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 25	

 26	

SUMMARY PARAGRAPH 27	

 28	

Extracting high-degree interactions and dependences between variables (pairs, 29	

triplets, … k-tuples) is a challenge posed by all omics approaches1, 2. Here we used 30	

multivariate mutual information (Ik) analysis3 on single-cell retro-transcription 31	

quantitative PCR (sc-RTqPCR) data obtained from midbrain neurons to estimate the 32	

k-dimensional topology of their gene expression profiles. 41 mRNAs were quantified 33	

and statistical dependences in gene expression levels could be fully described for 21 34	

genes: Ik analysis revealed a complex combinatorial structure including modules of 35	

pairs, triplets (up to 6-tuples) sharing strong positive, negative or zero Ik, 36	

corresponding to co-varying, clustering and independent sets of genes, respectively. 37	

Therefore, Ik analysis simultaneously identified heterogeneity (negative Ik) of the cell 38	

population under study and regulatory principles conserved across the population 39	

(homogeneity, positive Ik). Moreover, maximum information paths enabled to 40	

determine the size and stability of such transcriptional modules. Ik analysis represents 41	

a new topological and statistical method of data analysis. 42	

 43	

MAIN TEXT 44	

 45	

The recent evolution of single-cell transcriptomics has created much hope for 46	

our understanding of cell identity, cell development and gene regulation4. Using 47	

quantitative PCR or RNAseq, tens to thousands of mRNAs can be quantified from a 48	

single cell, generating particularly high-dimensional datasets (gene expression 49	
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profiles). Combined with clustering and dimensionality-reduction techniques, these 50	

approaches have been successfully used to identify and separate cell types in various 51	

tissues, including the brain5. Single-cell transcriptomics has also be used to shed light 52	

on the gene regulatory principles underlying the specific phenotype of different cell 53	

types6, 7, frequently relying on pairwise analysis of gene expression levels to infer 54	

gene regulatory networks6, 8. However, the modular architecture of gene networks 55	

suggests that extracting higher-degree interactions between gene expression profiles 56	

may be necessary to understand gene regulation, and various approaches based on 57	

probability/information theory8-10 or homology11 have been proposed to tackle this 58	

issue. 59	

Several transcriptomics studies have been performed on midbrain 60	

dopaminergic (DA) neurons5, 12: consistent with the heterogeneous vulnerability of 61	

this neuronal population in Parkinson’s disease13, qPCR and RNAseq performed at 62	

the single-cell level have revealed a significant diversity in gene expression profiles5, 63	

12. In parallel, much work has also been performed to understand the gene regulatory 64	

networks and identify the regulatory factors underlying the emergence of the DA 65	

phenotype14, with the therapeutical intent of producing functional DA neurons from 66	

induced pluripotent stem cells15. 67	

Here we implement multivariate mutual information (Ik) analysis on 68	

transcriptomics data from single midbrain DA neurons to simultaneously provide new 69	

insights about the molecular heterogeneity of this neuronal population and about the 70	

gene regulatory principles underlying its specific phenotype. 71	

We performed sc-RTqPCR on acutely dissociated identified midbrain neurons 72	

using the microfluidic BioMark™ HD Fluidigm platform. TH-GFP mice were used to 73	

preferentially target putative DA neurons (identified by the presence of tyrosine 74	
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hydroxylase, TH-positive neurons, Supplementary Figure 1a). Electrophysiological 75	

recordings confirmed that acutely dissociated GFP and non-GFP neurons displayed 76	

the electrical properties expected for DA and non-dopaminergic (nDA) midbrain 77	

neurons16, 17, respectively (Supplementary Figure 2). However, since TH presence 78	

alone has been shown to not be a reliable marker18, DA and nDA phenotypes were 79	

refined based on the combined expression of Th/TH and Slc6a3/DAT (DA 80	

transporter) or lack thereof, allowing neurons collected from wild-type animals to be 81	

included (Supplementary Figure 1b). Based on Th-Slc6a3 expression, 111 neurons 82	

were classified as DA and 37 as nDA. 83	

We quantified the levels of expression of 41 genes (Figure 1a), including 19 84	

related to ion channel function, 9 related to neurotransmitter definition, 5 related to 85	

neuronal activation and calcium binding, and 3 related to neuronal structure 86	

(Supplementary Figure 1c). As expected, DA metabolism and signaling-related 87	

genes such as Th/TH, Slc6a3/DAT, Slc18a2/VMAT2, Drd2/D2R were highly 88	

expressed in DA neurons only, while expression levels of Slc17a6/VGLUT2, 89	

Gad1/GAD67 and Gad2/GAD65 suggested that collected nDA neurons used mainly 90	

glutamate or GABA as neurotransmitters (Figure 1a-b, Supplementary Figure 3). 91	

While some ion channels showed similar expression profiles in DA and nDA neurons 92	

