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Recent empirical evidence suggest that trade-
off shapes can evolve, challenging the -classica
image of their high entrenchment. Here we model
the evolution of the physiological mechanism that
controls the allocation of resources to two traits, by
mutating the expression and the conformation of
its constitutive hormones and receptors. We show
that trade-off shapes do indeed evolve in this model
through the combined action of genetic drift and
selection, such that their evolutionarily expected
curvature and length depend on context. Despite
this convergence at the phenotypic level, we show
that a variety of physiological mechanisms may
evolve in similar simulations, suggesting redun-
dancy at the genetic level. We anticipate that more
complex evolutionary scenarios should tighten this
link between genotype and phenotype. This model
should provide a useful framework to interpret the
overly complex observations of both evolutionary
endocrinology and evolutionary ecology.

I. INTRODUCTION

Evolutionary biologists have long known that heri-
table characters (or traits) usually do not vary indepen-
dently from each others (Stearns, 1992; Roff, 1993).
Such pleiotropy is thought to hinder adaptive evolution,
both because it restricts the available combinations of
traits and because mutations are less likely favorable
when they impact many traits (Fisher, 1930; Orr, 2005;
Paaby and Rockman, 2013; Hine et al., 2014). How
pleiotropy evolves, and whether it is universal — i.e.
every gene contribute, to some extent, to all traits —
or restricted is the subject of an old but still ongoing
debate (Wright, 1980; Wagner et al., 2008; Wagner
and Zhang, 2011; Hill and Zhang, 2012; Wagner and
Zhang, 2012).

For many traits — when scaled such that they cor-
relate positively with fitness — pleiotropy takes the
form of a negative relationship called trade-off (Cody,
1966; Gadgil and Bossert, 1970; Stearns, 1989). Al-
though trade-offs are usually detected by fitting simple
regression models (e.g. Charnov and Ernest, 2006;
Walker et al., 2008; Mappes et al., 2004; Roff et al.,
2002; Tucic et al., 2005; Roff et al., 2003; Andersson
et al., 2002; Hanski et al., 2006), these relationships are
not necessarily linear. Their precise shape is actually
a major evolutionary parameter that, by constraining
movements on fitness surfaces, conditions evolutionary
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outcomes (Levins, 1968; de Mazancourt and Dieck-
mann, 2004; Leslie et al., 2017; Verin et al., 2017;
Pasztor et al., 2016). Trade-off shapes have long been
considered inescapable constraints on the combination
of traits that can exist, but this view is changing
(Braendle et al., 2011; Garland Jr and Carter, 1994).
Indeed, recent empirical work has shown that trade-off
shapes are highly context-dependent, responding plas-
tically to experimentally manipulated environmental
changes (Jessup and Bohannan, 2008; Maharjan et al.,
2013; Messina and Fry, 2003; Sgro and Hoffmann,
2004). Moreover, trade-off shapes have been shown to
change in a heritable manner, and evolve in organisms
placed in experimentally manipulated environments
(Roff et al., 2002; Leroi et al., 1994).

It is commonly accepted that negative relationships
prevail because they result from the differential alloca-
tion of finite resources (Van Noordwijk and de Jong,
1986; Stearns, 1989; Agrawal et al., 2010; Stearns,
1992; Roff, 1993; Harshman and Zera, 2007; Reznick
et al., 2000; Zera and Harshman, 2001). In multicel-
lular organisms, resource allocation is regulated by
hormones, whose joint effect on several traits creates
so-called hormonal pleiotropy (Finch and Rose, 1995).
For example, the internal concentration in juvenile
hormone JH specifies the position — i.e. the combina-
tion of traits — along trade-offs between energetically-
reliant traits like fecundity and survival in Drosophila
melanogaster (Flatt, 2005) or fecundity and dispersal
in Gryllus firmus (Zhao and Zera, 2002). Due to the key
role of hormones as mediators of trade-offs, changes in
the endocrine system are good candidates to explain the
aforementioned plastic and heritable changes in trade-
off shapes (Ketterson and Nolan Jr, 1992).

