal	element	ℎ!"#(!!)
! 	being	the	

SNP-based	heritability	for	the	i-th	covariate.	We	can	estimate	ℎ!"#(!!)
! 	and	𝑟!(!!,!!)	from	GWAS	

summary	data	using	the	LDSC	approaches	28,47,	and	estimate	𝛽!!!	by	𝛽!!! = 𝑟!(!!,!)
!"# ! !!"#(!)

!

!!"#(!!)
! 	

where	ℎ!"#(!!)
! 	and	ℎ!"#(!)! 	are	the	SNP-based	heritability	for	𝑥! 	and	y,	respectively,	and	𝑟!(!!,!)	is	

the	genetic	correlation	between	𝑥! 	and	y.	The	variance	of	y	on	the	logit	scale	can	be	estimated	

from	the	standard	errors	of	the	estimated	logOR,	i.e.	var 𝑦 ≈ var 𝑏!" 2𝑝 1 − 𝑝 𝑛	

(Supplementary	Note).	We	can	estimate	var 𝑦 	for	each	SNP	and	take	the	median	value	across	

all	SNPs.	

	

The	sampling	variance	of	𝑏!"|𝐛!"	is	approximately		

var 𝑏!" 𝐛!" = var 𝑏!" + 𝐛!"! 𝐕!"𝐛!" − 2𝐛!"! cov 𝑏!" ,𝐛!" 	

where	𝐕!" = var(𝐛!"),	and	cov 𝑏!" ,𝐛!" 	is	a	t-length	vector	with	the	i-th	element	cov 𝑏!" , 𝑏!!! 	

being	the	covariance	between	𝑏!"	and	𝑏!!! .	We	know	from	our	previous	study	17	that	

cov 𝑏!" , 𝑏!!! = 𝜌!!!𝑟!(!!,!) var 𝑏!!! var(𝑏!")	where	𝜌!!!	is	the	proportion	of	sample	overlap	

between	𝑥! 	and	y	and	𝑟!(!!,!)	is	the	phenotypic	correlation	between	𝑥! 	and	y.	In	special	cases,	if	y	

and	x	are	observed	in	the	same	sample,	var 𝑏!" 𝐛!" = var 𝑏!" − 𝐛!"! 𝐕!"𝐛!" ,	and	if	there	is	no	

sample	overlap	between	y	and	x,	var 𝑏!" 𝐛!" = var 𝑏!" + 𝐛!"! 𝐕!"𝐛!" .	In	practice,	if	there	is	a	

sample	overlap	between	y	and	x,	𝜌!!!𝑟!(!!,!)	can	be	approximated	by	the	intercept	of	a	bivariate	

LDSC	analysis	between		𝑥! 	and	𝑦	(ref	28).	𝐕!" 	is	the	sampling	variance-covariance	of	𝐛!" 	with	the	

ij-th	element	cov 𝑏!" ! , 𝑏!" ! = 𝜌!!!!𝑟!(!!,!!) var 𝑏!!! var(𝑏!!!)	where	𝜌!!!!𝑟!(!!,!!)	can	also	be	

approximated	by	the	intercept	of	a	bivariate	LDSC	analysis	between	𝑥! 	and	𝑥! .	The	multi-trait-

based	conditional	GWAS	test	can	be	performed	using	the	test-statistic	𝑇!"#$ = 𝑏!" 𝐛!"
!
/

var 𝑏!" 𝐛!" .	We	call	this	approach	mtCOJO	(multi-trait-based	conditional	and	joint	analysis),	

and	have	demonstrated	the	accuracy	of	the	approximation	by	simulation	(Supplementary	Fig.	

5).	

	

GWAS	data	for	risk	factors	and	diseases		
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We	used	9	risk	factors	as	exposures	for	the	GSMR	analysis.	These	include	7	health	risk	factors	i.e.	

body	mass	index	(BMI),	waist-to-hip	ratio	adjusted	by	BMI	(WHRadjBMI),	HDL	cholesterol	

(HDL-c),	LDL	cholesterol	(LDL-c),	triglyceride	(TG),	systolic	blood	pressure	(SBP)	and	diastolic	

blood	pressure	(DBP),	and	two	additional	phenotypes	(height	and	educational	attainment)	that	

had	a	large	number	of	instruments.	We	conducted	GWAS	analyses	for	SBP	and	DBP	using	data	

from	the	UK	Biobank	25	(UKB)	(see	below	for	details	of	the	UKB	data).	GWAS	summary	data	for	

the	other	traits	were	from	published	studies	(Supplementary	Table	2).	We	re-calculated	𝑏!" 	

from	z-statistics	using	the	method	described	in	Zhu	et	al.	17	so	that	𝑏!" 	could	be	interpreted	in	SD	

units.	We	then	applied	the	clumping	algorithm	in	PLINK	26	to	select	near-independent	GWS	SNPs	

for	each	trait	(r2	threshold	=	0.05,	window	size	=	1Mb	and	p-value	threshold	=	5×10–8)	using	the	

1000G-imputed	ARIC	data	32	(n	=	7,703	unrelated	individuals)	as	the	reference	for	LD	

estimation.	Since	the	statistical	power	of	the	GSMR	analysis	increases	as	the	number	of	

instruments,	we	performed	the	clumping	analysis	repeatedly	for	the	SNPs	in	common	between	

each	pair	of	risk	factor	and	disease	data	sets	to	maximize	the	number	of	instruments.	

