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Abstract 
 
Single cell profiling methods are powerful tools for dissecting the molecular states of 
cells, but the destructive nature of these methods has made it difficult to measure single 
cell expression over time. When cell dynamics are asynchronous, they can form a 
continuous manifold in gene expression space whose structure is thought to encode the 
trajectory of a typical cell. This insight has spurred a proliferation of methods for single 
cell trajectory discovery that have successfully ordered cell states and identified 
differentiation branch-points. However, all attempts to infer dynamics from static 
snapshots of cell state face a common limitation: for any measured distribution of cells in 
high dimensional state space, there are multiple dynamics that could give rise to it, and 
by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, 
we enumerate from first principles the aspects of gene expression dynamics that cannot 
be inferred from a static snapshot alone, but nonetheless have a profound influence on 
temporal ordering and fate probabilities of cells. On the basis of these unknowns, we 
identify assumptions necessary to constrain a unique solution for the dynamics and 
translate these constraints into a practical algorithmic approach, called Population 
Balance Analysis (PBA). At its core, PBA invokes a new method based on spectral graph 
theory for solving a certain class of high dimensional differential equation. We show the 
strengths and limitations of PBA using simulations and validate its accuracy on single 
cell profiles of hematopoietic progenitor cells. Altogether, these results provide a 
rigorous basis for dynamic interpretation of a gene expression continuum, and the pitfalls 
facing any method of dynamic inference. In doing so they clarify experimental designs to 
minimize these shortfalls. 
	
 
Introduction  
 
Over the past few years, technologies for making genome-scale high-dimensional 
measurements on single cells have transformed our ability to discover the constituent cell 
states of tissues(1). These measurements enable a molecular dissection of biological 
tissues at the single cell level, across development, differentiation, disease onset, or in 
response to external stimuli. The most mature of these technologies, single cell RNA 
sequencing (scRNA-Seq), can be applied at relatively low cost to thousands and even 
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tens of thousands of cells to generate an ‘atlas’ of cell states in tissues, while also 
revealing transcriptional gene sets that define these states(2, 3). Rapidly maturing 
technologies are also enabling single cell measurements of the epigenome(4), the 
proteome(5, 6), and the spatial organization of chromatin(7).  
 
A more ambitious goal of single cell analysis is to describe dynamic cell behaviors, and 
by extension, to reveal dynamic gene regulation. Since high-dimensional single cell 
measurements are destructive to cells, they reveal only static snapshots of cell state. 
However, it has been appreciated that dynamic progressions of cell state can be indirectly 
inferred from population snapshots by methods that fit a curve

 
or a tree to the continuous 

distribution of cells in high dimensional state space. To date, a multitude of methods have 
been published to address the problem of ‘trajectory reconstruction’ from single cell data. 
These methods have ordered events in cell differentiation(8-12), cell cycle(13), 
regeneration, and perturbation response(14). The most advanced algorithms have 
addressed increasingly complex cell-state topologies including branching trajectories(15). 
 
Unfortunately, all attempts to infer dynamics from static snapshots of cell state face a 
common limitation: for any measured distribution of cells in high dimensional state 
space, there are multiple dynamics that could give rise to it, and by extension, multiple 
possibilities for underlying mechanisms of gene regulation. These limitations can apply 
even when sampling from multiple time points is possible. Put differently, any 
computational method that reports a definite prediction for cell-state dynamics has made 
one choice among many about how to order observed cell states, whether or not the 
choice is made explicitly. To our knowledge, existing approaches rely on heuristic 
algorithms that do not explicitly state how bioinformatic decisions impact descriptions of 
biological dynamics. As such, the best methods for dynamic inference might be more 
accurately described as methods for non-linear dimensionality reduction, or ‘manifold 
discovery’: they robustly solve the problem of how to describe a static continuum of cell 
states using a small number of coordinates (often described as ‘pseudo-time’ 
coordinates), but they provide little or no guidance on how the observed static continuum 
(or ‘pseudo-time’) should be interpreted with respect to the many redundant dynamic 
processes that could give rise to it. Therefore, what assumptions must be made in 
dynamic inference – once the important task of manifold discovery is completed – 
remains an unsolved problem. 
 
The difference between describing a manifold and describing its underlying biological 
dynamics becomes clear when considering the types of predictions one might make from 
data. Heuristic algorithms may be sufficient to provide an intuition for the biology, 
leaving the researchers to form hypotheses based on data exploration. However, 
quantitative predictions about cell behavior may require stronger forms of dynamical 
prediction. We would be curious to know, for example, how real time relates to 
progression along ‘pseudo-time’, and how we should think about cell dynamics in the 
absence of a clear linear or branching structure. Our intuition also tells us that single cell 
data could clarify how transcriptional programs influence cell fate bias in multi-lineage 
differentiation systems, but it is not yet clear how to extract such information in a 
principled manner.  The ambiguity of the biological dynamics associated with manifold 
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descriptions becomes even more important in studies seeking to infer mechanisms 
underlying those dynamics, since statements about mechanism necessarily entail specific 
hypotheses about cell trajectories. It follows that the limits on dynamic inference from 
single cell snapshots also affect attempts to reverse engineer gene regulatory 
networks(11) or to define “landscapes”(10) that confine cell dynamics in gene expression 
space.  
 
Here we explore if one can derive a framework for inferring cell state dynamics from 
static snapshots that overcomes the above ambiguities by making explicit biological 
assumptions and identifying key fitting parameters that cannot be inferred from single 
cell data alone. With many algorithms now available for trajectory reconstruction from 
single cell data, our first focus is to define the limits of identifiability faced by any 
algorithm.  
 
The second focus of this paper is to develop a practical algorithm for dynamic inference, 
which we call Population Balance Analysis (PBA). At one level, PBA provides a 
continuum description of cell states, just as existing methods, and it can similarly be used 
in a purely heuristic manner to order cell states. However, rather than focusing on 
manifold discovery, our approach builds instead on a first-principles biophysical 
description of stochastic gene expression. PBA therefore differs from existing algorithms 
in that it formally solves a problem of dynamic inference, and can thus be considered 
predictive of cell dynamics under clearly stated assumptions. Developing PBA required 
overcoming a computational challenge, which represents the major technical contribution 
of this work. In particular, the biophysical foundation of PBA is embodied by a diffusion-
drift equation over high-dimensional space, which, though simple to define, cannot be 
practically solved using established computational tools. We therefore invoke a novel, 
asymptotically exact and highly efficient solution to diffusion-drift equations using recent 
innovations in spectral graph theory. The ubiquity of diffusion-drift equations in fields of 
quantitative biology, physics and chemistry suggest that applications of these methods 
may exist in other fields. 
 
