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 2 

Abstract (196/200 words) 20 

Resting-state functional connectivity (FC) has become a major fMRI method to study 21 

network organization of human brains. There is recent interest in the temporal 22 

fluctuations of FC calculated using short time-windows (“dynamic FC”) because it 23 

could provide information inaccessible with conventional “static” FC that is typically 24 

calculated using the entire scan lasting several tens of minutes. Although multiple 25 

studies have revealed considerable temporal fluctuations in FC, it is still unclear 26 

whether the fluctuations of FC measured in hemodynamics reflect the dynamics of 27 

underlying neural activity. We addressed this question using simultaneous imaging of 28 

neuronal calcium and hemodynamic signals in mice, and found coordinated temporal 29 

dynamics of calcium FC and hemodynamic FC measured in the same short time 30 

windows. Moreover, we found that variation in transient neuronal coactivation patterns 31 

(CAPs) was significantly related to temporal fluctuations of sliding window FC in 32 

hemodynamics. Finally, we show that observed dynamics of FC cannot be fully 33 

accounted for by simulated data assuming stationary FC. These results provide evidence 34 

for the neuronal origin of dynamic FC and further suggest that information relevant to 35 

FC is condensed in temporally sparse events that can be extracted using a small number 36 

of time points. 37 

 38 

 39 
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 3 

Introduction 42 

Resting state functional connectivity (FC) uses temporal correlation of spontaneous 43 

neuronal activity to assess network organization of brain regions in a non-invasive 44 

manner (Fox and Raichle 2007). Traditionally, FC has been calculated using all time 45 

points in a scan that typically lasts between several minutes to tens of minutes (Biswal 46 

et al. 1995; Fox et al. 2005; Van Dijk et al. 2010). Such “static” FC has been shown to 47 

largely reflect anatomical connectivity (Adachi et al. 2012; Honey et al. 2009; Matsui et 48 

al. 2012; Matsui et al. 2011; Vincent et al. 2007). Recently, in contrast to traditional 49 

analysis of “static” FC, the temporal fluctuation of FC across short time windows is 50 

increasingly recognized as a useful aspect of FC (Allen et al. 2014; Hutchison et al. 51 

2013; Zalesky et al. 2014). Such “dynamic” FC calculated using short time-windows 52 

could provide information that is inaccessible with static FC about the functional 53 

network organizations of healthy and diseased brains (Calhoun et al. 2014; Preti et al. 54 

2016). The presence of temporal fluctuations in FC has also informed theoreticians to 55 

constrain realistic models of brain networks (Deco et al. 2013; Hansen et al. 2015; 56 

Messé et al. 2014). 57 

However, despite growing interest, the neurophysiological basis of dynamic FC is 58 

still weak. Previous attempts to investigate neural origin of dynamic FC by 59 

simultaneous measurement of electrophysiological and functional magnetic resonance 60 

imaging (fMRI) are limited in several ways (Lu et al. 2007; Pan et al. 2011; 61 

Tagliazucchi et al. 2012b; Thompson et al. 2013). In some studies, electrophysiological 62 

recording was limited to a small number of recording sites due to technical difficulty 63 

(Lu et al. 2007; Pan et al. 2011; Thompson et al. 2013); hence, information on the 64 

global pattern of neuronal activity was lacking. In another study, electrophysiological 65 

signals were obtained with an electroencephalogram, which records global neuronal 66 

activity but lacks precise spatial information (Tagliazucchi et al. 2012b). Thus, the link 67 

between temporal fluctuations of FC in hemodynamics and that of large-scale neuronal 68 

activity has not been adequately proven. 69 

Several studies have also questioned whether the apparent “dynamics” of FC 70 

calculated using the sliding window method is related to temporal instability of 71 

spontaneous brain network (Hindriks et al. 2016; Laumann et al. 2016). While many 72 

studies have attributed temporal fluctuations of sliding window FC to non-stationarity 73 

of spontaneous neuronal activity correlation (Allen et al. 2014; Zalesky et al. 2014), 74 
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some recent studies have demonstrated that the temporal fluctuations of FC observed in 75 

the real and the simulated data, which is stationary by construction, are statistically 76 

indistinguishable (Hindriks et al. 2016; Laumann et al. 2016). Furthermore, Laumann 77 

and colleagues have shown that, in the human resting-state fMRI data, a large portion of 78 

non-stationarity in FC is attributed to head motion, and eliminating data with excessive 79 

head motion substantially decreases the non-stationarity of FC (Laumann et al. 2016). 80 