The question of how the endocrine system changes
and responds to selection is addressed empirically by
the emerging field of evolutionary endocrinology (Zera
and Zhang, 1995; Cox et al., 2016a,b; Garland et al.,
2016). This field, unfortunately, lacks a theoretical
companion that would predict how endocrine systems
should evolve depending, for instance, on the ecolo-
gical context. The closest theory that has addressed
related questions originated with van Noordwijk and
de Jong’s seminal paper (Van Noordwijk and de Jong,
1986), and was later improved by dynamic energy
budget models (Kooijman, 1986, 2000; Jager et al.,
2013). These models consider ‘mutations’ that modify
resource allocation, thereby ignoring the regulatory
and coding mutations impacting the proteins that ac-
tually form the endocrine system. Therefore, despite
its momentous contribution to our understanding of
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evolution, this theory has presumably limited power to
explain how the endocrine system and trade-off shapes
should evolve.

Our aim with the present study is to initiate a
theoretical reflection on how endocrine systems evolve.
In this spirit, we built an evolutionary model where the
interactions between hormones and receptors control
the energy allocation to two trait-converting structures.
This model considers mutations that can change the
conformation and expression of hormones and recep-
tors. We show that, through the appearance and fixation
of these mutations, the shape of the trade-off between
the two traits does indeed evolve. Furthermore, this
shape is highly dependent on a rarely considered
parameter, the cost associated with resource storage.
Consequently, in the simple ecological setting conside-
red here, evolutionarily expected trade-off shapes and
their underlying endocrine mechanism should depend
both on the resource that is traded, and on parameters
that set the burden associated with storage structures

TRADE-OFF SHAPES DO EVOLVE

The conversion of an energetic resource into trait va-
lues is carried out by two specialized structures in our
model, whose efficiency decreases as the inward flow
of the resource increases (see SI figure 1). This flow
is contingent on the dynamics of hormone-receptor
binding at the surface of these structures, as newly
formed hormone-receptor complexes activate inward
transporters of the resource (see the Material and
methods section for a precise, mathematical description
of the model). Thus, following a meal — suddenly
increasing the internal concentration of the resource —
the resource may enter the converting structures, or a
storage structure insofar as the internal concentration
of the resource is above a threshold (figure 1). Past
this threshold, the resource is instead released from
the storage structure to maintain a constant internal
concentration. Storage comes with a cost, such that the
amount of the resource released may be lower than the
amount that had actually been stored. After the storage
structure has gone empty, the internal concentration of
the resource decreases until it reaches a critically low
value (figure 1). At this point, each individual’s fitness
is calculated as the sum of its trait values.

When gene expression noise is ignored, an indivi-
dual’s phenotype is entirely contingent on its genotype.
Four independent genes code for two hormones and
two receptors, whose expressions and conformations
may change, respectively due to regulatory and coding
mutations. These two types of mutation may impact the
hormone-receptor dynamics, with potential effects on
the resource allocation dynamics and thus on the trait
values. These mutations change in frequency through
the combined effect of drift and selection.

Our results show that trade-offs can, in principle,
evolve. A representative example of the ongoing evo-
lutionary dynamics is represented on figure 2-a. The
population is initially monomorphic, so its occupies a
single point on the phenotype space with low values
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FIGURE 1: The final trait values, 71 and T», depend
on the dynamics of the concentration of the resource
circulating the organism, [E], and stored, [Es]. [E] starts
at Eo immediately after a unique meal, and decreases
as the resource is both stored ([Es] increases) and used
by the two converting structures (77 and T increase).
As [E] decreases below a threshold Eom, the resource
is released from the storage structure ([Es] decreases),
which compensates for the energy used and converted
into traits 71 and T>. When no stored resource remains
([Es] = 0), [E] inevitably decreases (as 71 and 7> keep
increasing), until it reaches a minimum threshold. The
organism’s final trait values 71 and T calculated at this
point are used to assess its fitness. The hormones and
receptors at the surface of the two converting structures
control their resource intake, and thereby also the dyna-
mics of [E] and [Es], such that mutations of the expres-
sion and conformation of these proteins may change the
organism’s phenotype in a complex and unpredictable
way. We used specific parameter values to obtain a clear
illustration : Fo = 1, Eom = 0.6, Emin = 0.1, a = 0.0001,
Cstorage = 0.1, 2 = 0.1, b = 0.002, w = 0.1