By making all biological assumptions explicit, PBA gains the ability to generate 
alternative predictions on system behavior for candidate hypotheses. For example, it 
assigns each transcriptional state a set of testable fate probabilities. The best fit to 
experimental data can then be used to identify which hypotheses accurately capture the 
systems behavior, and which do not. The explicit assumptions of PBA also clarify how to 
design experiments that optimize the quantitative accuracy of dynamic inference. We 
demonstrate the accuracy of PBA inference on simulated data. We then apply it to single 
cell RNA-seq data of hematopoietic progenitor cells (HPCs), reconciling scRNA-seq data 
on HPCs with fate assays made over the past few decades in this system. Extensive 
validation of novel PBA predictions in HPCs forms the subject of a second paper (Tusi, 
Wolock, Weinreb et al., in submission). 
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Results	
 
A first-principles relationship of cell dynamics to static observations 
When reconstructing a dynamic process from single cell snapshot data, cells are typically 
observed in a continuous spectrum of states owing to asynchrony in their dynamics. The 
goal is to reconstruct a set of rules governing possible dynamic trajectories in high-
dimensional space that are compatible with the observed distribution of cell states. The 
inferred rules could represent a single curve or branching process in gene expression 
space, or they could reflect a more probabilistic view of gene expression dynamics.  In 
some cases, multiple time points can be collected to add clarity to the temporal ordering 
of events. In other cases, a single time point could capture all stages of a dynamic 
process, such as in steady-state adult tissue turnover. 
 
To develop a framework for dynamic reconstruction from first principles, we wish to 
identify a general, model-independent, mathematical formulation linking cell dynamics to 
static observations. One possible starting point is the population balance equation, (also 
known as the flux balance law(16)), which has the form: 
 

!"
!" = −! !! +  !"                                             (1) 

 
This partial differential equation provides a useful starting point for analysis, because it 
fully describes how the density of cells at a point in gene expression space depends on the 
speed and direction of travel of cells. Formally, Eq. (1) states that in each small region of 
gene expression space, the rate of change in the number of cells (left-hand side of the 
equation) equals the net cell flux into and out of the region (right-hand side) ( 1A). The 
equation introduces the cell density, c(x,t), which is the distribution of cell states from 
which we sample a static snapshot of cells in an experiment. This density depends on the 
net average velocity, v(x), of the cells at point x, which is a feature of the dynamics that 
we wish to infer. Notably, being an average quantity, v is not necessarily a description of 
the dynamics of any individual cell, but it alone governs the form of the sampled cell 
density c. Eq. (1) also introduces a third variable: !(x) is a rate of cell accumulation and 
loss at point x caused by the discrete phenomena of cell proliferation and cell death, and 
by entrance and exit from the tissue being isolated for analysis.  
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Though general, Eq. (1) nonetheless 
introduces some specific assumptions 
about the nature of cell state space. 
First, it approximates cell state 
attributes as continuous variables, 
though they may in fact represent 
discrete counts of molecules such as 
mRNAs or proteins. Second, it 
assumes that changes in cell state 
attributes are continuous in time, so 
that, for example, the sudden 
appearance or disappearance of many 
biomolecules at once cannot be 
described in this framework.  
 
Multiple dynamic trajectories can 
generate the same high dimensional 
population snapshots 
Given knowledge of the cell 
population density, c(x,t), we hope to 
infer the underlying dynamics of cells 
by solving for the average velocity 
field v in Eq. (1). This approach falls 
short, however, because v is not fully 
determined by Eq. (1), and even if it 
were, knowing the average velocity of 
cells still leaves some ambiguity in the 

	

Figure	1:	Principles	of	dynamic	inference	from	
static	snapshots.	A	starting	point	for	inferring	cell	
dynamics	from	high-dimensional	snapshots	is	the	
population	balance	law	(A),	which	states	that	in	each	
small	region	of	gene	expression	space,	the	rate	of	
change	in	cell	density	equals	the	net	cell	flux	into	and	
out	of	the	region.	However,	this	law	alone	does	not	
determine	a	unique	solution	for	the	dynamics	because	
there	are	several	phenomena	that	cannot	be	directly	
inferred	from	a	static	snapshot	(B).	For	example,	high-
dimensional	cell	state	measurements	do	not	disclose	
the	rates	of	cell	entry	and	exit	at	different	points	in	gene	
expression	space	(C),	or	the	extent	to	which	single-cell	
trajectories	are	coherent	or	stochastic	(D).	Static	
snapshots	also	cannot	distinguish	periodic	oscillations	
of	cell	state	from	simple	fluctuations	that	do	not	have	a	
consistent	direction	and	periodicity	(E).	Furthermore,	
there	may	be	stable	properties	of	a	cell	–	such	as	
epigenetic	state	–	that	affect	its	behavior	but	are	not	
detectable	by	expression	measurements	alone	(F).		
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specific trajectories of individual cells. This raises the question: does there exist a set of 
reasonable assumptions that constrain the dynamics to a unique solution? To explore this 
question, we enumerate the causes of non-uniqueness in cell state dynamics, using a 
cartoon to introduce each cause (detailed in Figure 1), as well as referring to their 
mathematical foundation in Eq. (1).  
 

1) Assumed cell entry and exit points strongly influence inferred dynamics: For 
the same data, making different assumptions about the rates and location of cell 
entry and exit lead to fundamentally different inferences of the direction of cell 
progression in gene expression space, as illustrated in Figure 1C. Cells can enter a 
system by proliferation, by physically migrating into the tissue that is being 
analyzed, or more mundanely by up-regulating selection markers used for sample 
purification (e.g. cell surface marker expression). Similarly, cells exit observation 
by cell death, physical migration out of the tissue being studied, or by down-
regulation of cell selection markers. These events could be associated with 
particular gene expression states, or could occur broadly. Referring to Eq. (1), this 
discussion is formally reflected in the need to assume a particular form for the rate 
field R(x) when inferring dynamics v from the observed cell density c. 
 
2) Net velocity does not equal actual velocity: A second unknown is the 
stochasticity in cell state dynamics, reflected in the degree to which cells in the 
same molecular state will follow different paths going forward. A net flow in gene 
expression space could result from imbalanced flows in many directions or from a 
single coherent flow in one direction (see Figure 1D). If the goal of trajectory 
analysis is to go beyond a description of what states exist and make predictions 
about the future behavior of cells (e.g. fate biases) given their current state, then it 
is necessary to account for the degree of such incoherence of dynamics. More or 
less stochastic cell behaviors also change inferences that might be made about 
underlying gene regulatory networks. Referring to Eq. (1), the net velocity field v 
reflects only the mean cell behavior, with individual cells deviating from the 
mean owing to stochastic gene expression. 
 