Therefore, not only the neuronal basis of dynamic FC, but also the existence of 81 

statistical non-stationarity of FC, or at least the capability of sliding window methods to 82 

detect the non-stationarity, is called into question. 83 

In the present study, we addressed these questions using simultaneous imaging of 84 

neuronal calcium and blood oxygen level dependent (BOLD) hemodynamic signals in 85 

the entire neocortex of transgenic mice expressing a genetically encoded calcium 86 

indicator (Matsui et al. 2016; Vanni and Murphy 2014; White et al. 2011). In the present 87 

experimental setup, wide-field calcium signal provided access to neuronal activity at 88 

higher temporal resolution and signal-to-noise ratio compared to that of hemodynamic 89 

signal (Matsui et al. 2016; Murakami et al. 2015; Tohmi et al. 2014; Vanni and Murphy 90 

2014). Moreover, unlike human fMRI data, in the present dataset, mice were tightly 91 

head-fixed and lightly anesthetized; thus, excluding head motions from contaminating 92 

FC. Main findings of the present study are as follows. First, we found consistency 93 

between the dynamics of FC calculated using calcium and hemodynamic signals, 94 

suggesting the neuronal origin of the temporal fluctuations of hemodynamic FC. Second, 95 

we found that temporal fluctuations of the spatial pattern of transient neuronal 96 

coactivations as measured in calcium signal were significantly correlated with temporal 97 

fluctuations of hemodynamic FC. Finally, we found that statistical properties of sliding 98 

window FC were significantly different between the real and the simulated data 99 

suggesting non-stationarity of resting-state FC. 100 

  101 
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Materials and Methods 102 

Animals 103 

Emx1-IRES-cre and Ai38 (Zariwala et al. 2012) mice were obtained from the Jackson 104 

Laboratory (Sacramento, CA). These mice were crossed and all cortical excitatory 105 

neurons expressed GCaMP3. Mice (P60–P90) were prepared for in vivo wide-field 106 

simultaneous imaging. Anesthesia was induced with isoflurane (3 %) and maintained 107 

with isoflurane (1 – 2 % in surgery, 0.5 – 0.8 % during imaging) and chlorprothixene 108 

(0.3 – 0.8 mg/kg, intramuscular injection). For simultaneous imaging of calcium and 109 

hemodynamic signals, a custom-made metal head plate was attached to the skull using 110 

dental cement (Sun Medical Company, Ltd, Shiga, Japan) and a large craniotomy was 111 

made over the whole cortex. The craniotomy was sealed with 1 % agarose and a glass 112 

coverslip. During the imaging, body temperature was maintained by a heat pad. All 113 

experiments were carried out in accordance with the NIH Guide for the Care and Use of 114 

Laboratory Animals, the institutional animal welfare guidelines set forth by the Animal 115 

Care and Use Committee of Kyushu University, and the study was approved by the 116 

Ethical Committee of Kyushu University. 117 

 118 

Simultaneous Calcium and Intrinsic Signal Imaging 119 

The data for simultaneous imaging of calcium and hemodynamic signals was taken 120 

from a published report (Matsui et al. 2016). Briefly, simultaneous imaging of calcium 121 

and intrinsic signals in vivo was performed using a macro zoom fluorescence 122 

microscope (MVX-10, Olympus, Tokyo, Japan) or an upright fluorescence microscope 123 

(ECLIPSE Ni-U, Nikon, Tokyo, Japan), equipped with a 1x objective. A 625 nm LED 124 

light source was used to obtain intrinsic signals. GCaMP was excited by a 100 W 125 

mercury lamp through a GFP mirror unit (Olympus). Intrinsic signal data was collected 126 

at a frame rate of 5 Hz using a CCD camera (1,000m; Adimec, Boston, MA, U.S.A.) 127 

and calcium signal data was collected at a frame rate of 10 Hz using a CCD camera 128 

(DS-Qi1 Mc; Nikon). The emission filters were 625 nm long pass (SC-60, Fuji film, 129 

Tokyo, Japan) for intrinsic signals, and 505-535 nm band pass (FF01-520/35-25, 130 

Semrock, Lake Forest, Illinois) for calcium signals. Data were acquired for 30-60 min 131 

per animal (5 min per scan). 132 

 133 

Data Preprocessing 134 
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All data analyses were conducted in Matlab (MathWorks, Natick, MA) using a method 135 

described previously (Matsui et al. 2016). Briefly, all the image frames were corrected 136 

for possible within-scan motion by rigid-body transformation. Calcium and 137 

hemodynamic images were then coregistered by rigid-body transformation using 138 

manually selected anatomical landmarks that were visible in both images (e.g., 139 

branching points of blood vessels). All of the images were then spatially down-sampled 140 

by a factor of two. Pixels within the cortex (at this point including large blood vessels 141 

including the sinus) were extracted manually. For both calcium and hemodynamics, 142 

slow drift in each pixel’s time course was removed using a high-pass filter (> 0.01 Hz, 143 

second order Butterworth. No low-pass filter was used). After filtering, each pixel’s 144 

time course was normalized by subtracting the mean across time and then dividing by 145 

the standard deviation across time. Global signal regression was conducted by 146 

regressing out the time course of average signal within the brain from each pixel’s time 147 

course. Finally, hemodynamic signal was multiplied by -1 to set the polarity of the 148 

activity change equal to that in the calcium signal. 149 

 150 

Extraction of Region-of-Interest (ROI) Time Courses 151 

Selection of ROI and time courses are conducted as described previously (Matsui et al. 152 