(Cacna1c/Cav1.2, Cacna1g/Cav3.1, Hcn2/HCN2, Hcn4/HCN4, Kcna2/Kv1.2, 93	

Scn8a/Nav1.6), others (Kcnb1/Kv2.1, Kcnd3_2/Kv4.3, Kcnj6/GIRK2, Kcnn3/SK3, 94	

Scn2a1/Nav1.2) displayed higher levels of expression in DA neurons (Figure 1b, 95	

Supplementary Figure 3). In addition, although a few genes displayed a fairly stable 96	

level of expression across DA neurons (Th/TH, Slc6a3/DAT, Kcnd3_2/Kv4.3, 97	

Scn2a1/Nav1.2), most genes displayed significant variability in their expression levels 98	
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(including dropout events) across cells (Figure 1b, Supplementary Figure 3), 99	

consistent with the already documented heterogeneity of midbrain DA neurons5, 13, 14. 100	

As a first step in deciphering higher-degree relationships, we performed 101	

Pearson correlation analysis on the 33 most relevant genes (Figure 1c-d, 102	

Supplementary Figure 4). The patterns of correlations were clearly different for DA 103	

and nDA neurons, with more widespread correlations in DA neurons, as can be seen 104	

in the correlation maps (Figure 1c). This is only partly surprising as most of the genes 105	

were chosen because of their known expression in DA neurons, but it nonetheless 106	

demonstrates that specific signatures of second-degree linear relationships participate 107	

in the identity of the two populations under study (Figure 1d). While most of the cell 108	

type-specific correlations involved differentially expressed mRNAs, some similarly 109	

expressed genes displayed a stronger correlation in a specific population: 110	

Kcnj6/GIRK2 vs Scn2a1/Nav1.2 for instance in DA neurons, Scn2a1/Nav1.2 vs 111	

Slc17a6/VGLUT2 or Hcn4/HCN4 vs Nefm/NEF3 in nDA neurons (Figure 1d, 112	

Supplementary Figure 4). Several correlations were also present in both cell types 113	

(Kcna2/Kv1.2 vs Nefm/NEF3, Hcn2/HCN2 vs Nefm/NEF3). Interestingly, some of the 114	

strongest correlations found in DA neurons linked the group of genes involved in DA 115	

metabolism and signaling (Th/TH, Slc6a3/DAT, Slc18a2/VMAT2, Drd2/D2R) to a 116	

group of ion channel genes (Kcnj6/GIRK2, Kcnd3_2/Kv4.3, Kcnn3/SK3, 117	

Scn2a1/Nav1.2) (Figure 1d, Supplementary Figure 4), suggesting the existence of a 118	

large module of co-regulated genes. However, the size of such modules might only be 119	

accurately defined by methods capturing high-dimensional (beyond pairs) statistical 120	

dependences. 121	

Various information theoretical approaches have been proposed to define gene 122	

regulatory modules based on the exploration of higher-degree relationships, notably 123	
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three-way interactions8-10 (see also Supplementary methods). Here we present a 124	

method that combines in a single framework statistical and topological analysis of 125	

gene expression for systematic identification and quantification of such regulatory 126	

modules, based on the information cohomology developed by Baudot and 127	

Bennequin3. In this framework, joint-entropy (Hk) and multivariate mutual 128	

information (Ik) quantify the variability/randomness and the statistical dependences of 129	

the variables, respectively, while simultaneoustly estimating the topology of the 130	

dataset. We restricted the general setting defining information structures from the 131	

whole lattice of partitions of joint random variables to the simplicial sublattice of “set 132	

of subsets”, thus computationally allowing an exhaustive estimation of Hk and Ik at all 133	

degrees k and for every k-tuple (for k	≤ n=21, k being the degree/number of genes 134	

analyzed as a k-tuple, n being the total number of genes analyzed; Figure 2a, 135	

Supplementary methods). Information values obtained with this analysis provide a 136	

ranking of the lattices at each degree k (Supplementary methods). The Hk and Ik 137	

analysis therefore estimate the variability and statistical dependences at all degrees k, 138	

from 1 to n. Ik is defined as follows3, 19, 20: 139	

 140	

giving, for k=3, 141	

 142	

 143	

, where XI denotes the joint-variable corresponding to the subset I. Ik is equivalent to 144	

entropy for k = 1, has upper and lower limit values of log2(N) and –log2(N) bits (N 145	

being the number of bins or graining used to discretize the data; N=8 in the present 146	

case, Supplementary Figure 5), is always non-negative for k < 3, and can take 147	

negative values for k ≥ 3 19-21 (Supplementary methods). As an example, the 148	
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maxima and minima of I3 for 3 binary variables are depicted in Supplementary 149	