of traits 1 and 2. As genetic variation builds up in
the population, the phenotypes spread along an almost
linear relationship (¢ = 1000 in fig. 2-a). Around times-
tep 3800 trait 1 increases following a trajectory nearly
parallel to the x-axis — in about half the simulations
trait 2 instead increased. This change conveys a very
sharp fitness increase because the population reaches
a different isocline in the fitness landscape. Then the
population roughly follows this isocline toward a point
where trait 1 equals trait 2 (f = 100000 in fig. 2-a).
This move in the phenotype space is actually associated
with a slight increase in fitness, due to the higher
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FIGURE 2: Trade-off shapes evolve in simulations where mutations change hormones’ and receptors’ conformation
and expression, and selection acts depending on the resulting trait values. Panel a shows a few important timesteps
in one representative simulation. We defined three parameters to study changes in shape systematically in an
ensemble of 100 identically parameterized simulations, by fitting a circle to sets of points at regular timesteps (see
text and Material and methods section |I-E). Panel b shows the temporal dynamics of the distance of the median
projection on the fitted circle to the origin. The natural logarithm of the fitted circle’s radius (inversely related with
the trade-off curvature) is represented in panel ¢, and the length of the trade-off (i.e. the distance along the circle
between the two most distant projections) is represented in panel d. 99 replicate simulations are represented in grey
in panels b-d, and the simulation in panel a is outlined in black. Dots and bar represent respectively the mean and
quantiles (0.1 and 0.9) of each parameter’s distribution (across simulations) at each timestep. Standard parameter
values where used (as defined in the Material and methods section), and Cstorage = 0.7.

efficiency of resource conversion when the two trait-
converting structures are equally employed.

We identify changes in the shape of the trade-off
by fitting a circle to the combinations of traits that
coexisted at any time point in our simulations (see
the Material and methods section 1I-E and figure 3).
We projected each individual datapoint on the fitted
circle, and calculated the Euclidean distance d of the
median projection to the origin. Because d is closely
related with fitness, it increases during the simulation
(figure 2-b). The trade-off curvature decreases as the
circle’s radius 7 increases; we thus use log(7) as a
negative proxy for curvature. As shown in figure 2-c,
the curvature increases rapidly during the simulations.
We also estimate the trade-off length as the distance
between the two most distant projections on the circle,
whose between-simulation mean quickly stabilizes to
about 0.6 (figure 2-d).

THE EVOLUTION OF TRADE-OFF SHAPES DEPENDS
ON STORAGE COST

As mentioned above, our model includes a parameter
Citorage for the cost of storage, which in nature comes
from two distinct sources. First, large molecules need
to be produced for storage and later broken down at
the time of release (Hers, 1976; Meyers, 1995; Alonso
et al., 1995); second, maintaining storage structures
can be costly and the added weight and volume
might have negative consequences for the organism’s
fitness. The cost of producing storage molecules is

Trait 2

Trait 1

FIGURE 3: We extracted three descriptive parameters
termed [ (for length), d (for distance to the origin) and
7 (for radius) by fitting a circle to the phenotypes (trait
1, trait 2) at the end of our simulations. We minimized
the squared distances of the orthogonal projection of
individual datapoints to obtain # and the center of the
circle (at the intersection of the horizontal and vertical
lines). Then we calculated d as the distance of the me-
dian projection to the origin, and [ as the distance along
the circle between the two most distant projections.
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likely dependent on the resource : various types of
molecules are ingested during a meal, with specific
storage constraints (Williams et al., 1963). Carbohy-
drates like glucose, for instance, are stored under the
form of glycogen, which is rapidly converted back into
an energetic resource but requires a large amount of
water — and thus a large volume and weight — for
storage, contrary to lipids that are stored as fatty acids
(Schmidt-Nielson, 1997). Specific advantages and di-
sadvantages associated with each resource may trans-
late into specific storage costs, likely in interaction with
the ecology of the species considered. For example, the
added weight might have a moderate fitness impact for
marine species compared to aerial ones.

We varied this cost between 0 and 1 and found
that the evolutionarily expected shape parameters dras-
tically change in response (figure 4). As the cost
increases, populations reach lower trait values (and are
therefore at a lower distance to the origin, fig. 4-a),
as an increasing part of their resources are inevitably
wasted. Presumably, the genotypes that evolve under
a specific storage cost optimize the speed of resource
consumption. Faster consumption would lead to a less
efficient energy conversion, while slower consumption
would require storing more resources, and paying the
associated cost. Under a high storage cost, selection
thus favors rapid converters that allocate a similar
amount of energy to each trait. A deviation from this
ideal allocation decreases the efficiency of the most-
used converting structure, which explain that the trade-
off becomes more curved — i.e. that log(7) decreases
— as the storage cost increases (fig. 4-b). The trade-
off length, representative of the population’s standing
genetic variation, decreases conjointly (fig. 4), likely
because extreme individuals on these highly curved
trade-offs have low fitnesses.