3) Rotations and oscillations in state space do not alter cell density: Static 
snapshot data cannot distinguish periodic oscillations of cell state from simple 
fluctuations that do not have a consistent direction and periodicity (Figure 1E). As 
with incoherent motion above, predictive models may need to explicitly consider 
oscillatory behaviors. The inability to detect oscillations from snapshot data is 
formally reflected in Eq. (1) by invariance of the concentration c to the addition of 
arbitrary rotational velocity fields u satisfying ! !! = 0. 

 
4) Hidden features of cell state can lead to a superposition of different dynamic 
processes: Stable properties of cell state that are invisible to single cell expression 
measurements, such as chromatin state or tissue location, could nonetheless 
impact cell fate over multiple cell state transitions (Figure 1F). The existence of 
such long-term “hidden variables” would clearly compromise attempts to predict 
the future fate of a cell from its current gene expression state. Previously 
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published algorithms for trajectory inference do not consider long-term hidden 
variables. This choice is inescapable for any modeling approach based on single 
cell RNA-seq or mass-cytometry data, since these measurement modalities simply 
do not capture every feature of a cell’s molecular state.  

 
In summary, we have enumerated the reasons that no unique solution exists for dynamic 
inference. However, sensible predictions about dynamics can still be made by introducing 
certain explicit assumptions, as we now describe. 
 
Construction of the Population Balance Analysis framework 
	
To infer cell dynamics from an observed cell density c, we will make several assumptions 
that together are necessary and sufficient to constrain a unique solution given the 
unknowns outlined above (see Figure 2).  

 
The Fokker-Plank equation models memory-less cell state dynamics 
The first assumption is that there are no hidden variables, meaning the properties of the 
cell available for measurement (such as its mRNA content) fully encode a probability 
distribution over its possible future states. This assumption is made implicitly by all 
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current approaches to trajectory analysis and cell fate prediction, and we reflect on its 
plausibility in the discussion.  
 
An equivalent statement of this first assumption is that cell trajectories are memory-less 
with respect to their measured properties, i.e. past states of the cell do not affect its future 
states other than through having led to its present state. If so, Eq. (1) can be approximated 
as a Fokker-Plank equation, which can be thought of as the continuum approximation of 
the chemical master equation (CME) that specifies the discrete stochastic molecular 
interactions underlying gene regulatory networks in the cell(17). In the Fokker-Plank 
formalism, cell trajectories are modeled as biased random walks, with a deterministic 
component that reflects the reproducible aspects of cell state changes such as their 
differentiation through stereotypical sequences of states, and a stochastic component that 
reflects random fluctuations in cell state, partly driven by bursty gene-expression, 
fluctuations in cellular environment, and intrinsic noise from low molecular number 
processes.  
 
Fokker-Plank equations, which represent special cases of the Population Balance 
equation [Eq. (1)], have been applied previously to low dimensional biological processes, 
such as differentiation with a handful of genes(18) or a one-parameter model of cell cycle 
progression(13). Here, we apply them to high-dimensional data. Although Fokker-Plank 
descriptions are necessarily approximations, their emergence from first-principles 
descriptions of transcriptional dynamics(17), and their ubiquity in describing chemical 
reaction systems(19), justify their use instead of the more general form of Eq. (1). 
Specifically, the Generalized Fokker-Plank approximation takes the form of Eq. (1) with 
velocity field, ! = !− !

!!! log !, where the first term is a deterministic average velocity 
field, and the second term is a stochastic component of the velocity that follows Fickian 
diffusion with a diffusion matrix ! (Figure 2). We assume here that ! is isotropic and 
invariant across gene expression space. Though more complex forms of diffusion could 
better reflect reality, we propose that this simplification for ! is sufficient to gain 
predictive power from single cell data in the absence of specific data to constrain it 
otherwise. The resulting Population Balance equation is thus, 
 

!"
!" =

!
!! !!! − ! !! +  !".                                             (2) 

 
Eq. (2) explains the rate of change of cell density (!" !") as a sum of three processes: (1) 
stochastic gene expression, !!!(!!!), which causes cells to diffuse out of high-density 
regions in gene expression space; (2) convergences (and divergences) of the mean 
velocity field,! !! , which cause cells to accumulate (or escape) from certain gene 
expression states over time; and (3) as before, cell entry and exit rates, !", will cause 
certain cell states to gain or lose cells over time. 
 
Potential landscapes define a minimal model for dynamic inference 
Our second assumption is that there are no oscillatory gene expression dynamics, which 
would appear as rotations in gene expression space. Though oscillations certainly do exist 
in reality – for example, the cell cycle – it is impossible to establish their existence from 
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static snapshots alone. One is therefore forced to make an a priori assumption about their 
existence, for example by specifically searching for signatures of a known oscillatory 
process in the data. For processes not known to be oscillatory, one can begin by making 
predictions of fate bias and temporal ordering while ignoring oscillatory phenomena. The 
utility of such predictions is supported by our analysis of single cell RNA-seq data in a 
later section.  
 
In the Fokker-Plank formalism, the presumed absence of oscillations implies that the 
velocity field ! is the gradient of a potential function ! (i.e. ! = −!!). The potential 
would define a landscape in gene expression space, with cells flowing towards minima in 
the landscape, akin to energy landscapes in descriptions of physical systems.  Applying 
the potential landscape assumptions to Eq. (2) gives rise to the simplified diffusion-drift 
equation below, where the potential is represented by a function !(!). 
 

!"
!" =

!
!!!

!! + ! !!! +  !".                                                 (3) 
 
A recipe for dynamic inference from first principles 
Equation (3) represents our best attempt to relate an observed density of cell states (!) to 
an underlying set of dynamical rules, now represented by a potential landscape (!) rather 
than the exact velocity field v. Crucially, we have in these first few results sections: 
explained why the net cell velocity v is inherently unknowable; clarified why the 
description provided by a potential field F is the best that any method could propose 
without further knowledge about the system; and identified critical fitting parameters (!, 
! and !" !"), that are not revealed by single cell snapshot measurements, but are 
required for determining aspects of the dynamics such as temporal ordering of states and 
fate probabilities during differentiation. By starting from first principles, it becomes clear 
that these requirements are not limited to any particular algorithm; they afflict any 
method one might develop for trajectory inference.  
 
The challenge is now to develop a practical approach that relates the fitting parameters !, 
! and !" !" to dynamic predictions through Eq. (3). In the following, we focus on 
steady-state systems where !" !" = 0, and, for the cases we analyze, we use prior 
literature to estimate !. We report results for a range of values of !. Building on the 
work here, more elaborate approaches could be taken, for example determining R from 
direct measurements of cell division and cell loss rates or integrating data from multiple 
time points to estimate !" !", thus generalizing to non-steady-state systems. 
 