Figure 6: while maxima (positive Ik) correspond to a fully redundant behavior (x1, x2 150	

and x3 are informationally equivalent), the minima (negative Ik) correspond to cases 151	

where variables are pairwise independent (I2=0) but strictly tripletwise dependent 152	

(emergent behavior). In other terms, positive Ik captures co-variations and usual linear 153	

correlations as a subcase, zeros of Ik capture statistical independence, and negativity 154	

captures more complex relationships that cannot be detected on lower dimensional 155	

projections, such as degree-specific clustering patterns (also called synergy or 156	

frustation)9, 21, 22 (Supplementary methods). 157	

We applied Ik analysis to the gene expression levels measured in DA and nDA 158	

neurons for the 21 most relevant genes (Figure 2). The variability in expression of 159	

each gene Xi is quantified by the entropy H1(Xi)=I1(Xi) (Supplementary methods). 160	

Consistent with the expression profiles depicted in Figure 1b, the smallest and largest 161	

values of I1 were found for nDA neurons (Figure 2b,d). The genes sharing the 162	

strongest I2 values (Figure 2b) significantly overlapped with those sharing strong 163	

Pearson correlations (Figure 1d), in particular for DA neurons (Th/TH, Slc6a3/DAT, 164	

Slc18a2/VMAT2, Drd2/D2R, Kcnj6/GIRK2, Kcnd3_2/Kv4.3, Kcnn3/SK3, 165	

Scn2a1/Nav1.2). Nevertheless the precise patterns of I2-sharing genes were different, 166	

due to the fact that Ik also identifies non-linear dependences23. Interestingly, for k ≥ 3, 167	

the modules of genes sharing the strongest positive I3 and I4 displayed dense overlap 168	

with those sharing the strongest I2, while the groups of genes sharing the strongest 169	

negative I3 and I4 (Cacna1g/Cav3.1, Calb1/CB, Drd2/D2R, Kcna2/Kv1.2, 170	

Kcnb1/Kv2.1, Kcnj11/Kir6.2, Nefm/NEF3, Slc17a6/VGLUT2) had very little overlap 171	

with the strongly correlated (see Figure 1d) or strong I2-sharing genes (Figure 2b), 172	

especially for DA neurons. Ik was also calculated for superior degrees (5 to 21), and 173	
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examples of the strongest positive and negative information modules are shown for I5 174	

and I10 in Figure 2b. Consistent with the theoretical examples presented in 175	

Supplementary Figure 6, strong negative I4 was associated with clustering patterns 176	

of expression while strong positive I4 corresponded to co-varying patterns of 177	

expression (Figure 2c). In general, the distribution of Ik at each degree was found to 178	

be very different between DA and nDA neurons, with a predominance of 179	

independence (0 values) and strong negative values in nDA compared to DA neurons 180	

(Figure 2d). 181	

In order to provide an exhaustive picture of the statistical dependences in both 182	

populations, we determined the information landscapes corresponding to the 183	

distribution of Ik values as a function of degree k (Figure 3a, Supplementary Figure 184	

7). To help the reader understand this representation, two theoretical examples are 185	

given in Supplementary Figure 7b: for randomly equidistributed (independent) 186	

variables, I1 = log2(N), and I2,…,n = 0; while for strictly redundant variables (e.g. 187	

correlation of 1), I1,…,n = log2(N). The information landscapes of DA and nDA 188	

neurons were found to be very different from these two theoretical examples and from 189	

each other: in particular, the landscape of nDA neurons mainly comprised strong 190	

negative and 0 Ik values for k ≥ 3, suggesting that most k-tuples of genes are k-191	

independent in these neurons. The prevalence of k-independence was found to be 192	

even stronger when the information landscape was computed for the 20 “less-193	

relevant” genes in DA and nDA neurons (Supplementary Figure 7c). In contrast, the 194	

information landscape of DA neurons showed a predominance of negative Ik for k < 5 195	

and predominance of positive Ik for k ≥ 5 (Figure 3a). Therefore, this analysis 196	

revealed a complex combinatorial structure of gene expression profiles in DA and 197	

nDA neurons, mixing independent, synergistic and redundant k-tuples of genes for k ≥ 198	
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3. In analogy with mean-field approximations, we also calculated the mean 199	

information for all degrees (Figure 3a, Supplementary methods). Due to the rather 200	

small number of cells analyzed and the inherent undersampling issue, the information 201	

landscapes computed here (especially the mean landscapes) should be intepreted with 202	

caution for k > 6 (DA) and k > 5 (nDA), even though maximal positive and negative 203	