A comparison of these results with those of a neutral
model indicates that selection plays a major role in
the evolution of trade-off shapes. Presumably due to
the absence of selection for an optimum conversion
speed, the curvature of trade-offs here evolves inde-
pendently of the storage cost (fig. 4-b). The trade-off
length, nonetheless, decreases slightly as the storage
cost increases in the neutral model (fig. 4-c). This is
likely linked to the parallel decrease in the distance
from the origin d observed in figure fig. 4-a, since a
low d limits the maximum length that trade-offs with
any shape can reach.

HOW HERITABILITY EVOLVES

Trade-off shape parameters such as the curvature
remain rarely estimated in field or laboratory experi-
ments. Heritability, however, is a common metric used
in these studies to quantify the amount of variation
along a trade-off on which selection may act. We
quantified narrow sense heritability h? as the ratio of
the additive genetic variance to the whole phenotypic
variance in our simulations. Strikingly, this parameter
is almost independent to the cost of storage (fig. 5-
a) once this cost is above 0.1. The expected value of
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FIGURE 4: Evolutionarily expected shape parameters
depend on the cost associated with storage Csiorage,
due to selection. The impact of selection appears by
comparing the evolutionary expectations of a model with
directional selection on both traits (in blue) with those
of a neutral model (in grey; individuals have identical
fithesses in this model, independent of their trait values).
Definitions for the shape parameters can be found in
the text, in the Material and methods section II-E, and
in figs. 2,3.

h? is then close to 0.5, which corresponds roughly
to the most expected value in a compiled dataset
of morphological traits (see figure 3 in ref. (Arnold,
2014).

While our predictions seem to match empirical
observations on average, variance in observed values
of h2 is far greater than in our simulations, which
is unlikely to be explained only by sampling noise.
This illustrates that different traits may have different
heritabilities, for instance due to particular ecological
and population contexts. At this point, we are unable
to consider using our model of arbitrary traits evol-
ving in oversimplified ecological settings. Nonetheless,
we can introduce a potentially important factor for
the evolution of heritability that directly impacts the
underlying physiological mechanisms : noise in gene
expression. In figure 5-a as in the rest of the results
presented so far, no noise was considered, such that the
phenotype was entirely dependent on the genotype —
h?2 is then lower than 1 due to dominance and epistasis.
We modeled noise in gene expression by multiplying
each gene expression by 10¢, where € is sampled from a
normal distribution with mean 0 and standard deviation
0a. As shown in figure 5-b, increasing o, decreases h?
in a threshold-like manner : below ¢ = 0.5, heritability
remains close to its value in the absence of noise,
while above this threshold h? rapidly vanishes — for
comparison, mutations are modeled using a standard
deviation o, = 0.5, such that if noise had the same
effect as mutations h? would be close to 0.

We have also studied the impact of noise on the
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FIGURE 5: Evolutionarily expected heritabilities (narrow sense, h?) are almost independent of the storage cost
Csiorage bUt are strongly impacted by increasing levels of noise (o) in gene expression. h? was calculated as the
ratio of the genetic additive variance to the phenotypic variance in populations evolved over 100000 generations,
giving a distribution of values for each context (Cstorage,om) considered. We represented the means (dots) and
quantiles (0.1 and 0.9, bars) of these distributions. Performing calculations on trait 1 (71), trait 2 (7%), or on the angle
of each individual on the fitted circle (3, see Material and methods section lI-E) has no visible impact on the results.

shape parameters of the trade-offs (SI figure 2). The
curvature of the trade-off decreases as noise increases,
which may have two distinct causes. First, more linear
trade-offs may be selected as they make the organism
robust to noise (Wagner, 2005; Draghi and Whitlock,
2015). Indeed, if the trade-off is more linear and
aligns with the fitness isoclines, perturbations of gene
expression levels still move individuals along trade-
offs, but these moves have moderate fitness conse-
quences. Second, noise has the effect of diminishing
the strength of selection (Mineta et al., 2015). Hence,
as noise increases in our simulations, it is possible
that selection on the curvature weakens, such that the
curvature decreases towards the neutral expectation
(see figure 2).

