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Abstract 

 In all chromosome conformation capture based experiments the accuracy with which 

contacts are detected varies considerably because of the uneven distribution of restriction sites 

along genomes. Here, we redesigned and reassembled in yeast a 145kb region with regularly 

spaced restriction sites for various enzymes. Thanks to this design, we enhanced the signal to 

noise ratio and improved the visibility of the entire region as well as our understanding of Hi-C 

data, while opening new perspectives to future studies. 

 

Results 

Genomic derivatives of the capture of chromosome conformation assay (3C, Hi-C, 

Capture-C)(Lieberman-Aiden et al, 2009; Dekker et al, 2002; Hughes et al, 2014) are widely 

applied to decipher the average intra- and inter-chromosomal organization of eukaryotes and 

prokaryotes (Sexton et al, 2012; Le et al, 2013; Dekker et al, 2013; Marbouty et al, 2014a). 

Formaldehyde cross-linking followed by segmentation of the genome by a restriction enzyme 

(RE) are the first steps of the experimental protocol. The basic unit of “C” experiments therefore 

consists in restriction fragments (RFs) that are subsequently religated and captured to identify 

long range contacts. The best resolution that can be obtained is directly imposed by the 

positions of the RE sites along the genome. Both 6-cutter and 4-cutter REs have been used 

(Marie-Nelly et al, 2014; Sexton et al, 2012; Rao et al, 2014; Le et al, 2013), the latter with the 

expectation that the resolution increases with the number of sites. However, this approach 

suffers from a major caveat: restriction sites (RSs) are not regularly spaced along the genomes. 

The distribution of RFs lengths follows a geometric distribution, with important variations along 

the genome that depend on the local GC content and the specific sequence recognized by the 

RE. Given that the likelihood for a RF to be crosslinked by formaldehyde during the first step in 

the procedure depends on its length (Cournac et al, 2012), the probability to detect a given 

fragment in any 3C experiment will in turn be strongly affected by this parameter (Fig 1A). 

Normalization procedures have been developed in order to correct the signal (Cournac et al, 

2012; Imakaev et al, 2012) but these methods involve filtering out fragments with unusually low 

or high signal and aggregating the contact data over several consecutive fragments in longer bins 
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of fixed genomic length, at the expense of actual resolution (Lajoie et al, 2015). Overall, the 

definition of Hi-C resolution has remained empiric, because of the lack of a control sequence 

where RF biases would be alleviated.  

   

In order to investigate and increase the resolution of 3C-based experiments, we designed 

and assembled a dedicated “synthetic” genomic region. As a proof of concept of this strategy, we 

describe here a redesigned ~150kb region (called here synIV-3C) of budding yeast chromosome 

4. This designer chromosome closely resembles the native chromosome with respect to genetic 

elements (see Supplementary Note 1 and Fig S1), but was “designed” to yield high resolution 

and high visibility in 3C experiments by providing nearly equally spaced restriction sites. The RSs 

of four different enzymes were removed from the native sequence with point mutations and 

subsequently reintroduced within the sequence at regularly spaced positions (400bp, 1,500bp, 

2,000bp and 6,000bp for DpnII, XbaI, HindIII and NdeI, respectively; Fig 1B and Fig S2). As shown 

on Fig 1C, the DpnII and HindIII RFs sizes in the redesigned synIV-3C region are normally 

distributed when compared to the highly skewed, native genome-wide distributions. Besides 

providing a way to increase the resolution of the 3C experiment, the design can also be used to 

focus on specific functional contacts, for instance between promoters and terminator regions of 

genes (Fig S2). When possible, coding sequences were targeted preferentially and modified 

using synonymous mutations (Fig S1). We identified a 150kb window on chromosome 4 for 

which the uniformity of RFs lengths was maximized while the number of potentially deleterious 

base changes was minimized (the final choice for the region can also take into account sequence 

annotation and guided primarily by specific interests of the end-user). From this design, DNA 

building block were purchased and assembled as described (Annaluru et al, 2014; Muller et al, 