Reducing to practice: solving the Population Balance equation with spectral graph 
theory 
Equipped with single cell measurements and estimates for each fitting parameter, we now 
face two practical problems in using of Eq. (3) to infer cell dynamics: the first is that Eq. 
(3) is generally high-dimensional (reflecting the number of independent gene programs 
acting in a cell), but numerical solvers cannot solve diffusion equations on more than 
perhaps ten dimensions. Indeed, until now, studies that used diffusion-drift equations 
such as Eq. (3) to model trajectories(10, 13, 18) were limited to one or two dimensions, 
far below the intrinsic dimensionality of typical single cell RNA-seq data(20). The 
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second practical problem is that we do not in fact measure the cell density c: we only 
sample a finite number of cells from this density in an experiment. 
 
Overcoming these problems represents the main technical contribution of this paper. We 
drew on a recent theorem by Ting, Huang and Jordan in spectral graph theory(21) to 
extend diffusion-drift modeling to arbitrarily high dimension. The core technical insight 
is that an asymptotically-exact solution to Eq. (3) can be calculated on a nearest-neighbor 
graph constructed with sampled cells as nodes, rather than on a low-dimensional sub-
space of gene expression as performed previously (e.g.(13)). Our approach, which we call 
Population Balance Analysis (PBA) actually improves in accuracy as dimensionality 
increases, rewarding high-dimensional measurements. We thus avoid conclusions based 
on low-dimensional simplifications of data, which may introduce distortions into the 
analysis. The supplement of this paper provides technical proofs and an efficient 
framework for PBA in any high-dimensional system.  
 
The inputs to PBA are a list of sampled cell states ! = (!!,… !!), an estimate ! =
(!!,…!!) for the net rate of cell accumulation/loss at each state !!, and an estimate for 
the diffusion parameter !. (We are assuming steady-state, so !" !" = 0). The output of 
PBA is a discrete probabilistic process (Markov chain) that describes the transition 
probabilities between the states !!. The analysis is asymptotically exact in the sense that – 
if a potential exists and the estimates for ! and ! are correct – then the inferred Markov 
chain will converge to the underlying continuous dynamical process in the limit of 
sampling many cells (! →�) (Theory supplement, Theorem 4).  
 
PBA computes the transition probabilities of the Markov chain using a simple algorithm, 
which at its core involves a single matrix inversion. Briefly:  

1. Construct a k-nearest-neighbor (knn) graph G, with one node at each position !! 
extending edges to the k nearest nodes in its local neighborhood. Calculate the 
graph Laplacian of G, denoted L. 

2. Compute a potential ! =  !!!, where !! is the pseudo-inverse of ! 
3. To each edge (!! → !!), assign the transition probability 

 

! !! → !!  ~  !
(!!!!!)/! if !! , !!  is an edge in !
0         if  !! , !!  is not an edge in ! 

 
With the Markov chain available, it is possible to calculate the temporal ordering of states 
(via mean first passage time), and the fate biases of progenitor cells in a differentiation 
process (via absorbing state probabilities), by integrating across many trajectories (see 
Figure 2). These calculations are simple, generally requiring a single matrix inversion. 
Specific formulas are provided in the Theory Supplement Section 3. Code for 
implementing these and other aspects of PBA is available online at 
https://github.com/AllonKleinLab/PBA. 
 
PBA accurately reconstructs dynamics of simulated differentiation processes 
We tested PBA on a sequence of simulations, first using an explicit model of diffusion-
drift process, and then moving on to direct simulations of gene regulatory networks. In 
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the first simulation (Figure 3; 
Supplementary Figure 1), cells 
drift down a bifurcating 
potential landscape into two 
output lineages. Cell 
trajectories span a 50-
dimensional gene expression 
space (two of which are shown 
in Fig. 3A). With 200 cells 
sampled from this simulated 
system (Figure 3B), PBA 
predicted cell fate probabilities 
and temporal ordering of the 
measured cells. PBA made 
very accurate predictions 
(Pearson correlation, ρ > 0.96, 
Fig. 1C-D) if provided with 
correct estimates of 
proliferation, loss and 
stochastisticity (parameters R 
and D). Estimates of temporal 
ordering remained accurate 
with even 5-fold error in these 
parameters (ρ > 0.93), but 
predictions of fate bias 
degraded (ρ > 0.77; 
Supplementary Figure 2A-D). 
Thus even very rough 
knowledge of the entry/exit 
points in gene expression space 
is sufficient to generate a 
reasonable and quantitative 
description of the dynamics. 
Interestingly, PBA also 
remained predictive in the 
presence of implanted 
oscillations (Supplementary 
Figure 3, fate probability ρ > 
0.9; temporal ordering ρ > 0.8). 
In addition, the simulations 
confirmed the theoretical 
prediction that inference 
quality improves as the number 
of noisy genes (dimensions) 
increases, and as more cells are 
sampled: maximum accuracy in 
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Figure 3: Demonstration of PBA on a simulated 
high-dimensional differentiation process
(A) Cells emerge from a proliferating bi-potent state 
(source) and differentiate into one of two fates (sinks 
1 and 2) in a high-dimensional gene expression 
space, with two dimensions shown. Heat map colors 
show a potential field containing the cell trajectories. 
Example trajectories shown in white. (B) Static 
expression profiles sampled asynchronously through 
differentiation serve as the input to PBA, which 
reconstructs trajectories and accurately predicts 
future fate probabilities (C) and timing (D) of each 
cell. 
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this simple case was reached after ~100 
cells and 20 dimensions 
(Supplementary Figure 2e-g). These 
simulations showcase the ability of 
PBA to not just describe continuum 
trajectories, but to additionally predict 
cell dynamics and by extension cell 
fate. 
 
Having demonstrated the accuracy of 
PBA on an explicit model of a 
diffusion-drift process, we next tested 
its performance on gene expression 
dynamics arising from gene regulatory 
networks (GRNs) (Figure 4). As 
before, we simulated cell trajectories, 
obtained a static snapshot of cell states, 
and supplied PBA with this static 
snapshot as well as the parameter ! 
encoding the location of entry and exit 
points. We began with a simple GRN 
representing a bi-stable switch, in 
which two genes repress each other and 
activate themselves (Figure 4A). 
Simulated trajectories from this GRN 
begin with both genes at an 
intermediate expression level, but 
quickly progress to a state where one 
gene dominates the other (Figure 4B). 
In addition to the two genes of the 
GRN, we included 48 uncorrelated 
noisy dimensions. With 500 cells 
sampled from this process, PBA 
predicted cell fate bias and temporal 
ordering very well (r>0.98 for fate bias 
and r > 0.89 for ordering; Figure 4C), 
though the precise accuracy depended 
on the assumed level of diffusion ! 
(Supplementary Figure 4).  
 