Ik values are less sensitive to this limit (see Supplementary methods). 204	

The Ik analysis presented in Figure 2 revealed that modules of strong positive 205	

or negative Ik could persist across degrees, but did not allow us to estimate the size of 206	

these gene modules. In order to quantify the stability of information modules and 207	

determine their size, we estimated the information flow over paths in the lattice of 208	

random variables in DA neurons (Figure 3b-c, Supplementary Figure 8). For a 209	

given information path, the first derivative with respect to the degree k is given by the 210	

conditional mutual information with a minus sign (Supplementary methods): 211	

 212	

 213	

 214	

, where ^ denotes the omission of Xi (the conditioning variable). Xi.Ik-1 stays positive 215	

(negative slope) if adding a variable Xi to the module increases the information while 216	

a negative Xi.Ik-1 (positive slope) indicates that adding a variable increases the 217	

uncertainty about the module. Therefore, reaching the first minima Xi.Ik-1 = 0 218	

indicates that adding a variable stops being informationally relevant, and allows to 219	

define the degree for which information modules become unstable. In other words, 220	

the degree of the first minima gives a definitive assessment of the size of a gene 221	

module. 222	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/168740doi: bioRxiv preprint 

https://doi.org/10.1101/168740


	 10	

We characterized the paths that maximized mutual information (most 223	

informative modules) or that minimize mutual information (sequence of variables that 224	

segregate the most the whole set of variables), and that stay stable (Supplementary 225	

methods). Figure 3b presents the 4 longest paths of maximal and minimal 226	

information, which correspond to stable modules of degree 6 and 4, respectively. We 227	

then built the scaffold composed of the 4 maximal and minimal information paths 228	

(Figure 3c). All the genes involved in defining DA metabolism and signaling were 229	

found in the scaffold of maximal paths (Th/TH, Slc6a3/DAT, Slc18a2/VMAT2, 230	

Drd2/D2R), together with three ion channel genes (Kcnj6/GIRK2, Kcnd3_2/Kv4.3, 231	

Kcnn3/SK3), in keeping with the pairs, triplets and quadruplets of positive Ik-sharing 232	

genes identified in Figure 2b. This finding brings new insights to our understanding 233	

of gene regulation in DA neurons. As shown in Figure 2c, the genes sharing strong 234	

positive Ik have co-varying profiles of expression, which is usually considered to 235	

indicate a co-regulation of expression4, 8. Therefore the positive information module 236	

determined using conditional mutual information (Figure 3c) should correspond to a 237	

group of genes co-targeted by the same regulatory factors. Several studies have 238	

demonstrated that the expression levels of Th/TH, Slc6a3/DAT, Slc18a2/VMAT2 and 239	

Drd2/D2R are indeed under the control of the same pair of transcription factors 240	

Nurr1/Pitx3 24 (Supplementary Figure 9). Our results are consistent with these 241	

observations, but moreover suggest that these four genes might be part of a larger 242	

transcriptional module (≥ 7 genes) that also includes genes defining the electrical 243	

phenotype of DA neurons (Kcnj6/GIRK2, Kcnd3_2/Kv4.3, Kcnn3/SK3). This also 244	

means that defining the neurotransmitter identity and the electrical phenotype of these 245	

neurons might be the product of a single transcriptional program, involving at least 246	

the Nurr1 and Pitx3 transcription factors (Supplementary Figure 9). Alternatively, 247	
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this coupling between ion channel and DA metabolism genes might also reflect the 248	

documented activity-dependent regulation of DA-specific genes such as Th/TH, 249	

which has been shown to be sensitive to blockade of sodium (including Nav1.2) and 250	

potassium (including SK3) channel activity25. 251	

On the other hand, the minimal information paths identified the 8 genes that 252	

best segregate midbrain DA neurons (Figure 3c), supporting the already documented 253	

diversity of this neuronal population12-14. The presence of Abcc8/SUR1, 254	

Cacna1g/Cav3.1, Calb1/CB, Gad2/GAD65, Kcnj11/Kir6.2 and Drd2/D2R is 255	

perfectly consistent with several studies linking the expression of these genes to 256	

specific subpopulations of SNc and VTA neurons 13, 26-29 (Supplementary Figure 9). 257	

Importantly, our analysis reveals that other genes, in particular the potassium channels 258	