2012) (Supplementary Note 2). Sequencing confirmed that 144kb within the targeted region 

were replaced by the redesigned sequence and that 100% of the mutations were introduced at 

the correct positions corresponding to a total of 2% divergence with the reference genome. No 

significant growth defects were detected in the synthetic strain (Fig S3).  
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We then performed Hi-C experiments on the strain carrying the synIV-3C redesigned 

chromosome as well as in a wild type strain using DpnII and HindIII (Supplementary Note 3). The 

raw DpnII contact map of chromosome 4 exhibited a remarkably “smooth” pattern within the 

redesigned region compared to the native flanking regions (Fig D). The read coverage over the 

region also exhibits a dramatic and compelling change, with a more homogeneous and regular 

distribution in the synthetic regions for both enzymes compared to a highly heterogeneous 

distribution in the native sequence (Figs 2A, B). Interestingly, careful examination of this 

distribution indicates that besides its own length, the capture frequency of a given fragment is 

also influenced by the length of its neighbors. To quantify the improvement in the SynIV-3C 

region we compared the signal with the signal over the same region obtained in the WT strain 

using the same number of aligned read pairs and identical bins of various sizes (Figs 2C, D). At 

the smallest resolution tested (600bp for DpnII and 2,400bp for HindIII) the WT contact map 

exhibited numerous blind regions with no detectable contacts (empty bins), in sharp contrast 

with its synthetic counterpart (Fig 2C, D). When fragments were aggregated in bins of increasing 

sizes (hence, resulting in a loss of resolution) these blind regions gradually disappear, although 

the heterogeneity of the data remains consistently higher in the WT compare to synIV-3C strain, 

as showed by the increased span of the color-scales of the WT maps. 

In order to further quantify this heterogeneity, we computed the cumulative 

distributions of the number of contacts between bins separated by a given genomic distance s 

(bp) in the synIV-3C region and in its native counterpart for DpnII and HindIII (Figs 2C and 2D, 

respectively). The redesigned region systematically exhibited more homogeneous contacts 

counts and narrower distributions than the WT region, both at short (s = 2 x bins sizes; Figs 2C 

and D middle panels) and longer distances (Supplementary Note 5 and Figs S4, S5). Some of the 

bins in the native region remain almost invisible to the assay as a result of the heterogeneity in 

RF distribution (blue squares on Figs 2C and D middle panels). We computed the coefficient of 

variation CV (i.e. standard deviation /mean) of these distributions for multiple values of s. We 

use this value as an indication of the signal to noise ratio (Figs 2C and D right panels). 

Interestingly, we found that even for large bins, the CV is significantly and consistently smaller in 

the synthetic region, again indicating improved resolution. These results also clearly illustrate 
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the advantage of using a frequent cutter (DpnII vs. HindIII) restriction enzyme with respect to 

resolution since the distribution of contact counts between bins remains much more spread 

with HindIII than with DpnII, even for native sequences (Fig 2B).  

Chromosome conformation capture is a dynamic field: two approaches using modified 

restriction patterns have been recently used to increase/improve the resolution, DNAse Hi-C and 

Micro-C (Hsieh et al, 2015) (note also that enrichment steps of regions of interest do not 

alleviate the limitations associated to the natural restriction pattern described above, thus have 

no effect on the resolution per se). DNAse-HiC captures contacts between open chromatin sites. 

DNAse Hi-C was not been performed in yeast and therefore we did not compare Syn-3C with this 

approach. However, given the fact that DNAse sensitive sites are found approximately every 3 kb 

along the yeast genome (Ma et al, 2015), it is expected that DNAse Hi-C would give results 

comparable to Hind-III Hi-C. Micro-C, on the other hand exploits micro-Coccal nuclease (Mnase) 

to digest DNA rather than a restriction enzyme. This approach generates nonspecific cuts in-

between nucleosomes (every ~160bp), resulting in a relatively regular restriction pattern. Micro-

C reads were reprocessed and the outcome compared to Syn-3C redesigned region along 

chromosome 4. Although the Micro-C reads density is overall more regular than for a WT Hi-C 

experiment, nucleosome free regions generate some inhomogeneity in the distribution. At short 

distances (600bp) Micro-C and Syn-3C compared well, but the signal to noise ratio quickly drops 

for Micro-C at larger distances. In this frame, the two approaches aim at different objectives: 

whereas Micro-C captures well small domains, Syn-3C appears as an approach of choice to 

concomitantly i) improve the visibility of any given region from ~500bp and above, and most 

importantly ii) track trans interactions as well as iii) homologs.  