	

GWAS	data	for	22	common	diseases	were	from	two	community-based	studies.	i.e.,	Genetic	

Epidemiology	Research	on	Adult	Health	and	Aging	27	(GERA)	and	UKB	25.	There	were	60,586	

individuals	of	European	ancestry	in	the	GERA	data.	We	cleaned	the	GERA	genotype	data	using	

the	standard	quality	control	(QC)	filters	(excluding	SNPs	with	missing	rate	≥	0.02,	Hardy-

Weinberg	equilibrium	test	p-value	≤	1×10–6	or	minor	allele	count	<	1,	and	removing	individuals	

with	missing	rate	≥	0.02),	and	imputed	the	genotype	data	to	the	1000G	using	IMPUTE2	61.	We	

used	GCTA	62	to	estimate	the	genetic	relationship	matrix	(GRM)	of	the	individuals	using	a	subset	

of	the	imputed	SNPs	(SNPs	with	minor	allele	frequency,	MAF	≥	0.01	and	imputation	INFO	score	≥	

0.3	and	in	common	with	those	in	the	HapMap	phase	3,	HM3),	and	computed	the	first	20	

principal	components	(PCs)	from	the	GRM.	We	removed	one	of	each	pair	of	individuals	with	

estimated	genetic	relatedness	≥	0.05	and	retained	53,991	unrelated	individuals	for	analysis.	

Individual-level	ICD-9	codes	were	not	available	in	dbGaP	but	had	been	classified	into	22	

common	diseases	(Supplementary	Table	3).	The	disease	status	was	coded	as	0	(unaffected)	

and	1	(affected).	We	added	an	additional	trait	‘Disease	Count’	(a	count	of	the	number	of	diseases	

affecting	each	individual)	as	a	crude	measure	of	general	health	status	of	each	individual.	We	then	

performed	a	genome-wide	association	analysis	for	each	of	the	23	phenotypes	with	age,	gender	

and	the	first	20	PCs	fitted	as	covariates.		

	

Genotype	data	from	UKB	had	been	cleaned	and	imputed	to	a	combined	reference	panel	of	1000G	

and	UK10K	(see	UKB	documentation	for	details	about	QC	and	imputation).	We	included	in	the	

analysis	only	the	individuals	of	European	ancestry.	Similarly	as	above,	we	computed	the	GRM	
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and	the	first	20	PCs	based	on	the	HM3	SNPs	with	MAF	≥	0.01	and	imputation	INFO	score	≥	0.3,	

and	retained	108,039	unrelated	individuals	(GRM	threshold	of	0.05)	for	analysis.	Individual-

level	ICD-10	codes	were	available	in	the	UKB	data.	To	match	the	diseases	in	GERA,	we	classified	

the	phenotypes	into	22	common	diseases	by	projecting	the	ICD-10	codes	to	the	classifications	of	

ICD-9	codes	in	GERA	taking	into	account	self-reported	disease	status	(Supplementary	Table	3).	

We	also	added	the	trait	‘Disease	Count’.	We	then	conducted	genome-wide	association	analyses	

for	the	23	phenotypes	using	the	same	approach	as	above.	

	

URLs	

GSMR	R	package:	http://cnsgenomics.com/software/smr/gsmr.html	

SMR:	http://cnsgenomics.com/software/smr	

PLINK:	http://pngu.mgh.harvard.edu/~purcell/plink/	

PLINK2:	https://www.cog-genomics.org/plink2	

GCTA:	http://cnsgenomics.com/software/gcta	

LDSC:	https://github.com/bulik/ldsc	
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Figure	1	Leveraging	multiple	independent	genetic	instruments	(z)	to	test	for	causality.	Shown	in	

panel	(a)	is	a	schematic	example	that	if	an	exposure	(x)	has	an	effect	on	an	outcome	(y),	any	

instruments	(SNPs)	causally	associated	with	x	will	have	an	effect	on	y,	and	the	effect	of	x	on	y	

(bxy)	at	any	of	the	SNPs	is	expected	to	be	identical.	This	is	further	illustrated	in	a	toy	example	in	

panel	(b)	that	under	a	causal	model,	for	the	SNPs	associated	with	x,	the	estimated	effect	of	z	on	y	

(𝑏!")	should	be	linearly	proportional	to	the	estimated	effect	of	z	on	x	(𝑏!")	and	the	ratio	between	

the	two	is	an	estimate	of	the	mediation	effect	on	x	on	y,	i.e.	𝑏!" = 𝑏!"/𝑏!" .	