Kcna2/Kv1.2 and Kcnb1/Kv2.1 might be used as markers of midbrain DA neuron 259	

subpopulations. 260	

In summary, we showed that the topology of a high-dimensional dataset 261	

defined by the independence, and the simple (redundant) and complex (synergistic) 262	

statistical dependences at all degrees can be estimated using multivariate mutual 263	

information analysis (Ik). Applied to sc-RTqPCR data, Ik analysis allowed us to 264	

simultaneously determine the size and identity of gene regulatory modules conserved 265	

across a cell population and the size and identity of gene modules underlying cell 266	

diversity (Supplementary Figure 9). Therefore, the specific complex combinatorial 267	

structure of genetic interactions (positive, negative, null) underlying the stability and 268	

diversity of a given cell type is described at once by the presented method. While 269	

applied here to transcriptomics data, Ik analysis could be applied to any type of high-270	

dimensional data, within the limit of computational tractability. 271	

 272	
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 347	

 348	

MATERIAL AND METHODS 349	

 350	

Acute midbrain slice preparation. Acute slices were prepared from P14–P23 TH-351	

GFP mice (transgenic mice expressing GFP under the control of the tyrosine 352	

hydroxylase promoter) 30 of either sex. All experiments were performed according to 353	

the European and institutional guidelines for the care and use of laboratory animals 354	

(Council Directive 86/609/EEC and French National Research Council). Mice were 355	
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anesthetized with isoflurane (Piramidal Healthcare Uk) and decapitated. The brain 356	

was immersed briefly in oxygenated ice-cold low calcium artificial cerebrospinal 357	

fluid (aCSF) containing the following (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 358	

NaH2PO4, 0.5 CaCl2, 4 MgCl2, 25 glucose, pH 7.4, oxygenated with 95% O2 / 5% 359	

CO2 gas. The cortices were removed and then coronal midbrain slices (250 µm) were 360	

cut on a vibratome (Leica VT 1200S) in oxygenated ice-cold low calcium aCSF. 361	

Following 30–45 min incubation in 32°C oxygenated low calcium aCSF, the slices 362	

were incubated for at least 30 min in oxygenated aCSF (125 NaCl, 25 NaHCO3, 2.5 363	

KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgCl2 and 25 glucose, pH 7.4, oxygenated with 95% 364	

O2 / 5% CO2 gas) at room temperature prior to electrophysiological recordings. 365	

Picrotoxin (100 µM, Sigma Aldrich, St. Louis, MO) and Kynurenate (2 mM, Sigma 366	

Aldrich) were bath-applied via continuous perfusion in aCSF to block inhibitory and 367	

excitatory synaptic activity, respectively.  368	

Cell dissociation and collection. Midbrain DA neurons were acutely dissociated 369	

following a modified version of the methods described in references 31 and 32. 370	

Regions containing the SNc, part of the VTA and SNr were excised from each 371	

coronal midbrain slice. The tissue was submitted to papain digestion (2.5 mg/ml and 372	

5mM L-cysteine) for 15-20 min in oxygenated low calcium HEPES aCSF (containing 373	

10 mM HEPES, pH adjusted to 7.4 with NaOH) at 35-37º C and subsequently rinsed 374	

in low-calcium HEPES aCSF supplemented with trypsin inhibitor and bovine serum 375	

albumin (1mg/ml). Single cells were isolated by gentle trituration with fire-polished 376	

Pasteur pipettes and plated on poly-L-Lysine-coated coverslips. Dissociated cells 377	

were maintained in culture in low calcium HEPES aCSF at 37º in 5% CO2 for at least 378	

45 minutes. Coverslips were then placed in a cell chamber of a fluorescence 379	

microscope and continuously perfused with HEPES-aCSF. Cells were collected by 380	
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aspiration into borosilicate glass pipettes mounted on a micromanipulator under visual 381	

control. Cell dissociation and collection were performed using RNA-protective 382	

technique and all solutions were prepared with RNase-free reagents when possible 383	

and filtered before use. 384	

Electrophysiology recordings, data acquisition and analysis. All recordings were 385	

performed as already described previously 33. Picrotoxin and Kynurenate were present 386	

for all recordings to prevent contamination of the intrinsic activity by spontaneous 387	

glutamatergic and GABAergic synaptic activity. Statistical analysis (performed 388	

according to data distribution) included: unpaired t test, Mann Whitney, paired t test 389	

with a p value <0.05 being considered statistically significant. Statistics were 390	

performed utilizing SigmaPlot 10.0 (Jandel Scientific, UK) and Prism 6 (GraphPad 391	

Software, Inc., La Jolla, CA). 392	

qPCR assays, specific retro-transcription and targeted amplification (RT-STA). 393	

Pre-designed TaqMan assays (TaqMan® Gene Expression Assays, Thermo Fisher 394	

Scientific) used in this study are listed in Supplementary Table 1. Assays were 395	

systematically selected to target the coding region and to cover all known splice 396	

variants. In the case of Kcnd3 and Kcnj6 genes, two different assays were used to 397	

detect all known splice variants. Excluding Fos (754 bp intron) and Bdnf, Kcna2 and 398	