  

The yeast genome presents a relatively homogeneous GC content and few repeated 

sequences. The gain in resolution achieved by redesigning RS along the genome should 

therefore be even higher in organisms with more heterogeneous genomic content and will 

enable unbiased tracking of entire regions that are otherwise inaccessible to the experiment. 

One could envision, for instance, assembling the redesigned chromosome in yeast (Benders et 

al, 2010), before targeting the sequenced to replace its native counterpart in the organisms of 
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interest (such as a bacteria, or eventually on mammalian cells). Other advantages of the 

approach include the modularity of the assembly step (Supplementary Note 2), that allows the 

introduction of building blocks carrying genetic elements of interest within the redesigned 

region. For instance, one could introduce highly expressed promoters in the middle of “gene 

desert” areas, to investigate the effect of gene expression on the local chromatin structure. One 

can also “shuffle” some of these building blocks, to look at the influence of specific DNA binding 

proteins on the contact networks. In addition, an interesting follow up to this study is to cross 

our synIV-3C strain with a WT strain (or a strain with a different design) in order to resolve at the 

same time both homologs in a single experiment. Finally, the combination of Capture-C (Hughes 

et al, 2014) like approaches, which enrich the  regions of interests (tough without alleviating the 

inherent biases) to investigate the synthetic region will also boost the analysis depth to 

unprecedented levels. This specific 3C-friendly design is the first time, to our knowledge, where 

a large (>100kb) region of chromosome is specifically redesigned and assembled for the purpose 

of improving an assay so that we can now address more precisely and accurately specific 

questions related to the biology of the cell. It paves the way to more studies exploiting the 

power of synthetic biology to boost, refine, and maybe reshape traditional molecular biology 

approaches through orthogonal ones. 
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Figure Legends 

 

Figure 1 - synIV-3C design and assembly.  

A  Number of contacts made by RFs as a function of their size (HindIII (red) or DpnII (blue) in 

the native sequence. Top panel: log-lin scale. Bottom panel: log-log scale.).  

B  Illustration of the design principles of the synIV-3C sequence for the DpnII and HindIII 

RSs. Black arrow: chromosome. Grey rectangles: genetic elements. Blue and red vertical lines 

represent the RSs positions for the enzymes DpnII and HindIII, respectively. Top panel: restriction 

pattern of a (hypothetical) native sequence. Bottom panel: restriction pattern after synIV-3C 

design, with the RSs defining regularly spaced intervals.  

C  Distribution of the DpnII (left) and HindIII (right) RFs sizes in both the native and synIV-3C 

150kb redesigned sequence (red and blue, respectively).  

D Raw DpnII contact map of the Hi-C experiment performed on G1 daughter cells 

synchronized through elutriation(Marbouty et al, 2014b). Dashed lines: borders of the 

redesigned region. Plain black lines: borders of the contact map analyzed in Fig. 2.  

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169847doi: bioRxiv preprint 

https://doi.org/10.1101/169847
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2 – Reads coverage from Hi-C experiments performed with DpnII (A) and HindIII (B) 

restriction enzymes in synIV-3C and native strains, and mapped against the synthetic region and 

its natural counterpart, respectively. Note that the scale of the y-axis illustrates the 

heterogeneity of the coverage, with some positions in the DpnII map being overrepresented 

with respect to others. 

C, D Analysis of the contact counts along the synIV-3C region for DpnII (C) and HindIII (D). First 

column: synIV-3C (in red) and chromosome 4 native counterpart (blue) Hi-C contact maps. For 

each experiment, three different fixed bin sizes were analyzed (600 bp, 1200 bp and 2400 bp for 

DpnII, 2400 bp, 4800 bp and 9600 bp for HindIII). Middle panels: cumulative distribution of the 

number of contacts between bins located at a genomic distance s from each other’s (s = 2 x bin 

size). Right panels: distribution of the coefficient of variation (CV) as a function of s. 
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Design principles of Syn-3C chromosomes. 