PBA assumes the absence of oscillations in gene expression space. Therefore, it is 
unclear how well PBA can infer cell trajectories that result from GRNs with oscillatory 
dynamics. We simulated an oscillatory GRN in the form of a “repressilator” circuit(22) 
with the addition of positive feedback loops that create two “escape routes” leading to 
alternative stable fixed points of the dynamics (Figure 4D). Simulated trajectories from 
this GRN begin with all genes oscillating, followed by a stochastic exit from the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/170118doi: bioRxiv preprint 

https://doi.org/10.1101/170118
http://creativecommons.org/licenses/by/4.0/


oscillation when one of the genes surpasses a threshold level (Figure 4E). With 500 cells 
sampled from this process, PBA was significantly less accurate than for the previous 
simulations (Figure 4F). Though PBA correctly identified which cells were fully 
committed to the two ‘escape routes’, it was entirely unable to resolve the fate biases of 
cells in the uncommitted oscillatory state. PBA also made poor predictions of mean first 
passage time, underestimating the amount of time that cells spent in the oscillatory state. 
Thus, when the assumptions of PBA are strongly violated, its prediction accuracy suffers. 
 

PBA predictions of fate bias in hematopoiesis reconcile past experiments	
The simulations suggest that PBA accurately reconstructs dynamics for systems that 
satisfy its underlying assumptions, but that it makes poor predictions when these 
assumptions are strongly violated. It remains unclear whether PBA will be accurate when 
applied to experimental data from real biological systems. We tested PBA on single cell 
gene expression measurements of 3,803 adult mouse hematopoietic progenitor cells 
(HPCs) from another study by our groups (Tusi, Wolock, Weinreb et al., in submission). 
 
HPCs reside in the bone marrow and participate in steady-state production of blood and 
immune cells through a balance of self-renewal and multi-lineage differentiation. Fate 
commitment of HPCs is thought to occur through a series of hierarchical fate choices, 
investigated over the past four decades through live cell tracking, in vitro colony-forming 
assays and transplantation of defined sub-populations of HPCs(23). Depictions of the 
HPC hierarchy invoke a tree structure, with gradual lineage-restriction at branch points. 
However the precise tree remains controversial(24, 25), since existing measurements of 
fate potential reflect a patchwork of defined HPC subsets that may have internal 
heterogeneity(26) and provide only incomplete coverage of the full HPC pool. We asked 
whether PBA applied to single cell RNA profiling of HPCs could generate predictions 
consistent with experimental data, and possibly help resolve these controversies by 
providing a global map of approximate cell-fate biases of HPCs.  
 
The single cell expression measurements – derived from mouse bone marrow cells 
expressing the progenitor marker Kit – represent a mixture of multipotent progenitors as 
well as cells expressing lineage commitment markers at various stages of maturity. Since 
PBA prescribes analysis of a k-nearest-neighbor (knn) graph of the cells, we developed 
an interactive knn visualization tool for single cell data exploration, called SPRING, 
(kleintools.hms.harvard.edu/tools/spring.html; (27)). The SPRING plot (Figure 5A) 
revealed a continuum of gene expression states that pinches off at different points to form 
several downstream lineages. Known marker genes (Supplementary Table 1) identified 
the graph endpoints as monocytic (Mo), granulocytic (G), dendritic (D), lymphoid (Ly), 
megakaryocytic (Mk), erythroid (Er) and basophil (Ba) progenitors (Supplementary 
Figure 5); we also identified cells in the graph expressing HSC markers. The lengths of 
the branches reflect the timing of Kit down-regulation and the abundance of each lineage. 
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For steady-state systems, PBA requires as fitting parameters an estimate of the diffusion 
strength !, and the net rates of cell entry and exit at each gene expression state (!). We 
estimated R using prior literature (see methods), and tested a range of values of D. All 
results that follow hold over the physiological range of PBA parameter values 
(Supplementary Figure 6). 
 
We compared PBA results to previously reported fate probabilities by localizing reported 
cell types on the graph using published microarray profiles. Remarkably, in a panel of 
twelve progenitor cell populations from six previous papers(28-33) (Supplementary 
Table 2), the PBA predicted fate outcomes for each reported cell type (Figure 5B) closely 
matched fate probabilities measured in functional assays (defined as the proportion of 
clonogenic colonies containing a given terminal cell-type; see Supplementary Figure 5). 
The main qualitative disagreement between PBA predictions and experiment was in the 
behavior of Lin-Sca1-Kit+IL7R-FcgRlowCD34- HPCs, previously defined as 
megakaryocyte-erythroid precursors (MEP)(28). Our prediction was that these cells 
should lack megakaryocyte potential, which is indeed consistent with recent studies(24, 
26, 34). Excluding these cells, our predicted fate probabilities matched experimental data 
with correlation ρ=0.91 (Fig. 5C). In a second paper (Tusi, Wolock, Weinreb et al., in 
submission), we test several novel predictions emerging from PBA in hematopoiesis. 
 
 

Discussion 
In this work we laid down a formal basis for the problem of dynamic inference from 
high-dimensional population snapshots. We invoked a conservation law, known as the 
law of Population Balance, as a general starting point for considering how a snapshot of 
cell states evolves over time. From there, we identified a number of features of the cell 
dynamics that are invisible in a static snapshot but must be known to reverse-engineer the 
dynamics. We argued that these features impose fundamental limits on the reconstruction 
of dynamics from single cell data faced by any algorithm. Accepting that all approaches 
face this limitation, we then attempted to develop an algorithm for dynamic inference that 
is explicit in the assumptions it makes about underlying gene regulation, as well as cell 
division and loss rates. The resulting method, PBA, was shown to provide not just an 
ordering of cell states, but also predictions of fate probabilities in simulations and in 
single cell data from hematopoietic progenitor cells of the mouse bone marrow. We also 
showed how PBA fails when its assumptions are violated, an important reminder of the 
limitations of all inference methods. 
 