Kcnj11 (both primers and probe within a single exon), assays spanning a large intron 399	

(>1000 bp ) were chosen to avoid DNA amplification. Gad1 primers and probe were 400	

designed according to Applied Biosystems criteria and MIQE recommendations 34. 401	

TaqMan® assays were pooled (0.2x final concentration) and the preamplification step 402	

was validated using log serial dilutions of mouse brain total RNA (MBTR) 5, 6. The 403	

following thermal profile was applied: 50ºC for 15 min, 95ºC for 2 min and 22 cycles 404	

of amplification 35 (95ºC for 15 s and 60ºC for 4 min) following Fluidigm 405	
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recommendations. For each assay, efficiency was estimated from the slope of the 406	

standard curve using the formula E= (10(-1/slope)]-1) x100. All assay efficiencies (89.4≤ 407	

E ≤100.4 %) are listed in Supplementary Table 1.  408	

Single-cell RTqPCR, data processing and analysis. Individual GFP and non-GFP 409	

neurons were harvested directly into 5 µl of 2x Reaction buffer (CellsDirect™ One-410	

Step qRTPCR, Lifetech) and kept at -80ºC until further processing. A reverse 411	

transcription followed by a specific targeted pre-amplification (RT-STA) was 412	

performed in the same tube (2.5 µl 0.2x assay pool; 0.5 µl SuperScript III) applying 413	

the same thermal profile described above. The pre-amplified products were treated 414	

with ExoSAPI (Affimetrix) and diluted 5-fold prior to analysis by qPCR using 96.96 415	

Dynamic Arrays on a BioMark System (BioMark™ HD Fluidigm). Data were 416	

analyzed using Fluidigm Real-Time PCR Analysis software (Linear Baseline 417	

Correction Method and User detector Ct, Threshold Method). Two genes, Kcnj6_c 418	

and Chat were undetectable in all analyzed cells. Cells that had a Ct for Hprt above 419	

21 were excluded from further analysis. After interplate calibration, all Ct values were 420	

converted into relative expression levels using the equation Log2Ex = CtLOD - Ct(Assay) 421	

36. LOD (limit of detection) was set to Ct=25 by calculating the theoretical Ct value 422	

for 1 single molecule in the Biomark system from two custom-designed 423	

oligonucleotides: Slc17a6 and Penk. All data pre-processing was performed in 424	

Microsoft Excel (Microsoft, Redmond, USA). Heatmap and correlation maps 425	

(Pearson correlation coefficient values excluding zero values, p value ˂0.5, n ˃5) 426	

were generated in the R environment (R Core Team 2016) using gplots, heatmap3, 427	

Hmics and corrplot packages. Gene expression scatter plots and frequency 428	

distribution plots were created in SigmaPlot 10.0 (Jandel Scientific) and Prism 6 429	
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(GraphPad Software, Inc, La Jolla, CA). Figures were prepared using Adobe 430	

Illustrator CS6.  431	

Topological information data analysis 432	

The present analysis is based on the information cohomology framework developed 433	

by Baudot and Bennequin3 and relies on theorems establishing uniquely the usual 434	

entropy (Hk) and multivariate mutual information  (Ik) as the first class of cohomology 435	

and coboundaries respectively with finite (non-asymptotic) methods (see 436	

Supplementary Methods for more detail). 437	

Simplicial Information structures 438	

The information functions are defined on the whole lattice of partitions of the 439	

probability simplex of atomic probabilities, providing the general random variable 440	

lattice of joint-variables. The application of this framework to data analysis is 441	

developed in the subcase of simplicial information homology, which consists in the 442	

exploration of the simplicial sublattice of “set of subsets” defined dually for joint and 443	

mutual (meet) monoid structures of random variables, and whose exploration follows 444	

binomial combinatorics with a complexity in O(2n). It allows an exhaustive estimation 445	

of the information structure, that is the joint-entropy Hk and the mutual information Ik, 446	

on all degrees k and for every k-tuple of variables (gene expression levels), defined 447	

respectively by the following equations: 448	
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 449	

for a probability joint-distribution PX1,...,Xk  and joint-random variables (X1,...,Xk) with 450	

alphabet [N1...Nk] and k=-1/ln2,  where n variables are mutually independent if and 451	

only if ∀ k ≤ n, Ik=0. Due to the combinatorial complexity, in the current study Hk 452	

and Ik values were computed for n=21 (for n=21, the total number of information 453	

elements to estimate is 2 097 152). 454	

The distributions of Ik and Hk for every degree k (corresponding to k-tuples of 455	

variables) were represented as Ik and Hk landscapes (Supplementary Figure 7). The 456	

landscapes are representations of the simplicial information structures where each 457	

element of the lattice is represented as a function of its corresponding value of 458	

entropy or mutual information, and quantify the variability-ramdomness and 459	

statistical dependencies at all degrees k, respectivey, from 1 to n. Mean landscapes 460	

were calculated by averaging Ik and Hk for each degree k over the number of k-tuples. 461	