We aimed at modifying the native sequence of a budding yeast chromosome according to 

our design principles while introducing as little modifications as possible. Because we were 

planning on re-assembling only a 150kb window within the genome, we scanned through 

the overall sequence using a scoring quality function to look for the candidate regions 

qualifying as the ideal target, i.e. where our principles would introduce a minimal number of 

mutations.  

The starting material was the S. cerevisiae SK1 strain genome sequence and annotations (Liti 

et al, 2009) and a list of 9 restriction enzymes (EcoRI, HindIII, NdeI, PstI, SacI, SacII, SalI, XbaI, 

XhoI and DpnII). RE were selected based on their low cost and restriction efficiency. A 

genome index file was then computed, that contained the following information for each 

base pair:  

 Whether it consists of a “forbidden mutation” site, defined by us as follow: i) start 

and stop codons of known ORFs, ii) regulatory transcription pre-initiation complexes 

binding regions identified through ChIP-Seq exo, encompassing TATA-box binding 

sites (Rhee & Pugh, 2012), iii) the consensus sequence of Autonomous Replicating 

Sequences (ARS), i.e. the core sequence within S. cerevisiae replication origins (list of 

ARS obtained from oridb (Siow et al, 2012), iv) intron borders, v) centromeres, vi) 

tRNA. 

 Whether the position belongs to a restriction site. 

 If it belongs to an intergenic or coding region, and in the latter case, the codon it 

belongs to and its position. 

Sliding windows of 150 kb moving with 10kb steps were then generated over the entire 

genome.  

In parallel, we defined the restriction pattern we wanted to generate: 

 Regularly spaced intervals for 400, 1,500, 2,000 and 6,000 bp 

 Gene promoter/terminator (substitutions within a coding sequence strongly 

preferred) 
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For each window, we computed all possible changes to apply to the genome so that all 

combinations of five out of the eight chosen 6-cutter enzymes were repositioned to 

generate all expected new restriction patterns. For each combination of 5 enzymes, all sites 

were first removed from the genome before being reintroduced at ideal positions. A margin 

of error in the positioning of the “ideal” position was tolerated (10% of the window size) to 

maximize the probability of introducing only synonymous mutations within the coding 

sequence. Once a RS was positioned, the position of the adjacent RS was adjusted based on 

the newly positioned site so that overall, the distribution of RFs remains as close as possible 

to the theoretical distribution. Overall, for each enzyme, a quality score was computed for 

each window based on the difference between the expected distribution of the site, and the 

real distribution. For each combination of enzyme, a global score corresponding to the sum 

of the individual scores of each enzyme was computed (see Fig S1 for schema and more 

details).  

Overall, we selected the 10 “best” windows located at least at 150 kb from either a 

centromere or a telomere. The quality score was weighted by the presence of “forbidden 

positions” within the window, for instance when a start codon overlaps a restriction site to 

be deleted. Finally, a manual curation, aiming at fixing potential conflicts (such as 2 RSs 

overlapping the same bases, or accidental re-creation of a RS of one enzyme when 

processing a second one), followed, and was performed on the genome windows presenting 

the best quality scores.  

We chose the final window based also on our research interests, i.e. containing at least two 

early replicating replication origins (Siow et al, 2012; Raghuraman et al, 2001), and several 

hotspots of meiotic DNA double-strand breaks (Pan et al, 2011). We also attempted to avoid 

too many retrotransposable elements or other DNA repeats. The final window was 

positioned on chromosome IV::700,000-850,000, with restriction patterns as follow: DnpII 

↔ 400 bp window; XbaI ↔ 1,500 bp window; HindIII ↔ 2,000 bp window; NdeI ↔ 6,000 

bp window; HhaI ↔ promoter/terminator (see summary on Fig S2). 1037 mutations were 

present in the sequence, the vast majority corresponding to the modifications necessary to 

reorganize DpnII RS (Table S1). Overall, 1037 mutations were introduced, corresponding to 

0.7% divergence.  
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Table S1. Mutations necessary to remove and generate new sites along chromosome 4 