In developing PBA, we hoped that an algorithm with clear assumptions would help to 
clarify the ways in which data analysis might mislead us about the underlying biology. 
More practically, we hoped that the algorithm would suggest how to best design 
experiments to extract dynamic information from static measurements, and how to 
visualize single cell data to preserve aspects of the true dynamics. We discuss a number 
of points that follow from our analysis, along with a note about the technical 
underpinnings of PBA. 
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Experimental design for trajectory reconstruction from static snapshot measurements. 
We have shown that accurate dynamic inference requires knowledge of the density of 
cells in high dimensional state space, as well as the rates of cell entry and exit across the 
density. These requirements immediately suggest a set of principles for experimental 
design to optimize dynamic inference. First, to minimize distortions in the cell density in 
gene expression space it is useful to profile a single, broad population than many 
subpopulations fractionated in advance. Second, if cells of interest are sorted prior to 
analysis, it is best to minimize the number of sorting gates and enrichment steps, since 
each introduces an additional term to the entry/exit rates and subsequently a risk of 
distortion to the inferred dynamics. The HPC dataset analyzed in this paper was well 
suited for trajectory reconstruction because it included a single population, enriched using 
a single marker (Kit). This contrasts with previous single-cell RNA seq datasets of 
hematopoietic progenitors that included a composite of many sub-populations(35) or used 
complex FACS gates to exclude early progenitors(26).  
 
Experimental methods for beating the limits of trajectory reconstruction.  
Given the inherent limits of trajectory reconstruction from single cell snapshots alone, 
orthogonal experimental data is required to disambiguate the true dynamics. In 
differentiation systems, pulse-chase experiments – where cells labeled in a given state are 
followed over time – could be used to infer rates of cell entry and exit by reporting on the 
flux of cells into different lineages. A previous study(36) quantified the transition rates 
between different FACS-defined hematopoietic compartments using a Tie2 – driven 
reporter to pulse label HSCs; the same assay could be coupled to singe-cell sequencing to 
enable direct fitting of the entry/exit parameter R. Clonal barcoding is another approach 
that would powerfully complement dynamical inference algorithms such as PBA: the 
dispersion of clones in high dimensional state space should constrain the stochasticity in 
the dynamics, allowing estimates of the diffusion constant D or even allowing 
consideration of non-uniform diffusion across gene expression space. Finally, it is well 
appreciated that live imaging of one or a few reporters could provide information on the 
significance of oscillatory behaviors that are not detectable in snapshot data. 
 
How Population Balance Analysis could go wrong.  
To constrain a unique solution for trajectory reconstruction, PBA makes several strong 
assumptions, such as the absence of hidden variables and the absence of oscillations in 
gene expression space. Our simulations show that PBA is highly accurate for systems that 
meet these assumptions, but incorrectly infers dynamics for systems that break them. The 
agreement of prediction to fate commitment assays when we applied PBA to single cell 
profiles of hematopoietic progenitor cells suggests that, despite some sensitivity to 
assumptions, accurate inference is possible for complex differentiation systems. 
However, in cases where oscillatory dynamics strongly influence cell fate, or where 
hidden variables play a large role, single cell snapshot data could be misleading, and 
methods such as PBA may be ill suited.  
 
In general, the impact of hidden variables on cell state dynamics remains unclear. Though 
there are many stable and possibly unobserved properties that impact a cell’s behavior – 
including chromatin state; post-translational modifications; cellular localization of 
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proteins; metabolic state; and cellular micro-environment – it is possible that these 
properties percolate to some aspect of cell state that is observed, e.g. effecting a change in 
at least one gene measured by RNA-seq. By altering the observed state, such variables 
would thus not be hidden. For example, chromatin state exists in constant dialogue with 
transcriptional state, and is well reflected in mRNA content.  
 
Though intuition suggests a minimal role for hidden variables, there may exist cases 
where they cannot be safely ignored. For example, a recent study(37) showed some 
evidence of clonally inherited biases in differentiation in HSCs that are not readily 
distinguished from each other by single cell RNA seq profiling. If true, the existence of 
different fate potentials for cells in similar transcriptional states would indicate that non-
transcriptional factors, i.e. hidden variables in our study, could influence HSC behavior.  
 
Fundamental limits on the inference of gene regulatory networks 
One promise of single cell expression measurements is their possible use for 
reconstructing gene regulatory networks (GRNs) (2, 11). However, since any GRN model 
entails specific hypotheses about the gene expression trajectories of cells, efforts to infer 
GRNs from single cell data must also confront the limits of knowledge identified in our 
framework. In particular, GRN inference may benefit from an explicit consideration of 
cell entry and exit rates (embodied by R) and the rate of change in the cell density 
(!" !"), as well as acknowledging the inability to distinguish oscillations from 
fluctuations.  
 
Indeed, the inability to detect oscillations in single cell data, embodied in our framework 
by the use of a potential landscape, suggests severe limits on the types of underlying gene 
regulatory relationships that can be modeled. In fact, potential landscapes	can only 
emerge from GRNs with strictly symmetric interactions, meaning every “arrow” between 
genes has an equal and opposite partner. This result follows from observing that the 
“arrows” in a GRN describe the influence of gene ! on gene !, which is given by !!! !!! 
(Figure 6A), where ! is the deterministic component of average cell velocities (see 
Equation 2). The assumption of a potential landscape (i.e. ! = −!!) then imposes 
symmetry on the GRN because !!! !!! = !!! !!!=−!!! !!!!!!.  Though a few well-
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known GRN motifs follow this symmetry rule – such as the “bistable switch” resulting 
from the mutual inhibition of two genes – many others do not, such as negative feedback 
loops and oscillators (Figure 6B). Potential landscapes are frequently invoked to explain 
gene expression dynamics(10, 38, 39), and we have shown them to be useful for 
predicting HPC fate outcomes in the context of PBA. It seems paradoxical that a tool that 
provides realistic phenomenological descriptions of gene expression dynamics reflects an 
entirely unrealistic picture for the underlying gene regulatory mechanisms. Resolving this 
paradox is an interesting direction for future work.  
 
How should we visualize single cell data? At its core, the PBA algorithm performs 
dynamic inference by solving a diffusion-drift equation in high dimensions. This 
computation relies on a 2011 result in spectral graph theory by Ting Huang and 
Jordan(21) that describes the limiting behavior of k-nearest-neighbor graph Laplacians on 
sampled point clouds. Interestingly, several recent studies(8, 40, 41) have developed k-
nearest neighbor graph-based representations of single cell data, and others have 
suggested embedding cells in diffusion maps(20, 42) on the basis of other similarity 
kernels. It has been unclear, until now, how to evaluate which of these different methods 
provides the most useful description of cell dynamics. Our technical results (Theorems 1-
4 in the supplement) confirm that certain graph representations provide an asymptotically 
exact description of the cell state manifold on which dynamics unfold, suggesting them to 
be useful techniques for visualizing single cell data sets. Therefore PBA formally links 
dynamical modeling to choices of single cell data visualization. 
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METHODS 
 

1. Population balance analysis (PBA) source code and inputs 
 
The core functions of PBA are implemented in python scripts on our github page: 
https://github.com/AllonKleinLab/PBA. The github page contains example files 
sufficient to reproduce the main calculations in this paper. In the theoretical supplement, 
we develop the rigorous foundations for PBA, provide detailed pseudo-code for the PBA 
algorithm and prove mathematically that it is asymptotically exact when sufficient cells 
are sampled and when PBA assumptions (see main text) are satisfied.  
 