THE LEVEL AT WHICH EVOLUTION CONVERGES

At this point we need to introduce the classical
heuristic of genotype networks, which are made of
nodes (each one a genotype) connected by mutations
or recombination events (fig. 6 (Maynard Smith, 1970;
Draghi et al., 2010; Rajon and Masel, 2013)). Typi-
cally, a genotype has a restricted number of neighbours
relative to the total number of nodes in the network.
When it harbors standing genetic variation (SGV), a
population occupies a certain number of nodes on the
network. Since SGV arises from short-lived mutations
and recombination events (Barrett and Schluter, 2008;
Lerouzic and Carlborg, 2008), the population likely
occupies a small subset of the whole genotype space
at any point in time. This subset defines the features
of SGV, including a trade-off’s shape. In the longer
term, a population might make larger moves in the
genotype space, changing its mutational neighborhood
and thereby, possibly, the shape of its trade-off(s).

As we have seen, e.g. in figure 2, evolution is clearly
convergent at the phenotype level — similar trade-off
shapes evolve in similar contexts. We next ask whether
evolution is also convergent at the physiological and
genetic level. As anticipated by Garland and Carter
(Garland Jr and Carter, 1994), convergence at these low
levels would mean that organisms confronted to similar
problems evolve identical mechanisms. This means
that a unique neighborhood on the genotype space
should yield a particular trade-off shape, as represented
in figure 6-a.

We analyzed the genotypic variation in our evolved
populations using a Principal Component Analysis
(PCA) to test this hypothesis. Using the conformations
of hormones and receptors in this analysis would be
irrelevant, because the same affinity can be obtained
by many pairs of hormone and receptor conformations.
Instead, for each genotype, we identified the receptor
that is closest in conformation to each hormone. Our
first variable is the shortest difference in conforma-
tion, followed by the expression of the corresponding
hormone and its population variance (we extracted
the same variables for the second hormone). We also
included in our dataset the concentrations of receptors
and the ratios of these concentrations on the two
converting structures. Under the assumption that only
a single neighborhood can produce a specific trade-
off shape, this analysis should reveal an association
between the context (here the storage cost) and the
genotype. Contrary to our expectation, however, this
analysis revealed no structure in the genotypic data
associated with the storage cost (fig. 7).

Therefore, evolution is not convergent at the ge-
notype level — the evolutionarily expected genotype
cannot be predicted from context. This may be explai-
ned by redundancy at the genotype level, such that
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6

FIGURE 6: Two genotype spaces illustrate the two hypothesized relationships between the genotype (and hence
the physiological mechanism) and the phenotype. Genotypes are represented by nodes, linked by mutations or
recombination events. The phenotype is specified by a color for some genotypes, corresponding to the trade-off
shapes represented in the center of the figure. In panel a, the two colored mutational neighborhoods are unique
solutions to generate a given trade-off shape (no redundancy), whereas in panel b several mutational neighborhoods
can lead to similar phenotypes (redundancy at the genotype level).
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FIGURE 7: A PCA on genetically encoded physiological
variables at the end of our simulations shows no asso-
ciation between these variables and the context, here
represented by the storage cost (Csiorage). The two first
axes of the PCA are shown, whose relative contribution
to the overall variance is shown in grey on the barplot in
the bottom right part of the main panel.

i

several subsets of the genotype space produce similar
phenotypes, as illustrated in figure 6-b. At first sight,
this prediction seems incompatible with empirical ob-
servations indicating that major regulators in endocrine
mechanisms are strongly conserved (Tatar et al., 2003;
Barbieri et al.,, 2003), suggesting that evolution has
found few solutions to a given problem. However,

this observation could also be explained by a specific
structure of the genotype space preventing large evo-
lutionary moves between similar neighborhoods. This
situation can be pictured in the hypothetical genotype
space in figure 6-b by giving genotypes represented
by white dots very low fitnesses : changes in trade-off
shapes are still possible (some ‘orange’ genotypes have
‘blue’ neighbors) but reaching distant neighborhoods is
highly unlikely.

Importantly, this apparent discrepancy between ob-
servations and predictions might be due to a necessary
lack of details in our model. Our model is a first step
toward an evolutionary theory inclusive of physiologi-
cal mechanisms and phenotypic relationships. We thus
leave the role of examining which details are impor-
tant to future studies. We foresee that more complex
physiological mechanisms that, for instance, respond
to environmental and physiological cues, might be
achieved by more restricted sets of genotypes. This
could create a closer association between genotype and
phenotype, and explain that regulatory mechanisms are
so conserved in nature.