700,000::850,000 window.  

 deletion new sites 

HindIII 58 61 

NdeI 34 23 

XbaI 25 76 

dpnII 442 310 

Total 559 470 

 

In addition to these mutations, a number of other modifications were introduced into the 

sequence. First, PCRTags similar to those used in the Sc2.0 design(Annaluru et al, 2014; 

Dymond et al, 2011) specific to either the native or synthetic sequence were also introduced 

within the window. Performing PCR using these primers allow testing for the presence and 

absence of the synthetic and native sequence, respectively. PCRTags were manually curated 

to adapt them to the restriction design, and overall 59 PCR tags out of 154 needed to be 

modified accordingly. 

Overall, a total of 3229 bp were modified (2% of the 150,000 bp window). 743 codons were 

modified, but no change in the sequences of the corresponding proteins were introduced. 

Although we took great care in the design of the sequence and algorithm, our ongoing 

experiments nevertheless suggest slight modifications in the design principles that have the 

potential to facilitate both the design and the analysis of the experiment. First, windows of 

400 and 1,000 bp are probably sufficient to assay the structure at a high resolution. Second, 

during curation one could manually remove the extremely small RFs generated throughout 

the process and that nevertheless pass all the quality filters (such as the tiny RFs still visible 

in the DpnII restriction pattern of the Syn-3C region in Fig 1C). Third, SNPs have to be 

introduced in repeats or low complexity DNA to facilitate mapping of the reads. Fourth, that 

the WT and Syn-3C sequence are sufficiently divergent to be analyzed using cheaper short-

read technologies (such as paired-end 50bp Illumina for instance) can also be imposed by 

introducing extra silent mutations in the sequence. Finally, a possibility to find the best 
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frame for each interval/pattern is to start with the positions of RS overlapping forbidden 

sites as seed.  

 

Figure S1. Diagram of the workflow.  

1 Annotation corresponds to CDS, ARS, telomere regions, retrotransposable elements, 

mating type loci, tRNA, Sn/Sno RNA, rDNA, ncRNA, intron motives, TATA box. All those 

features but CDS were labelled as « forbidden », preventing any nucleotide substitution in 

these regions. 

2 DpnII, HindIII, SacI, EcoRI, NdeI, SacII, SalI, XbaI and XhoI 

3 Were considered as putative restriction sites DNA sequences differing with one base pair 

from the RS recognized by an RE.  

4 The sequence modifications were allowed only in non-forbidden positions. In CDS silent 

mutations were introduced. When two sites overlapped the minimum changes needed were 

selected. When possible, we favored A <=> G and C <=> T substitutions. A validation step to 
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test whether or not the deletion of one site creates a new site was performed after each 

modification, and if so, a new modification was sought for. 

5 Modifications to generate new sites were also only introduced at non-forbidden positions. 

Only silent mutations were introduced within coding regions. 

6 583 x 150 kb windows with 10 kb overlaps were generated over the entire genome, 

excluding telomeres and 75 kb from each side of centromeres. 

7 Here, 400 bp, 1,500 bp, 2,000 bp and 6,000 bp 

8 For each 150Kb window and each interval the following steps were performed: 

 for each enzyme, for each starting point: putative sites within the first bin of the 

window (0 - 0+spacing) 

 find the putative sites at position n+1 at a distance interval +/-10% from position 

n until the end of window 

9 For each window, a score is calculated as follows: 

 for each interval, a score is calculated for each enzyme based on the Median 

Absolute Deviation (MAD) 

 the best enzyme exhibiting the lowest score was chosen for each interval. Each 

spacing must have a different enzyme, so multiple combination of enzymes were 

computed for each window. 

 The window score is calculated as the sum of the 4 chosen interval score 

 

 

Figure S2. (a) Illustration of the design principles of the synIV-3C sequence. Black arrow: 

chromosome. Grey rectangles: genetic elements. Yellow, green, blue, red and purple vertical 

lines represent the restriction sites positions for the enzymes DpnII, XbaI, HindIII, NdeI and 

HhaI, respectively. Top panel: restriction pattern of a (hypothetical) native sequence. Bottom 

panel: restriction pattern after synIV-3C design, with four enzymes defining regularly spaced 

intervals, and the fifth one decorating genes promoter and terminator. (b) Distribution of the 
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DpnII (left) and HindIII (right) RFs sizes in both the native and synIV-3C 150kb redesigned 

sequence (red and blue, respectively).  