2016). Briefly, 38 cortical regions (19 for each hemisphere) were selected as ROIs 153 

based on a previous mouse functional connectivity study (White et al. 2011) 154 

(Supplementary Fig. 1). Each ROI was a 6 × 6 pixel square (0.5 mm × 0.5 mm) 155 

centered at a selected coordinate. The time course for each ROI was calculated by 156 

averaging the time courses of pixels within the ROI that corresponded to gray matter. 157 

ROIs located outside of the FOV were discarded. 158 

 159 

Analysis of FC 160 

For both calcium and hemodynamic signals, FC was calculated using a standard 161 

seed-based correlation method (Matsui et al. 2016). First, the correlation coefficient 162 

between the time course of a selected ROI ("seed time course") and the time course of 163 

every pixel within the brain was calculated. Second, FC values were averaged across 164 

scans to obtain FC values for each pixel. The spatial correlation between FC maps of 165 

calcium and hemodynamic signals was calculated by taking the pixel-by-pixel 166 

correlation coefficient between the two maps using all the gray matter pixels. FC with 167 
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short time window was obtained by taking correlation coefficient using all the frames 168 

within a 30-sec window. Steps of 3 sec and 30 sec were used for the sliding window and 169 

non-overlapping window, respectively. Scan-shifted control was calculated by shifting 170 

the scan number of hemodynamics data relative to simultaneously obtained calcium 171 

data. 172 

 173 

Analysis of CAPs 174 

CAP analysis was adopted from previous fMRI studies (Liu and Duyn 2013). Briefly, 175 

calcium time course from each ROI was z-normalized. Then, frames corresponding to 176 

peaks of the time course whose height exceeded 2 s.d. were considered CAPs of the 177 

ROI. For a given ROI, comparison between FC map within a sliding window and CAPs 178 

contained in the window was conducted by calculating spatial correlation between the 179 

FC map and the summed spatial pattern of CAPs contained within the window (i.e. 180 

adding all the frames corresponding to CAPs within the window). Comparison between 181 

CAPs and short window FC using all ROIs were performed as follows. First, for a given 182 

scan, for all the ROIs, CAPs were calculated for calcium signal. For each ROI, multiple 183 

CAPs were averaged to yield mean CAP for the scan (CAPscan). For hemodynamic 184 

signal, FC map was calculated for each ROI (FCscan). For a given pairs of ROIs (i and j), 185 

correlation between the pair of corresponding CAPscan was calculated [R(CAPscan)ij]. 186 

Corresponding correlation between the pair of FC maps was also calculated for each 187 

pair of ROIs [R(FCscan)ij]. Second, for a given 30-sec window in the scan, for all the 188 

ROIs, CAPs were detected for calcium signal. For each ROI, multiple CAPs were 189 

averaged to yield mean CAP within the window (CAPwindow). FC map was also 190 

calculated using hemodynamic signal within the window (FCwindow). Then, for a given 191 

pairs of ROIs (i and j), correlation between the pair of corresponding CAPwindow was 192 

calculated [R(CAPwindow)ij]. Then difference between the R(CAPwindow)ij and R(CAPscan)ij 193 

was taken as the index of deviation from the mean pattern for the given window 194 

[ΔCAPij = R(CAPwindow)ij − R(CAPscan)ij]. Similarly, ΔFCij was obtained by subtracting 195 

R(FCscan)ij from R(FCwindow)ij. Finally, correlation coefficient between non-diagonal 196 

elements of the matrices of ΔCAP and ΔFC were calculated. When CAPs were absent 197 

for a particular ROI in a time window, that ROI was omitted from the calculation for the 198 

time window.  199 

 200 
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Cluster Analysis and Kurtosis Analysis 201 

For the state analysis of sliding window FC, we adopted the k-means clustering 202 

algorithm used in the previous studies (Allen et al. 2014; Laumann et al. 2016). 203 

Correlation distance (1-r) was used to compute the separation between each window’s 204 

FC-matrix (using all 38 ROIs) and the k-means clustering was iterated 100 times with 205 

random centroid positions to avoid local minima. The windowed FC-matrices were 206 

mean-centered by scan to eliminate scan-level and subject-level features from 207 

contributing the clustering result. K-means clustering was applied in the same manner to 208 

the simulated data that was matched in size to the real data. The cluster validity index 209 

was used to evaluate the quality of clustering for the range of cluster numbers (k = 2-10). 210 