Nonetheless, despite its simplicity the model pre-
sented here does produce physiological features that
are also observed in nature. For example, we have
found that the affinity between hormone and receptor
is generally lower than its maximum possible value (SI
figure 2), similar to observations in rats (Blair et al.,
2000). While this lower-than-maximum affinity is so-
metimes associated with faster responses to changes
in hormone concentrations, such reactivity does not
provide a selective advantage in our model. Instead
a lower-than-maximum affinity could evolve because
it optimizes the rate of hormone-receptor binding at
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equilibrium. Indeed, selection favors an increase in the
speed of resource consumption as the cost of storing
resources increases — because consuming slowly, and
thus storing resources, is costly — which is limited by
the inefficiency of converting resources into traits as
the speed increases. In figure SI figure 2, we see that
faster consumption is at least partly achieved in our
model by increasing the affinity between hormones and
receptors, but that the distance in conformation remains
positive even for very high costs of storage.

II. MATERIALS AND METHODS

The model considers the conversion of an energetic
resource by specialized structures into two traits under
directional selection. Hormones may bind a surface’s
receptor, which activates inward transporters of the
resource. We assume that the resource intake ("meal"”
thereafter) takes place once the hormone-receptor dy-
namics has reached its unique equilibrium (studied in
subsection II-A). The model then considers the dyna-
mical absorption of the resource by the two converting
structures as well as exchanges with a storage structure
(subsection II-B). The energy accumulated by struc-
tures is immediately converted into two traits values
(subsection II-C). We let this physiological mechanism
change by mutation and evolve under the influence
of selection and drift as described in subsection II-D,
and analyse these simulation results as described in
subsection II-E.

A. Hormone-receptor binding dynamics

A single structure produces two hormones whose
internal concentrations are denoted [Hy] (with k €
{1,2}), and another structure degrades them. Two
structures converting energy into traits express recep-
tors on their surface. The concentration of receptors
of type ¢ on structure j is denoted [R;;] (we ignore
the specific processes of production and degradation of
receptors). Hormone % and receptor ¢ form complexes
at rate kon,, (depending on their respective confor-
mations, see Hormone-receptor binding affinity), and
complexes dissociate at rate ko; . The concentration
of complexes formed between receptor ¢ and hormone
k on structure j is denoted [R;;Hj]. The hormone-
receptor binding dynamics are described by the generic
equations [1]-[5] below. n; and ng are respectively the
number of receptor types and the number of converting
structures.

Free circulating hormones. The concentration of hor-
mone k, [Hy|, increases as the hormone is produced at
a rate oy, (first term in equation [1]) and as hormone-
receptor complexes dissociate at a rate kog. All n; re-
ceptors on each structure are considered in the second
term of equation [1]. [H}] decrease as complexes form
(third term) at rate ko,,, specific of the receptor type i
and of the hormone k, and due to unspecific hormone
degradation (last term).

7

Ny Ny

e 1 (e

(ko % [Rif] % [Hm) k% [So] % [Hyl
(1)

Free receptors. The number of free receptors increases
as complexes dissociate and decreases as complexes
form with each of the ny hormones produced by the
organism (equation [2]).

d[f;;”] — i((koffx [R”Hk}) — (konik X [RU] X [Hk]))

k=1
2)
Hormone-receptor  complexes. The number of
hormone-receptor complexes increases as hormones
bind on receptors and decreases as complexes
dissociate (equation [3])
d[Ri; Hi]
dt
The concentration of receptor 4 is constant ([R;jiw] =
T
[Ri;] + > [Ri;Hg)), such that each dissociated com-
k

=1
plex releases a free receptor and each formed complex
monopolizes a free receptor.

= konik X [R”] X [Hk] —koff X [RZ]Hk] (3)

Degradation structure. Our model includes a structure
which degrades hormones non specifically through
endocytosis. The liver can be considered an example
of such structure, which degrades the growth hormone
(Baumann et al., 1987), insulin (Duckworth et al.,
1998) and glucagon (Deacon, 2005). The dynamics of
the concentration of free degradation sites [Sp| and of
degradation sites occupied by hormone k, [SpH}] are
described by equations [4] and [5]. The first term in
each of these equations relies on the assumption that
degradation sites are instantly freed.

o] _ S  (ha x 156] x (Hi)) - )

k=1

d[Sp Hy)
dt
We set the total number of degradation sites [Sp] +
2
Z[SDHk] to 9.9 x 10~%, and the rate of hormone

k=1
internalization kq to 4.10~° (Pearce et al., 1999); we

did not allow these parameters to change by mutation.
Other parameters in the model, however, can mutate
and change the equilibrium concentration of the free
hormone (e.g. the rate of production of each hor-
mone). As described in the section Evolutionary and
population dynamics, we randomly drew the values of
mutable parameters at the beginning of each simulation
from known distributions, and verified that the internal
hormonal concentration at equilibrium is, initially, wi-
thin the range 5.10712 — 108 M, in accordance with

= —[SpHy] + (ka x [Sp] x [HE]).  (5)
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experimental data (Polonsky et al., 1988; Zadik et al.,
1985).