  

Assembly of the redesigned chromosome. 

The redesigned sequence was split into 52 fragments of ~3,000 bp (i.e., block), with 200 bp 

overlaps between them. In addition sequences corresponding either to the auxotropHi-C 

marker genes URA3 or LEU2 were added to blocks 20, 37, 52 (URA3) and blocks 11, 28, 47 

(LEU2), followed by 200 bp sequences of the WT neighboring chromosomal region. The 

replacement of the native sequence of strain BY4742 with the redesigned blocks was 

performed through a succession of six transformations, up to 11 blocks at a time(Muller et 

al, 2012). 

After each transformation, independent colonies were sampled and PCRs performed at the 

PCR tags positions to identify the transformants that have replaced all of the native 

sequence with the redesigned one (Fig S3). Upon the last transformation, the selected 

transformant genome was sequenced and the region 707,556-852,114 (144,558 bp) was 

found to be replaced by the synthetic blocks. 

In parallel, growth assays were performed to see if the transformant exhibited small losses in 

fitness. Little to no growth defect could be identified when blocks 1 to 47 replaced the native 

sequence. Interestingly, the last transformation using blocks 48 till 52 led repeatedly to the 

recovery of transformants exhibiting a slow-growth, petite phenotype (Slonimski, 1949), 

reflecting a block in the aerobic respiratory chain pathway and a decrease in ATP.  Since the 

region concerned by the 6th transformation only involved a few kb, we decided to move 

further regarding the analysis exploiting the 145 kb already successfully reassembled. We 

also observed that crossing with a WT strain gave diploids without growth defects. 

Sporulation of these diploids gave offsprings with growth rates also similar to WT, suggesting 

stable complementation of mitochondrial genomes. 
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Figure S3. Strain assembly strategy. (a) Building blocks are iteratively integrated in the 

genome of S. cerevisiae through homologous recombination following transformation. An 

alternating auxotropHi-C selection and counterselection of uracil and leucine is performed to 

select for transformants likely to have replaced their native sequence by the redesigned one 

between the two extremities of the targeted region (see Muller et al, 2012; Annaluru et al, 
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2014 for details). (b) That the replacement of the native sequence by the synthetic one 

occurred over the entire targeted region is then controlled by PCR in transformants cells. For 

each transformation, PCR tags amplifying either the native or the redesigned genome 

confirm that the redesigned DNA was integrated over the entire region. The genome of the 

selected transformant is then sequenced as a control. (c) Growth curve of two independent 

subclones of the selected transformant vs two independent subclones of the parent lineage. 

Each curve is computed out of 8 independent cultures. 

 

RNA Isolation from Yeast for RNA Sequencing 

Total RNA isolation and analysis of BY4742 and Syn3C strains, were realized on three 

biological replicates. Single yeast colonies were grown in a 2 mL culture in YPD overnight at 

30°C. The next morning, 10 mL cultures in YPD were started from 106 cells/mL until they 

reached 2.107 cell/mL. The cells were pelleted by spinning at 5000 rpm at 4°C for 5 min. The 

pellet was resuspended in 0.5 mL of Tris-HCl (10 mM, pH 7,5) and transferred to a microfuge 

tube. The cells were pelleted again by spinning briefly and discarding the supernatant. The 

cells were resuspended in 400 µL RNA TES buffer (10 mM Tris-HCl, pH 7.5 10 mM EDTA 0.5% 

SDS). 400 µL of acid phenol/chloroform was then added to the cells and vortexed for 1 min, 

and heated at 65°C for 30 minutes, briefly vortexing some time to time. The cells were 

placed on ice for 5 min band centrifuge at 13000 rpm at 4°C for 5 min. The aqueous layer 