B A 

Exposure (x) Outcome (y) 

SNP 1 (z1) 

SNP 2 (z2) 

… 

SNP m (zm) 

bxy 

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−0
.0

3
−0

.0
2

−0
.0

1
0.

00
0.

01
0.

02
0.

03

Exposure (b̂zx)

O
ut

co
m

e 
(b̂

zy
)

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/168674doi: bioRxiv preprint 

https://doi.org/10.1101/168674
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

	

Figure	2	The	association	between	genetic	instruments	that	predict	7	modifiable	risk	factors	and	

selected	common	diseases.	Shown	are	the	results	from	GSMR	analyses	with	disease	data	(a)	

from	a	meta-analysis	of	two	community-based	studies	(GERA	and	UKB)	and	(b)	from	published	

independent	case-control	studies	(Supplementary	Table	3).	Colors	represent	the	effect	sizes	

(as	measured	by	odds	ratios,	ORs)	of	risk	factors	on	diseases,	red	for	risk	effects	and	blue	for	

protective	effects.	The	significant	effects	after	correcting	for	multiple	testing	(PGSMR	<	2.2×10–4)	

are	labeled	with	ORs	(p-values).	The	nominally	significant	effects	(PGSMR	<	0.05)	are	labeled	with	

“*”.
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Figure	3	GSMR	analysis	to	test	for	the	effect	of	BMI	on	T2D	with	and	without	filtering	the	

pleiotropic	outliers.	Shown	in	panels	(a)	and	(b)	are	the	plots	of	effect	sizes	and	association	p-

values	of	all	the	genetic	instruments	from	GWAS	for	BMI	vs.	those	for	T2D.	Shown	in	panel	(c)	is	

the	plot	of	bxy	vs.	GWAS	p-value	of	BMI	at	each	genetic	variant.	Shown	in	panels	(d),	(e)	and	(f)	

are	the	plots	for	the	instruments	after	the	pleiotropic	outliers	being	removed	by	the	HEIDI-

outlier	approach	(see	Online	Methods	for	details	of	the	HEIDI-outlier	approach).	The	dashed	

lines	in	panels	(b)	and	(e)	represent	the	GWAS	threshold	p-value	of	5×10–8.	The	coordinates	in	

panels	(b),	(c),	(e)	and	(f)	are	truncated	at	50	for	better	graphic	presentation.
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Figure	4	GSMR	analysis	to	test	for	the	effect	of	LDL-c	on	Alzheimer’s	disease	(AD)	with	

and	without	pleiotropic	outliers.	Shown	in	panels	(a)	and	(b)	are	the	plots	of	effect	sizes	

and	association	p-values	of	the	original	set	of	instruments	from	GWAS	for	LDL-c	vs.	

those	for	AD.	Shown	in	panel	(c)	is	the	plot	of	bxy	vs.	GWAS	p-value	of	LDL-c	at	each	

genetic	variant.	Shown	in	panels	(d),	(e)	and	(f)	are	the	plots	for	the	instruments	after	

the	pleiotropic	outliers	being	removed	by	the	HEIDI-outlier	approach	(see	Online	

Methods	for	details	of	the	HEIDI-outlier	approach).	The	dashed	lines	in	panels	(b)	and	

(e)	represent	the	GWAS	threshold	p-value	of	5×10–8.	The	coordinates	in	panels	(b),	(c),	

(e)	and	(f)	are	truncated	at	50	for	better	graphic	presentation.
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Figure	5	GSMR	vs.	conditional	GSMR.	Shown	are	the	results	from	the	GSMR	analyses	

compared	with	those	from	the	conditional	GSMR	analyses.	In	the	conditional	GSMR	

analysis,	the	effect	size	of	each	risk	factor	on	disease	was	estimated	conditioning	on	the	

other	risk	factors	(see	Online	Methods	for	details	of	the	conditional	method).	

“Community”:	disease	GWAS	data	from	a	meta-analysis	of	the	two	community-based	

studies.	“Case-control”:	disease	GWAS	data	from	independent	published	case-control	

studies.	In	gray	are	the	associations	that	do	not	pass	the	p-value	threshold	2.16×10–4	in	

the	conditional	analysis.
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Figure	6	Effects	of	height	and	educational	attainment	on	common	diseases.	Shown	are	the	

results	from	GSMR	analyses	with	disease	data	(a)	from	a	meta-analysis	of	the	GERA	and	UKB	

studies	and	(b)	from	published	independent	case-control	studies.	Colors	represent	the	effect	

sizes	(as	measured	by	odds	ratios,	ORs)	of	risk	factors	on	diseases,	red	for	risk	effects	and	blue	

for	protective	effects.	The	significant	effects	after	correcting	for	multiple	testing	(PGSMR	<	7.6×10–

4)	are	labeled	with	ORs	(p-values).	The	nominally	significant	effects	(PGSMR	<	0.05)	are	labeled	

with	“*”.	
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