The cluster validity index was computed as the average ratio of within-cluster distance 211 

to between-cluster distance. 212 

Non-stationarity of spontaneous neuronal signal correlation was assessed by 213 

calculating multivariate kurtosis using the same procedure as described by Laumann 214 

and colleagues (Laumann et al. 2016). One value of kurtosis was calculated for each 215 

FC-matrix (using all 38 ROIs) obtained each scan. The same procedure was applied to 216 

the simulated data that was matched in size to the real data. 217 

 218 

Time Course Simulation 219 

To obtain a null dataset to evaluate the non-stationarity of the real data, we constructed 220 

simulated time courses using a method developed by Laumann and colleagues 221 

(Laumann et al. 2016). Briefly, random normal deviates having the same dimensionality 222 

as a real dataset are sampled. These time courses are multiplied in the spectral domain 223 

by the average power spectrum of the (bandpass filtered) real data. These time courses 224 

are then projected onto the eigenvectors derived from the covariance matrix of the real 225 

data. This procedure produces simulated data that are stationary by construction but 226 

matched to real data in the covariance structure and mean spectral content. 227 

  228 
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 9 

Results 229 

Consistent FC dynamics in calcium and hemodynamic signals 230 

Transgenic mice expressing GCaMP in neocortical neurons were used to simultaneously 231 

measure neuronal calcium signal and hemodynamics in a large portion of bilateral 232 

neocortex (Fig. 1A) (Matsui et al. 2016). Mice were lightly anesthetized and head-fixed 233 

with metal plates so that head-motion could not contaminate the signals. We used 234 

sliding window correlation (30 sec window at 3 sec steps) to examine if FC in mice 235 

exhibited dynamic changes. Consistent with previous reports in humans (Allen et al. 236 

2014; Chang and Glover 2010; Zalesky et al. 2014) and other animals (Hutchison et al. 237 

2014; Majeed et al. 2009), FC between pairs of ROIs calculated with sliding windows 238 

showed considerable variability over different time points both in calcium signal and 239 

hemodynamics (Fig. 1B-C). Consistent with the notion that variability in hemodynamic 240 

FC arises from underlying neuronal activity, we found close matches between dynamics 241 

of FC in calcium and hemodynamics (correlation coefficients, 0.631 and 0.675 for Figs. 242 

1B and 1C, respectively). Correlation between the time courses of calcium FC and 243 

hemodynamic FC was significantly larger for the data than that of the scan-shifted 244 

control (P < 10-20, Kolmogorov-Smirnov test; Fig. 1D). 245 

 To further examine the consistency between the dynamics of FC in calcium and 246 

hemodynamics in the entire neocortex, we calculated FC among all pairs of ROIs and 247 

compared them across time windows (Fig. 2A-B). The ROI-based FC-matrices in 248 

calcium and hemodynamics both showed variability across time windows. On the other 249 

hand, FC matrices in calcium and hemodynamics within each time window were similar. 250 

If the dynamics of FC in calcium and hemodynamics were matched, the similarity 251 

between calcium and hemodynamic FC in the same time window should be higher than 252 

that calculated using different time windows (e.g., similarity between Ca-FCwindow#1 and 253 

Hemo-FCwindow#1 would be higher than the similarity between Ca-FCwindow#1 and 254 

Hemo-FCwindow#2). Otherwise, the similarity between FC-matrices in calcium and 255 

hemodynamics merely reflects the overall similarity of FC in calcium and 256 

hemodynamics but not the coordinated dynamics of calcium and hemodynamic FC. 257 

Across all the data, we found that the distribution of the correlation coefficient between 258 

the FC-matrices in calcium and hemodynamics was shifted toward positive values 259 

compared with that calculated with the scan-shifted data (P < 10-14, 260 

Kolmogorov-Smirnov test; Fig. 2C). The difference between the real data and the 261 
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trial-shifted data was also consistently positive across animals (p < 0.0156, n = 7 mice, 262 

sign-rank test; Fig. 2D) and was seen across various window sizes ranging from 1 sec to 263 