(~400 µL) was then transferred into another microfuge tube; an equal amount of 

phenol/chloroform acid was added a second time, mixed well and centrifuged at 13000 rpm 

at 4°C for 5 min. The RNA (~400 µL) was precipitated by adding 40 µL of sodium acetate (3 

M) and 1,1 mL of absolute ethanol and incubating the tube at −80˚C for a least 30 min. The 
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RNA was pelleted by centrifuging at 13000 rpm at 4˚C for 20 min. The RNA pellet was then 

washed with 500 µL of 70% ethanol, air-dried and then resuspended in 50 µL of water. 15 µg 

were treated with 2U of DNase TURBO (Invitrogen) and cleaned up by phenol extraction and 

ethanol precipitation before being prepared for sequencing. 

 

RNA-Seq Analysis of synIII 

Single-end non-strand-specific RNA-seq of the Syn3C and BY4742 were performed using 

Illumina Nextseq and standard TruSeq preparations kits, after depletion of ribosomal RNA. 

Reads were mapped using Bowtie2 to the reference S. cerevisiae BY4742 and Syn3C 

genome. For each gene, reads were counted if mapping quality was lower than 30 and 

analyzed for differential expression using DESeq2, with standard parameters. 

 

Hi-C experiments and contact maps generation 

S. cerevisiae G1 daughter cells of the redesigned strain were recovered from an 

exponentially growing population through an elutriation procedure (Marbouty et al, 2014). 

Hi-C libraries were generated as described (Cournac et al, 2015; Dekker et al, 2002) with 

introduction of a biotin-ligation step in the protocol (Lieberman-Aiden et al, 2009). G1 

daughter cells were cross-linked for 20 minutes with fresh formaldehyde (3% final 

concentration). To generate the libraries with different restriction enzymes, aliquots of 3 x 

109 cells were resuspended in 10 ml sorbitol 1M and incubated 30 minutes with DTT 5mM 

and Zymolyase 100T (CFinal=1 mg/ml) to digest the cell wall. Spheroplasts were then washed 

first with 5 ml of sorbitol 1M, then with 5 ml of 1X restriction buffer (depending on the 

restriction enzyme used). The spheroplasts were then resuspended either in 3.5 ml of the 

corresponding restriction buffer (NEB). For each aliquot/experiment, the cells were then 

split into three tubes (V=500µL) and incubated in SDS (3%) for 20 minutes at 65°C. 
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Crosslinked DNA was digested at 37°C overnight with 15 units of the appropriate restriction 

enzyme (NEB, DpnII, HindIII or NdeI). The digestion mix was then centrifuged for 20 minutes 

at 18000 g qnd the supernatant discarded. The pellets were then resuspended and pooled 

into 400 µL of cold water. Depending on the sequence of the restriction site overhangs, the 

extremities of the fragments were repaired in the presence of either 14-dCTP biotin or 14-

dATP biotin (Invitrogen). Biotinylated DNA molecules were then incubated 4 hours at 16°C in 

presence of 250 U of T4 DNA ligase (Thermo Scientific, 12.5 ml final volume). DNA 

purification was achieved through an overnight incubation at 65°C in presence of 250µg/ml 

proteinase K in 6.2mM EDTA followed by precipitation step in presence of RNAse. 

The resulting 3C libraries were sheared and processed into Illumina libraries using custom-

made versions of the Illumina PE adapters (Paired-End DNA sample Prep Kit – Illumina – PE-

930-1001). Fragments of sizes between 400 and 800 bp were purified using a PippinPrep 

apparatus (SAGE Science), PCR amplified, and paired-end (PE) sequenced on an Illumina 

platform (HiSeq2000; 2 x 75 bp). The accession number for the data reported in this paper is 

[Database]: [xxxx] (under completion).  