Hormone-receptor binding equilibrium. Hormone-
receptor binding dynamics eventually reach an equi-
librium where [Hy], [R;;] and [R;;Hj| are stable
(equilibrium values are identifed by a star in equations
[6]-[8], obtained by solving the system formed by
equations [1]-[5] (see details in supplement).

* Qg
Ri'o
[Ry)" = & [H,E]*j‘k‘]‘ @)
R;i1* x [Hi|* X kon,

B. Energy allocation dynamics

An individual takes a unique meal at ¢y which sets its
internal concentration of an energetic resource [E] to
Eo = 1. Then [E] decreases, as the resource is partly
stored and partly allocated to two structures converting
it into traits values. Despite some simplifying assump-
tions detailed below, we consider that receptors in our
model function like G protein coupled receptors, whose
activation produces an internal signal for a limited
amount of time, followed by their internalization and
recycling into free receptors. In our model, newly
formed hormone-receptor complexes instantaneously
stimulate transporters of the resource and become
inactive. The number of complexes formed on structure
J per time unit at equilibrium equals :

ny Ny
aj = Zz(konik X [RH]* X [Hk]*) )
k=11i=1
which we multiplied by a constant Cy = 1000 to
obtain the inward flow of energy for this structure.

Hormone-receptor complexes normally dissociate at
a rate kog of the order of 1074 — 1075 (Pearce
et al.,, 1999). We voluntarily over-estimated this rate
(ko = 0.1) to model recycling, thereby considering
that both the hormone and the receptor are released
when recycling is completed. With this parameteri-
zation, a receptor is recycled within 10 minutes on
average, which is biologically realistic (von Zastrow
1992).

Considering that both the hormone and the re-
ceptor are released is mathematically convenient but
unrealistic, as recycling is most often followed by
the degradation of the hormone. We verified using
numerical simulations, where the hormone is indeed
not released, that this assumption does not impact
our results (see SI figure 3). The energy allocation
dynamics consider temporal changes in [E] as well as
in [E], the concentration of the resource stored. The
ODE for the instant changes in [E] and [E;] are given
below (equations [10]-[11]) :

8

if £ > FEon
otherwise
(10)
b x (E — Eom) X (1 = Cyorage), if E > Eop
= bx (E—Eom), if E< Eyy and Es > 0

0 otherwise,

@_ —aX E—bx(E— Eon),
dt  |—axFE

dEs
dt

Y

with a = Zaj x Cf and b = 0.01.
=1

We solveﬁ these equations (see SI text 1) and
obtained the temporal dynamics, [E](t) and [E;](t) by
separating them into three phases illustrated in figure
1. Phase 1 starts at ¢ (the meal) and goes on as long
as [E] > Eom, Eom = 0.08 being a concentration
threshold above which energy is stored. During phase 2
— which starts at t; (when [E] = E,n) — the resource is
released from the storage structure which compensates
for its consumption by converting structures. Phase 3
begins when [E;] reaches 0, such that [E] decreases
until it reaches the critically low value Ep;, = 0.01.

C. Energy conversion into traits

The energy allocated to each structure is converted
into an increase of trait value 1 (for structure 1) and
trait value 2 (for structure 2). Traits are deliberately
abstract, but their biological relevance is quite obvious.
For example, energy allocation to reproductive struc-
tures can increase the quality and number of gametes,
thus increasing fertility. Likewise, energy allocation to
somatic maintenance or camouflage may increase sur-
vival. Here we assume that allocating a lot of energy to
one structure per time unit decreases the efficiency of
conversion. The observation that fast feeding larvae of
D. melanogaster have lower fitness than slow feeding
larvae may support this assumption (Foley and Luckin-
bill, 2001; Prasad and Joshi, 2003; Mueller et al., 2005;
Roff and Fairbain, 2007), although it could also be
partly explained by increased efficiency of digestion in
slow feeding larvae. It is obvious, however, that some
loss will occur as energy expenditure increases, as no
organism is capable of instantly using large amounts
of resources. We model this loss as :

dl; — wxa; x [E] x Gy
dt 7Q+an[E]XCf

T} is the trait value for structure j, w = 0.02 is the
maximum increase of trait value per dt, and 2 = 0.01
sets the speed with which this function saturates. We
found the analytical expression of T;(t), which follows
the dynamics of [E](t) described above (see figure 1).
The combination of trait values calculated at time ¢3
is the phenotype of the individual, used to calculate its
fitness (see below).