60 sec (Fig. 2E). Together these results suggest that temporal variability in 264 

hemodynamic FC, as measured with sliding window, arises from neural activity rather 265 

than from movement-related artifacts (Laumann et al. 2016) or non-neuronal 266 

physiological artifacts such as heartbeat and respiration (Bianciardi et al. 2009; Shmueli 267 

et al. 2007). 268 

 269 

Variations in transient neuronal coactivations explained variations in FC 270 

What are the potential neuronal events that create dynamic FC? Recent fMRI studies 271 

proposed that variability in the neuronal coactivation pattern (CAP) of brain areas is 272 

directly reflected in the dynamic change of FC observed with the sliding window 273 

correlation (Liu and Duyn 2013). To address this possibility, we compared sliding 274 

window FC in hemodynamics with the CAPs calculated in the calcium signal. The use 275 

of calcium signal for extracting CAPs allowed us to capture faster spatiotemporal 276 

dynamics than the hemodynamics. More importantly, the use of two different signals 277 

also allowed us to avoid comparing sliding window FC and CAPs that were derived 278 

from the same signals and could lead to circular logic. 279 

For each anatomical ROI, we first detected peaks in the calcium signal within a 280 

given time-window and then defined CAPs as the frames in the calcium signal 281 

corresponding to the detected peak locations (Fig. 3A) (Liu and Duyn 2013). Similar to 282 

the previous reports in fMRI (Liu et al. 2013; Liu and Duyn 2013), we found variations 283 

in the spatial patterns of CAPs extracted from the same ROI (Fig. 3A, panels above time 284 

courses). We next examined if the variations of the spatial pattern of CAPs could 285 

explain that of sliding window FC. For each ROI in each 30 sec window, we extracted 286 

CAPs and FC using calcium and hemodynamic signals, respectively. In the example 30 287 

sec windows shown in Figure 3A, time courses of the chosen ROI showed transient 288 

activations that resulted in 11 and 3 frames of CAPs (corresponding to 1.1 and 0.3 sec 289 

of data, respectively). Despite the small number of frames corresponding to CAPs, the 290 

average spatial pattern of CAPs in the time window closely matched the spatial pattern 291 

of hemodynamic FC calculated in the same time window (compare mean CAP and 292 

mean FC in Fig. 3A). 293 

To further compare CAPs with sliding window hemodynamic FC across ROIs, we 294 
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calculated CAPs for all pairs of ROIs and compared them with FC of the same 295 

ROI-pairs in the same time window (Fig. 3B). Across all the data, CAP-matrices and 296 

FC matrices showed high positive correlation (Fig. 3C-D; mean R = 0.525 across 297 

animals) suggesting that CAP and FC calculated using the same sliding window were 298 

similar. 299 

The similarity between CAP and FC does not necessarily indicate coordinated 300 

temporal variation between CAPs and FCs in individual time-window, but could result 301 

entirely from similarity between the time-average patterns of CAP and FC. Therefore, to 302 

further examine if coordinated temporal variations in CAPs and FCs exist, we 303 

calculated ∆CAP and ∆FC by subtracting from each CAP and FC in each time window 304 

the average pattern (i.e. average in the entire scan) of CAP and FC, respectively (Fig. 305 

4A). We found that the distribution of the correlation between ∆CAP and ∆FC for the 306 

real data was shifted toward positive values whereas the same distribution calculated 307 

using trial-shifted data was centered near zero (P < 10-30, Kolmogorov-Smirnov test; Fig. 308 

4B). Furthermore, the correlation between ∆CAP and ∆FC was consistently positive 309 

across all animals (P < 0.156, n = 7 mice, sign rank test; Fig. 4C) and was seen across 310 

various sizes of time-windows ranging from 1 to 60 sec (Fig. 4D). Taken together, these 311 

results suggest temporal fluctuations of the spatial pattern of CAPs at least partly 312 

explain temporal fluctuations of hemodynamic FC. 313 

 314 

Dynamics of FC arise from non-stationarity of resting-state activity 315 

Because FC is estimated by using finite number of time-points, temporal fluctuations of 316 

FC observed in short time-windows could arise from mere sampling error even when 317 

underlying FC is stationary (Laumann et al. 2016). We next addressed whether the 318 

sampling error could explain the dynamics of FC observed in the present data. We 319 

compared two indices used in a previous study, namely cluster validity index and 320 

kurtosis, for real data and simulated data that are matched in spectral and covariance 321 

properties (Fig. 5A) (Laumann et al. 2016). The cluster validity index measures degree 322 

of clustering of multiple sliding window FC calculated within the scan. Note that 323 

smaller cluster validity index indicates more clustering (see Methods for details). For 324 

both calcium and hemodynamic signals, we found cluster validity index of real data to 325 

be significantly smaller than that of simulated data (Fig. 5B), suggesting that the real 326 

data had cluster structure that could not be fully accounted for by sampling error. 327 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2017. ; https://doi.org/10.1101/169698doi: bioRxiv preprint 

https://doi.org/10.1101/169698
http://creativecommons.org/licenses/by/4.0/


 12 

Similarly, we calculated kurtosis of the covariance matrices of real and simulated data. 328 