  

  

Processing of the reads and contact maps generations 

The raw data from each 3C experiment was processed as follow: first, PCR duplicates were 

collapsed using the 6 Ns present on each of the custom-made adapter and trimmed. Reads 

were then aligned using Bowtie 2 in its most sensitive mode against S. cerevisiae reference 

genome (native genome) or against the S. cerevisiae reference adapted for the Syn-3C region 

on chromosome 4 (SynIV-3C genome). An iterative alignment procedure was used: for each 

read the length of the sequence mapped increases gradually from 20 bp until the mapping 

became unambiguous (mapping quality > 30). Paired reads were aligned independently and 

each mapped read was assigned to a restriction fragment. Religation events has been 

filtered out through the information about the orientation of the sequences as described 

in(Cournac et al, 2012). The distribution of the reads along the synthetic region and its native 

counterpart is represented in Fig 2.  
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Contact matrices were built for the wild type and the mutant by binning the aligned reads 

into units of single restriction fragments. DpnII and HindIII contact maps for the SynIV-3C 

region and its native counterpart were randomly resampled in order to present the same 

number of contacts. The raw contact maps were then subsequently binned into units (i.e. 

bins) of 600, 1,200, 2,400, 4,800 and 9,600 base pairs. Contacts maps were generated using 

the levelplot function of the R lattice package. 

Matrices for the synthetic region and 7 other control regions (see Supplementary Note 5 

below) were subsequently obtained by extracting the diagonal blocks for bins falling in the 

719,756bp to 849,206bp interval, for the synthetic region, and 460,856bp to 590,306bp, 

590,306bp to 719,756bp, 849,206bp to 978,656bp, 978,656bp to 1,108,106bp, 1,108,106bp 

to 1,237,556bp, 1,2375,56bp to 1,367,006bp, 1,367,006bp to 1,496,456bp for the controls. 

Outliers has been removed from the matrices if the number of the contacts surpassed by 20 

times the top 5‰ threshold of the number of contacts between restriction fragment pairs.

  

The accession number for the sequences reported in this paper is BioProject: XXX. 

http://www.ncbi.nlm.nih.gov/bioproject/XXX  

 

Statistical analysis 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169847doi: bioRxiv preprint 

https://doi.org/10.1101/169847
http://creativecommons.org/licenses/by-nc-nd/4.0/


Construction of contact histogram. Cumulative histograms were generated from contact 

maps for the different bin sizes (Fig S4).  

Figure S4. Generation of contact histograms. (a) Contacts made at fixed distance s are 

positioned along a diagonal (dark mask) that runs parallel to the main diagonal (triangle 

base). The histograms and the cumulative histogram as a function of s were then computed. 

The cumulative histograms were then computed for several values of s, here we report 

cumulative distributions of contacts as a function of s and bin size for DpnII (b) and HindIII (c) 

Hi-C contact maps. Histograms for selected values of bin sizes and distances s has been 
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reported in Fig 2 in the main text. Blue line: native region. Red line: synthetic region.  For 

small bin sizes (s = 600bp), the distribution of contacts of the redesigned region appeared 

systematically narrower than for the native region, with most bins being “visible”, i.e. 

containing at least one read. The gain in resolution somehow fades away for the frequent 

cutter when the bin size increases, but, interestingly, the visibility of the bins remains 

nevertheless systematically better. For HindIII, the gain in resolution is always considerably 

better in the redesigned vs. the native sequence.  

 

Quality improvement: the CV is defined as the ratio between the standard deviation and the 

mean of the contact histograms at fixed distance s; to take into account the finite-size effect, 

we discarded bins at the edge of the contact matrix in order to keep the statistics (number of 

bins) for different values of s constant, up to s < 15,000 bp in DpnII and s < 70,000 bp in 

HindIII datasets. Fig 2 show a consistent improvement in the CV within the redesigned SynIV-

3C compared to the native counterpart. In order to show that the improvement is specific to 

the new restriction pattern and is unlikely to be find spontaneously within the genome, we 

compared the SynIV-3C results with seven regions of similar size (see Supplementary note 4) 

along chromosome 4. The quality improvement was assessed by computing the logarithm of 

the ratio of the CVs of the SynIV-3C and native region (Fig S5). 
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Figure S5. The histogram of ratio of the CVs between SynIV-3C and WT strain, for all values 

of distance s (for s < 15,000 in DpnII and s < 70,000 in HindIII datasets) in the control regions 

(blue bars) compared to the mean over s of this value in the synthetic region (red dot). Only 

the synthetic region show a quantitative improvement of statistical significance. 
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