12)

D. Evolutionary and population dynamics

N

The population is formed of 3 females and
N

5 males. Offspring production is modeled using a


https://doi.org/10.1101/169904
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/169904; this version posted July 28, 2017. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Wright-Fisher process (Fisher, 1930; Wright, 1931),
meaning that the population is entirely renewed at
each timestep and that each newborn’s two parents are
sampled with probability p; from the female and male
pools. The genotype comprises four independent genes
encoding two receptors and two hormones. An allele at
the gene coding for receptor 7 determines its expression
on each structure j, [R;jwt], and its conformation U R;.
Similarly, an allele at the gene coding for hormone k
sets its production rate oy and its conformation W Hy.

Individuals are diploid, and upon reproduction ga-
metes are formed by sampling independently alleles
for each gene from the two parental chromosomes. In
the neutral instance of our model, the probability that
mother or father ¢ is drawn equals p; = % In the
model with selection, the probability p; that parent @
is drawn is proportional to its fitness W; :

13)

where Wl = Tli + Tgi.
Therefore, this model includes genetic drift (a geno-
type can go extinct by chance) and selection.

Mutations. An allele’s contribution to the protein’s
expression or conformation can mutate with probability
p = 10~* per regulatory/coding sequence per genera-
tion. Mutations can change a receptor’s concentration
[Rijiot) or an hormone’s production cy,. In this case,
the mutant’s value is multiplied by 107, where -~
is sampled from a normal distribution with mean 0
and standard deviation o,, = 0.5. Conformations are
modeled as a number in the set of positive integers
{1;1000}. Coding mutations can change this number
by adding an integer sampled from a discretized normal
distribution with mean 0 and standard deviation 1, and
from which O values were excluded to avoid neutral
mutations.

The specific on-rate constant, kop,, , for hormone &
and receptor ¢ depends on their respective conforma-
tions according to equation [14].

(=pX|VHr—VR;|)

kon,, = K X € (14)

Affinity between hormone % and receptor 4 is maxi-
mum when WH;, = VR, and decreases as the
difference between these numbers increases. Affinity
may thus change as the receptor’s or the hormone’s
conformation mutates.

Initial conditions. Each population at ¢ = 0 is mo-
nomorphic, such that all individuals share the same
genotype and are homozygotes for all genes. We no-
netheless introduced variation in the initial genotypes
across replicate simulations, by mutating every coding
and regulatory sequence once from an average starting
genotype. This average genotype produces hormones
at rate ap = 9.9 x 10719 (k € {1,2}) and expresses
[Rijl = 9.9 x 107° receptors of type i at the
surface of structure j (i € {1,2}, j € {1,2}), and
has hormones and receptors conformations WH; = 9,

9

VHy, =109, VR; =29, and YRy = 129.

E. Estimates of shape parameters

As described in the previous section, the physiolo-
gical mechanism can change by mutations and evolve.
We expect at least some of these mutation to have
consequences on the shape of the trade-off between
traits 1 and 2. We estimated these changes by fitting a
circle to individual coordinates in the phenotype space
formed by these traits. Because no causal relationship
should be expected between trait 1 and trait 2, we per-
formed an orthogonal regression to obtain estimates of
the radius of the most fit circle # and the coordinates of
its center (., y.) (Coope, 1993). From these estimates,
we calculated three important parameters that quantify
the curvature, the length and the position of the trade-
off.

The curvature increases as the radius or its loga-
rithm, log(#), decreases — obtaining log(#) is straight-
forward from the analysis. The length [ — which is
representative of the standing genetic variation in the
population — is the distance between the two most
distant orthogonal projections on the fitted circle. To

obtain it, we first calculated the angle of each indi-

Ti — de¢
vidual ¢ as 8; = sign(Te; — ye) X 005_1(1736)

s

with r; the Euclidean distance between (T}, TQZ) and
(z¢,y.) using a gradient descent method. Then we
calculated | = 7 x (max(f) — min(f)). The position
is evaluated by the distance of the median projection
to the origin, d — a proxy for fitness, which we
use in the neutral and in the selection model alike.
We extracted the median angle in the distribution
of B;, Ba, and calculated the distance to the origin
d = \/(zc+ cos(Bar) x 7)2 + (y + sin(Bar) x 7)2.
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