The mean information landscape quantifies the average behavior of the whole 462	

structure. The mean information landscape (or path) is given by: 463	

 464	

Probability estimation 465	

The probability estimation procedure is explained in Supplementary Figure 5 for the 466	

simple case of two random variables (the expression levels of two genes). For each 467	

variable Xj, we consider the space in the intervals [min xj, max xj] and divide it into Nj 468	

boxes, N being the graining of the data. The empirical joint probability is estimated by 469	

box counting after a graining of the data space into N1...Nk boxes (for k-tuple 470	
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probability estimation). In the current study, a graining of N1=...=Nk=8 was chosen as 471	

it provided a correct description of the distribution of the expressions levels (see 472	

Supplementary Figure 8 for the influence of changing the graining on the 473	

identification of gene modules). 474	

Information paths 475	

An information path IPk or HPk of degree k on Ik or a Hk landscape is defined as a 476	

sequence of elements of the lattice that begins at the leastest element of the lattice (the 477	

identity-constant "0"), travels along edges from element to element of increasing 478	

degree of the lattice and ends at the greatest element of the lattice of degree k. The 479	

first derivative of an IPk path is minus the conditional mutual information. The (“non-480	

Shannonian”) information inequalities 19, e.g. the negativity of conditional mutual 481	

information that quantifies the instability of the mutual information along the path, are 482	

then equivalent to the existence of local minima on such paths (see Supplementary 483	

methods). The critical dimension of an IPk path is the degree of its first minima. A 484	

positive information path is an information path from 0 to a given Ik corresponding to 485	

a given k-tuple of variables such that Ik<Ik-1<...<I1. We call the marginal component 486	

of a path I1 a self-information energy and the interacting compoenents functions Ik, k 487	

> 1, a free information energy. A maximal positive information path is a positive 488	

information path of maximal length: it ends at a minima of the free information 489	

energy function. In the current study, the length of maximal positive information 490	

paths was considered to indicate the size of a stable information module. The set of all 491	

these paths defines uniquely the minimum free information complex (see 492	

Supplementary methods). In simple terms, this complex is the homological 493	

formulation of the minimum energy principle with potentially many local and 494	

degenerate minima. The set of all paths of degree k is in one-to-one correspondence 495	
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with the symmetric group Sk and hence untractable computationally (complexity in 496	

O(k!)). In order to bypass this issue, we used a fast local algorithm that selects at each 497	

element of degree k of an IP path the positive information path with maximal or 498	

minimal Ik+1 value or stops whenever Xk.Ik+1 ≤ 0 and rank those paths by their length.  499	

Robustness of the method 500	

To estimate the degree after which the sample size m becomes limiting and biases our 501	

estimations, the undersampling regime was quantified by the degree ku beyond which 502	

a significant proportion (10%) of the Hk values get close to log2(m). Using these 503	

criteria, with log2(111)=6.79 and log2(37)=5.21, the ku obtained for DA neurons was 6 504	

and 5 for nDA neurons, and Ik and Hk values beyond these degrees should be 505	

interpreted with caution (Supplementary methods). It must be noted however that 506	

this limit is calculated on the average Hk, whose value is mainly determined by non-507	

relevant independent k-tuples. The biologically relevant statistical dependences 508	

correspond to extrema in the raw landscape (minimal Hk and maximal or minimal Ik) 509	

and therefore are less affected by this sampling problem. In order to evaluate the 510	

robustness of our results to sample size (m) and graining value (N), we calculated the 511	

maximal positive paths obtained for DA neurons for smaller samples (m = 28, 56, 84, 512	

taken fully arbitrarily among 111) and smaller (N=4, 6) or larger (N=10, 12) graining 513	

values (Supplementary Figure 8). The information paths of maximal length were 514	

found to be relatively robust to variations in N and m, even though, as expected, m=28 515	

yielded significantly different paths. For most N and m combinations, the main genes 516	

identified in Figure 3c were also present in the maximal information paths, including 517	

in particular the DA metabolism/signaling genes and the two ion channel genes 518	

Kcnd3/Kv4.3 and Kcnn3/SK3. Concerning the statistical significance of the results, I2 519	

functions are Kullback-Leibler divergences 37 and estimate the divergence from 2-520	
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independence. Their generalization to arbitrary degree k (Ik) can be interpreted as a 521	

statistical significance of a test, here against the null hypothesis of k-independence 522	