If the kurtosis of real data were larger than that of simulated data that is stationary by 329 

construction, the non-stationarity of the real data is implied. We found that the kurtosis 330 

of the real data was significantly higher than that of the simulated data (P < 10-11 for 331 

both, sign rank test, n = 64 scans; Fig. 5C). Together, these results suggest that 332 

dynamics of FC arise from non-stationarity of spontaneous neuronal activity, and 333 

analyses based on sliding window correlation have the potential to detect 334 

non-stationarity. 335 

  336 
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Discussion 337 

In the present study, we used simultaneous imaging of calcium and hemodynamic 338 

signals to show that temporal fluctuations in hemodynamic FC calculated in a short 339 

time window closely follow that of calcium FC, suggesting the neuronal origin of 340 

dynamic FC. We have further shown that the spatial pattern of hemodynamic FC in a 341 

short time window is predicted by averaging transient coactivations in the calcium 342 

signal (CAPs) contained within the same time-window suggesting that temporally 343 

interspersed transient neuronal events underlie resting-state FC. Finally, we have shown 344 

that in both calcium and hemodynamic signals, statistical properties of FC calculated in 345 

a short time window was significantly different from that obtained with simulated 346 

signals that were stationary by construction. These results advocate for the analysis of 347 

the dynamic aspect of FC obtained in human fMRI experiments. Insights of the 348 

neuronal events underlying dynamic FC provided by the present study would also be 349 

informative for developing appropriate analysis methods for dynamic FC. 350 

 351 

Relationship to previous investigations of the neuronal origin of dynamic FC 352 

To provide direct evidence linking neuronal activity and dynamic FC, several 353 

groups have conducted simultaneous recording of fMRI and local field potential (LFP) 354 

(Lu et al. 2007; Pan et al. 2011; Thompson et al. 2013) or EEG (Chang et al. 2013; 355 

Tagliazucchi et al. 2012b). However, these previous studies were limited in several 356 

ways. Since LFP recordings were limited from a small number of recording sites 357 

whereas EEG recording did not have enough spatial resolution, evidence directly 358 

linking global spatial pattern of neuronal activity with hemodynamic FC has been 359 

lacking. Using simultaneous imaging of calcium and hemodynamic signals, the present 360 

study provides evidence suggesting that temporal variability of hemodynamic FC and 361 

its time-to-time spatial patterns reflect spatial patterns of large-scale neuronal activity. 362 

Moreover, since the present study used anesthetized and head-fixed mice, the results are 363 

unlikely to be attributable to head motion. 364 

Recent human fMRI studies have proposed that neuronal activity important for FC 365 

is condensed into transient large scale neuronal coactivations (i.e. CAPs) (Liu and Duyn 366 

2013; Tagliazucchi et al. 2012a; Tagliazucchi et al. 2011). Consistent with this idea, 367 

imaging studies in mice revealed transient neuronal coactivations across brain areas 368 

(Matsui et al. 2016; Mohajerani et al. 2013; Vanni and Murphy 2014). In our previous 369 
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study, we searched for neuronal coactivations that resembled the spatial patterns of 370 

(static) FC and showed that such neuronal coactivations were converted into spatially 371 

similar hemodynamic signals (Matsui et al. 2016). In the present study, we took a 372 

different approach that was similar to single frame analysis methods employed in recent 373 

human fMRI studies (Karahanoğlu and Van De Ville 2015; Liu et al. 2013; Liu and 374 

Duyn 2013; Tagliazucchi et al. 2011). Instead of specifically looking at neuronal 375 

coactivations that resembled “static” FC, we took all the individual coactivations 376 

(CAPs) into our analysis and showed that variation of the spatial pattern of individual 377 

CAPs across time windows was significantly related to variations of hemodynamic FC 378 

across time windows. Thus, the present findings suggest importance of the development 379 

of analysis that specifically focuses on CAPs (Karahanoğlu and Van De Ville 2015; 380 

Liu et al. 2013). It should be noted that, although statistically significant, the correlation 381 

between ∆CAP and ∆FC was relatively weak. Part of the reason for this could be 382 

non-neuronal physiological noise that contributed to hemodynamics (Matsui et al. 2016). 383 

In the present study, because of the use of anesthesia and head-fixation, head motion is 384 

unlikely to be the primary source of the non-neuronal noise. However, other 385 

physiological activities, e.g. respiration and heartbeat, are known to affect 386 

hemodynamics (Chang et al. 2009; Chang and Glover 2009) and, thus, likely to affect 387 

temporal fluctuation of hemodynamic FC as well. Our results (i.e. relatively low 388 

correlation between ∆CAP and ∆FC) indicate that correction for such non-neuronal 389 

physiological noise (Glover et al. 2000) is likely to be essential for the analysis of 390 

dynamic FC. 391 

 392 

Non-stationarity of spontaneous brain activity correlation 393 

It has been of a matter of debate to what extent temporal fluctuations of FC is 394 

attributed to the dynamics of underlying neuronal activity but not to non-neuronal 395 

sources of noise (e.g., head motion, sampling variability; reviewed in (Hutchison et al. 396 