PBA was applied to simulated datasets and to experimental data from hematopoietic 
progenitor cells (HPCs) by calling PBA subroutines as follows: 
 

! = compute_potential !,!, !  
! = compute_fate_probabilities !,!, !,!, !  
! = compute_mean_first_passage_times !,!,!, !  

 
In each case, the inputs to PBA are: a collection of single-cell expression profiles !, 
where !!" is an expression matrix of gene j in cell i; prior estimates of the relative rates of 
proliferation and loss provided at each sampled gene expression state as a vector ! of 
length n; the exit rates of cells into M terminal fates specified as a matrix S of size (n x 
M); and a diffusion constant (D) that reflects stochasticity in the dynamics. The number 
of neighbors of the nearest neighbor graph, k, is a fitting parameter, but results are not 
sensitive to the choice of k (see Supp. Fig. 2b). We used a range of k values for all 
analyses. The first output of PBA is a vector giving the values of the potential V at the n 
sampled expression states. V is then used to calculate a set of transition probabilities 
between sampled cells, from which we further derive terminal fate probabilities of each 
sampled cell provided as a matrix B of size (n x M), as well as the conditional mean first 
passage time between every pair of sampled cells provided as a matrix T of size (n x n). 
 
For the simulated data, parameters R and D are determined in Methods sections (2-5). For 
the experimental data, we fitted R and D in Methods sections (7-8). For the analysis of 
HPCs, we normalized and reduced dimensionality of the raw expression data to generate 
a reduced matrix ! as input for PBA (see Methods section 6).  
 
Note that in general, R and D are partially redundant, since multiplying both by a 
common factor does not change the fate probabilities output by PBA.  
 

2. Simulating a diffusion-drift process (Figure 3) 
 
Data used to test PBA were generated from a simulated differentiation process in which 
initially bipotent cells choose one of two fates. In each simulation a single cell is 
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generated in a gene expression state chosen uniformly at random in an m-dimensional 
box (the entry point) corresponding to an initial gene expression profile, with boundaries 
-0.5<x1<0.5, 0.75<x2<1, and 0<xk>2<1 (Supp. Fig. 1). The cell gene expression profile is 
then updated over time using a Langevin simulation, meaning that a cell with initial 
position !(!) is given a new position as follows: 
 

! ! +  ∆! = ! ! + ∇! ! ! Δ! + !Δ! !!!!!
!!! , 

 
where !!,… , !!~Gaussian(0,1) are independent random variables sampled from a 
normal distribution, !!,…, !! are unit vectors in each of the m dimensions, the 
simulation time step is Δ! = 0.001 and ! = 0.05. The mean gene expression velocity for 
cells in state x is the gradient of the m-dimensional potential field F, which defines a 
bifurcation in two dimensions with a quadratic basin in the remaining ! − 2 dimensions: 
 

! ! =  !!
!

! −
!!!!!
! − !!

!
!"#$%&'(")*

+ !!!!
!!!

!"#$%#&'(
!"#$%

. 

 
The simulation is terminated when a cell enters either of two box-shaped regions (the exit 
regions) where they were removed at rate ! = 5 (boundaries shown in Supp. Fig. 1). This 
means that in a time step ∆!, cells in an exit box are removed with probability 1−
!!!∆! ≈ 5∆!. All simulations used m=50 dimensions, except for Supp. Fig. 2g, where m 
was varied from 2-50. The simulation was repeated to generate N cell trajectories, and 
each cell was then “sampled” at a time selected uniformly at random to generate mock 
single cell data set for PBA. All calculations were performed with N=200 sampled cells, 
except for Supp. Fig. 2e, where N was varied from 10-300.  
 
For comparison of PBA predictions to the true dynamics (Figs. 1e-f and Supp. Figs. 2d-
g), the “true fate probability” was defined for each sampled state !! by carrying out a 
further 1000 Langevin simulations for each !! as the initial condition, and recording the 
fraction of simulations terminating in exit box 2. The “true time since entry” was 
assigned to each !! as the mean simulation time to reach !! and its 5 nearest neighbors 
from a look-up table of 10,000 simulated trajectories.  
 

3. Tests of PBA on simulated diffusion-drift process (Figure 3) 
 
PBA was used to predict fate probability and time since entry for each sampled state !!. 
PBA takes as input the entire point cloud {!!}, as well as prior estimates of the entry/exit 
rates !! at each point. For the main test of PBA (Figure 3) we used the true !! values 
(!! = 5 for cells in the entry-box; !! = −5 for cells in the exit-boxes; !! = 0 otherwise). 
For the robustness test in Supp. Fig. 2a-b we used false assumptions about entry/exit rates 
as indicated in the figure panels. For the robustness test in Supp. Fig. 2c-d we used false 
assumptions about the diffusion constant D as indicated in the figure panels. Changing 
D→D’ is equivalent to scaling R uniformly, R→R’=(D/D’)R. 
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4. Testing the effect of gene oscillations on PBA predictions for diffusion-drift simulation 
(Supplementary Figure 3) 
 
PBA assumes that the gene expression dynamics that give rise to a given set of sampled 
points {!!} is the gradient of a potential. However, this solution is not unique. The PBA 
solution implicitly assumes there are no rotations in gene expression space: a rotational 
field would not change the static density of cell states, and so it is invisible in a single cell 
sampling experiment. The effect of rotations on PBA predictions was tested by 
implanting rotational fields into the above simulations (Supp. Fig. 3). The rotational field 
used was  
 

! ! − ! = −!!, !!, 0,… ,0 ∗  !( !! + !!; ! = 0,! = 0.2) 
 

where ! is the center-point of the rotational field and ! denotes a normal distribution. 
Langevin simulations were repeated as described above after adding this velocity field to 
the potential gradient velocity field. PBA predictions were repeated as described above to 
generate the results shown in Supp. Fig. 3.  
 

7. Tests of PBA on simulated GRNs (Figure 4) 
 
We used the Gillespie algorithm(1) to generate molecular counts for the simulations of 
gene regulatory networks (GRNs) in Figure 4. In every case, we supplemented the 
simulated counts with additional noisy dimensions (values drawn from a Gaussian), so 
that the total dimensionality of the data was always 50.  
 