Ik=0. Our analysis, based on the ranking of the Ik for every k, considered only the 5 523	

maximal (positive) and 5 minimal (negative) values of Ik, which are the 5 most 524	

significantly dependent positive and negative Ik-sharing k-tuples (for k > 2). 525	

Computation and algorithm 526	

The Information Topology open source program, written in Python, is available on 527	

Github depository. It allows to compute the information landscapes, paths, and 528	

minimum free energy complex, which encode and represent directly all the usual 529	

equalities, inequalities, and functions of information theory (as justified at length in 530	

Supplementary methods), and all the structures of the statistical dependences within 531	

a given set of empirical measures  (up to the approximations, computational 532	

tractability and finite size biases, see previous sections). It can be run on a regular 533	

personal computer up to k = n = 21 random-variables in reasonable time (3 hours), 534	

and provide new tools for pattern detection, dimensionality reduction, ranking and 535	

clustering based on a unified homological and informational theory. 536	
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Figure 1. First and second order linear analysis reveals strong correlations in gene expression levels in 
midbrain DA and nDA neurons. a, heatmap representing the levels of expression of 41 genes in the collected 111 DA 
and 37 nDA neurons. Neurons are ordered based on Th and Slc6a3 levels of expression, and genes are ordered based 
on their average level of expression in DA neurons (see b, left plot). b, levels of expression of the 41 genes presented 
in a in the DA population (left, green) and in the nDA population (right, dark red). The thick green and red lines represent 
the average expression levels while each dot corresponds to the expression level in one neuron. c, heatmap 
representing the significant correlations in expression levels for 33 genes in DA neurons (upper right triangle) and nDA 
neurons (lower left triangle) (Pearson correlation coefficient). Correlations were processed on non-zero values of 
expression, and only correlations with a p value < 0.05 and n > 5 are represented. Please note the difference in patterns 
of correlations between DA and nDA neurons. d, scaffold representations of the 20 most significant correlations in 
expression levels in DA (top) and nDA (bottom) neurons (r values > 0.6 or < -0.6, see color coding in the left box). 
mRNAs were ordered based on the known function of the corresponding proteins (see right box for the color coding of 
functions). The genes involved in the depicted correlations are highlighted (dark font, bright colors). Please note the 
strong connectivity between DA metabolism/signaling and ion channel genes in DA neurons.
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Figure 2. Mutual information analysis of gene expression levels reveals specific high-degree structures of 
transcriptomic profiles in midbrain DA and nDA neurons. a, left, Venn diagram illustrating a system of 6 random 
variables sharing mutual information at degree 2, 3 and 4. Right, same system represented on a simplicial complex. 
Each vertex represents a variable while the  edges, faces and volumes represent joint-n-tuples of variables. b, scaffold 
representations of the most significant Ik values shared by pairs (I2, top row), triplets (I3, second row), quadruplets (I4, 
third row), quintuplets (I5, fourth row) and decuplets (I10, fifth row) of genes in DA (left column) and nDA neurons (right 
column). Circle diameters are scaled according to entropy value (I1). The red shapes (lines, triangles, quadrilaterals, 
etc) indicate positive Ik shared by genes while the blue shapes correspond to negative Ik. Only the most significant 
values of Ik are displayed on each scaffold (20 for I2; 5 positive and 5 negative for I3, I4, I5; and 2 positive and 2 negative 
for I10). c, 4D-scatter plots representing the levels of expression of 2 quadruplets of genes sharing strong negative Ik 
(left-hand plots) and 2 quadruplets of genes sharing strong positive Ik (right-hand plots) in DA neurons. Please note 
that negative Ik is associated with a “clustering” or “heterogeneous” distribution of gene expression levels (left) while 
positive Ik is associated with a “co-varying” or “homogeneous” distribution of gene expression levels. d, histograms 
representing the distribution of Ik values for all the degrees presented in b. The total number of combinations C(n,k) for 
each degree (number of pairs for I2; number of triplets for I3, etc) is given in gray.
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Figure 3. Conditional mutual information identifies stable modules of genes sharing strong statistical 
dependences. a, information landscapes representing the distribution of Ik values shared by the 21 genes presented 
in Figure 2 as a function of  degree k in DA (left) and nDA neurons (middle), and scatter plot representing mean Ik value 
(mean information landscape) as a function of degree for both populations (right). Color coding in the left and middle 
plots indicates the density of points for each Ik value. b, line and scatter plot illustrating the four maximum (red) and 
minimum (blue) information paths corresponding to stable information modules in DA neurons identified using 
conditional information computation. The paths have been superimposed to the total information landscape 
(transparent color coding) already shown in panel a. c, scaffold representation of the information modules 
corresponding to the maximum Ik paths (red) and minimum information paths delineated in panel b. Each path is 
identified with a specific arrowhead shape (see legend box).
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