2013)). Laumann and colleagues have reported that most of the temporal fluctuations of 397 

single subject FC is explained by head motion (Laumann et al. 2016). After controlling 398 

for the head motion, Laumann and colleagues have concluded that statistical properties 399 

of resting-state FC in human fMRI is indistinguishable from those obtained with 400 

simulated signals that are stationary by construction. A similar study by Hindriks and 401 

colleagues has also indicated the apparent dynamics of FC calculated with the sliding 402 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2017. ; https://doi.org/10.1101/169698doi: bioRxiv preprint 

https://doi.org/10.1101/169698
http://creativecommons.org/licenses/by/4.0/


 15 

window method does not necessarily indicate non-stationary dynamics of resting brain 403 

network (Hindriks et al. 2016). However, in terms of spontaneous neuronal activity 404 

itself, there is substantial evidences showing that spontaneous neuronal activity is 405 

non-stationary (Foster and Wilson 2006; Ji and Wilson 2007; Logothetis et al. 2012). In 406 

particular, under both awake and anesthetized states, transient neuronal events such as 407 

sharp-wave-ripples have been shown to produce coordinated activity across the entire 408 

brain (Logothetis et al. 2012). The present results are consistent with these previous 409 

studies supporting the non-stationarity of neuronal activity, and further showed that FC 410 

calculated using such non-stationary neuronal activity also showed non-stationarity, as 411 

expected. 412 

 413 

Limitations of the study 414 

It should be clearly stated that the present results do not guarantee that sliding window 415 

methods are always capable of detecting non-stationarity in human resting-state fMRI 416 

data. The present study used tightly head-restrained animals and high signal to 417 

noise-ration (SNR) imaging at a high frame rate (5 and 10 Hz for hemodynamics and 418 

calcium signal, respectively). Compared to the present experimental conditions, overall 419 

SNR in typical human resting-state fMRI is likely to be substantially compromised. 420 

Under such low SNR conditions, it is not clear whether simple sliding window 421 

correlation methods can detect the non-stationarity of FC (Hindriks et al. 2016; 422 

Laumann et al. 2016). With respect to SNR, we expect that the recent development of 423 

high-speed fMRI (Feinberg et al. 2010) will significantly improve the detectability of 424 

non-stationarity. Nevertheless, the present results suggest that, rather than the sliding 425 

window based method, an alternative analysis strategy that directly extracts CAPs from 426 

hemodynamic signals (Karahanoğlu and Van De Ville 2015; Liu et al. 2013; Liu and 427 

Duyn 2013; Tagliazucchi et al. 2012a) may be more appropriate for extracting relevant 428 

information related to the dynamics of FC. 429 

It should also be noted that the present results do not claim that dynamic FC has 430 

significant behavioral or cognitive consequences. Instead of examining the potential 431 

relationship between dynamic FC and cognitive dynamics or behavioral variability [see 432 

for recent review (Preti et al. 2016)], here we focused on validating the neuronal origin 433 

of dynamic FC. Experiments under anesthesia greatly reduced potential confounding 434 

factors, such as head motion and arousal state (Hutchison et al. 2014; Laumann et al. 435 
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2016). Nevertheless, the present wide-field imaging setup can be naturally extended to 436 

awake imaging with task-performing mice (Ferezou et al. 2007; Wekselblatt et al. 2016). 437 

Such experiments would reveal the potential consequences of the dynamics of FC on its 438 

behavioral outcome. 439 

  440 
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Figure Captions 621 

Figure 1. Representative dynamics of simultaneously observed calcium and 622 

hemodynamic FC. (A) Experimental setup. The left most panel shows the setup for 623 

simultaneous imaging. Right side shows example calcium time courses for two ROIs 624 

(green and cyan traces indicate M1 and V1 ROIs, respectively. Positions of the ROIs 625 

indicated in the example field of view. See Supplementary Figure 1 for abbreviations). 626 

FC with short time window uses subset of frames contained in short (30 sec) windows 627 

(red dotted squares). Sliding FC for hemodynamic signal was carried out similarly. 628 

(B)-(C) Examples dynamics of calcium and hemodynamic FC. (B) FC between right V1 629 

and right AC. (C) FC between left M1 and left pPar. See Supplementary Figure 1 for 630 

ROI positions and abbreviations. (D) Histogram of correlation between time courses of 631 

Ca-FC and Hemo-FC for the data (solid line) and the scan-shifted control (dotted line). 632 

Data from all pairs of ROIs for all scans obtained in all mice were used. 633 

 634 

Figure 2. Significant relationship between calcium and hemodynamic FC 635 

calculated in short time windows. (A)-(B) Example ROI-by-ROI FC matrices for 636 

calcium and hemodynamics for different (non-overlapping) 30 sec windows. FC 637 

matrices were similar for calcium and hemodynamics in the same time window, but not 638 

across different time windows. (C) Cumulative histogram of correlation between FC 639 

matrices for calcium and hemodynamics. Dotted line indicates trial-shifted control. (D) 640 

Correlation between FC matrices for calcium and hemodynamics was larger for the data 641 

than for the trial-shifted control significantly across animals. (E) Correlation between 642 

FC matrices of calcium and hemodynamics was larger for the data than the trial-shifted 643 

control across different window-sizes (1, 2, 3, 5, 6, 10, 12, 15, 20, 30 and 60 sec). Error 644 

bars indicate s.e.m. across animals (n = 7). 645 

 646 

Figure 3. Comparison of calcium CAPs and hemodynamic FC across 647 

time-windows. (A) Procedure for detection of CAPs in calcium signal. For a given ROI, 648 

a calcium time course was extracted and z normalized (green time courses). Then, peaks 649 

exceeding 2 s.d. (red dots) were extracted. The frames corresponding to the peaks were 650 

considered CAPs (panels above the time courses). For each window, CAPs in calcium 651 

signal were averaged to obtain mean calcium CAP. Hemodynamic CAPs were 652 

calculated similarly (see Methods). Maps of Ca-FC and Hemo-FC were also calculated 653 
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using the same time window. (B) Schematics to show the procedure of comparing 654 

calcium CAP and Hemo-FC across all ROI pairs in each time window. In each 30 sec 655 

time window, mean calcium CAPs and Hemo-FC maps were calculated for all ROIs as 656 

seeds (left). Then, for each seed-ROI j, calcium CAP and Hemo-FC values in ROI i 657 

were extracted to obtain a pair of CAP-FC values for the ROI-pairs (i, j) (middle). 658 

Finally, for each time-window, CAP-FC values were compared across all pairs of ROIs 659 

(right). (C) Histograms of correlation between CAP and Hemo-FC for all time windows 660 

across all animals. Vertical line indicates mean across time windows. (D) Mean 661 

correlation between CAP and Hemo-FC across animals. Error bar indicates s.e.m. 662 

across animals (n = 7). 663 

 664 

Figure 4. Temporal fluctuations in calcium CAPs and Hemo-FC was significantly 665 

related. (A) Schematics of the analysis. In each 30 sec time-window, mean calcium 666 

CAP and Hemo-FC were calculated (indicated as window CAP and window FC, 667 

respectively). From window CAP and window FC, average calcium CAP and average 668 

Hemo-FC that were calculated using the entire scan, in which the 30-sec window 669 

belongs to, were subtracted to obtain maps of ∆CAP and ∆FC, respectively. Finally, 670 

values of ∆CAP and ∆FC were compared across ROI pairs similarly as in Figure 3B. 671 

(B) Histograms of correlation between ∆CAP and ∆FC for all time windows across all 672 

animals. Vertical lines indicate mean across time windows. Solid and dotted lines 673 

indicate real and trial-shifted data, respectively. (C) Correlation between ∆CAP and 674 

∆FC was significantly larger for the data than for trial-shifted control across animals. 675 

(D) Same as (C) but with different window-sizes (1, 2, 3, 5, 6, 10, 12, 15, 20, 30 and 60 676 

sec). Error bars indicate s.e.m. across animals (n = 7). 677 

 678 

Figure 5. Comparison with simulated data indicated non-stationarity of the real 679 

data. (A) Examples of real and simulated time courses. Simulated time course (black) 680 

was matched to real data (green; calcium) in mean spectral content (middle panels) and 681 

ROI-by-ROI covariance matrix (right panels). The same procedure was applied to 682 

create simulated hemodynamic data (not shown). (B) Cluster validity index calculated 683 

for different number of clusters (k = 2-10). In both calcium (left) and hemodynamics 684 

(right), the cluster validity index was smaller for the real (solid lines) than the simulated 685 

data (dotted lines) indicating that the real data tended to be more clustered. (C) Kurtosis 686 
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of real and simulated covariance matrices. For both calcium (left) and hemodynamics 687 

(right), multivariate kurtosis was larger for the real than for the simulated data. Error 688 

bars indicate s.e.m. across animals (n = 7). 689 

 690 

Supplementary Figure 1. Anatomical locations of ROIs. Anatomical locations of 19 691 

ROIs are shown for the right hemisphere. Anatomical nomenclatures of ROIs are shown 692 

on the right. ROIs in the left hemisphere are taken at mirror symmetric positions to 693 

yield a total of 38 ROIs. 694 

 695 
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