For the GRN in Figure 4A, we implemented the following stochastic chemical reactions 
(!! represents the green node, !! represents the blue node). 
 

1) !!, !! → (!! − 1, !!); rate = 0.003 ∗ !! 
2) !!, !! → (!!, !! − 1); rate = 0.003 ∗ !! 
3) !!, !! → (!! + 1, !!); rate = ℎ!"" 0.01 ∗ !!, 4 − ℎ!""(0.003 ∗ !!, 4) 
4) !!, !! → (!!, !! + 1); rate = ℎ!"" 0.01 ∗ !!, 4 − ℎ!""(0.003 ∗ !!, 4) 
5) Simulation end; rate = ! !!!! < 0.1 ∗ 0.01 

 
For the GRN in Figure 4D, we implemented the following stochastic chemical reactions, 
where the variables !! correspond to the colors in the figure as follows (!!, red; !!, 
green; !!, blue; !!, black; !!, yellow) 
 

1) !!, !!, !!, !!, !! → (!! − 1, !!, !!, !!, !!); rate = 0.005 ∗ !! 
2) !!, !!, !!, !!, !! → (!!, !! − 1, !!, !!, !!); rate = 0.005 ∗ !! 
3) !!, !!, !!, !!, !! → (!!, !!, !! − 1, !!, !!); rate = 0.005 ∗ !! 
4) !!, !!, !!, !!, !! → (!!, !!, !!, !! − 1, !!); rate = 0.01 ∗ !! 
5) !!, !!, !!, !!, !! → (!!, !!, !!, !!, !! − 1); rate = 0.01 ∗ !! 
6) !!, !!, !!, !!, !! → (!! + 1, !!, !!, !!, !!); rate = 1− ℎ!"" 0.1 ∗ !!, 2 +

ℎ!"" 0.025 ∗  !!, 2 − ℎ!""(0.025 ∗ !!, 4) 
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7) !!, !!, !!, !!, !! → (!!, !! + 1, !!, !!, !!); rate =1− ℎ!"" 0.1 ∗ !!, 2 +
ℎ!"" 0.025 ∗  !!, 4  

8) !!, !!, !!, !!, !! → (!!, !!, !!, !! + 1, !!); rate = 1− ℎ!"" 0.1 ∗ !!, 2 −
ℎ!"" 0.025 ∗  !!, 2  

9) !!, !!, !!, !!, !! → (!!, !!, !!, !! + 1, !!); rate = ℎ!"" 0.013 ∗ !!, 8 +
ℎ!"" 0.025 ∗  !!, 2  

10) !!, !!, !!, !!, !! → (!!, !!, !!, !!, !! + 1); rate = ℎ!"" 0.013 ∗ !!, 2 +
ℎ!"" 0.025 ∗  !!, 4  

11)  Simulation end; rate = 0.002 ∗ (ℎ!"" 0.005 ∗ !!, 2 + ℎ!""(0.005 ∗ !!, 2) 
 
 

6. Data processing and normalization of single-cell RNA-seq data 
 
Single-cell gene expression data from adult mouse bone marrow cells expressing Kit are 
reported and processed in another paper from our groups (Tusi, Wolock, Weinreb et al., 
in submission) Recapping in brief, reads were mapped as described in (2) to produce a 
(cell x gene) matrix of unique molecular identifier (UMI) counts that served as the 
starting point for the analysis in this paper.  
 
Data was filtered to remove cells with < 1000 total UMIs. Visualization of the remaining 
cells in tSNE revealed three aberrant clusters of cells: one cluster strongly expressed 
mitochondrial genes and likely contained to stressed cells; the other two clusters co-
expressed markers for distinct mature lineages (erythrocyte/macrophage and 
erythrocyte/granulocyte) and likely contained doublets. We removed all three aberrant 
clusters, resulting in 3803 cells.  
 
Single cell data was then prepared for PBA by normalizing the total gene expression 
counts in each cell as described in (2). Genes with mean expression > 0.05 across the data 
set, and Fano Factor > 2, were then used to perform principal components analysis down 
to p dimensions, for p = 40, 50, 60, 70, 80, 90. When applying PBA, we also used a range 
of graph neighbor connectivities k (k=10 – 30). In Figure 5, we report medians and 
confidence intervals of fate probabilities for all 120 combinations of p and k.  
 

7. Determining entry and exit parameters (!) for PBA analysis of HPCs 
 
To apply PBA to hematopoietic differentiation, we estimated the entry/exit rates ! from 
considerations of the proliferation rate and exit rates of Kit+ HPCs as follows. In adult 
hematopoiesis, all progenitors including HSCs express Kit, but eventually down-regulate 
it as they terminally differentiate. Thus, no cells enter the experimental system other than 
through proliferation of existing Kit+ HPCs, but there is a steady outflow (exit) owing to 
down-regulation of Kit as cells differentiate. We encoded this exit as negative ! values 
for the top 10 cells with highest marker gene expression for each of the seven terminal 
lineages (Supplementary Figure 5 and Supplementary Table 1). We assigned different 
magnitudes of R for each of the seven lineages using a fitting procedure (see next 
paragraph). All remaining cells were assigned a uniform positive value of R, 
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corresponding to a uniform proliferation rate, based on recent studies (3, 4) that found 
roughly similar growth rates across hematopoietic progenitor compartments. The 
magnitude of the growth rate was chosen so that !! = 0, reflecting a steady state in the 
total number of cells.  
 
The flux of cells down-regulating Kit for each lineage varies widely between different 
hematopoietic lineages. This impacts PBA because it directly sets the relative magnitude 
of R for each lineage, although the simulations indicate that predictions do not require 
very accurate flux estimates. Because the flux of Kit+ cells from each lineage is not 
generally known, we fitted the seven fluxes by requiring that PBA reproduce measured 
fate probabilities of hematopoietic stem cells (HSCs). We performed a separate fitting for 
each of the studies shown in Figure 5 (see Supplementary Figure 7). When a study did 
not report fate probabilities for HSCs, we assumed a uniform distribution. We identified 
HSCs in our data by comparison to a microarray profile of HSCs, as described in 
Methods section 9.  
 

8. Determining the diffusion rate (!) for PBA analysis of HPCs 
 
The diffusion rate (D) controls the level of stochasticity in the PBA model. The exact 
value of D cannot be directly measured, but it is possible to constrain D using known 
quantities. We defined a physiologically plausible range by scanning through different 
values of D and checking the number of PBA-predicted multipotent cells for each value 
(see Supp. Fig. 7). We used prior literature (see https://www.immgen.org/, (4) and 
Methods section 9) to estimate that 2-20% of Kit+ bone marrow cells are multipotent. We 
defined a cell in our dataset as multipotent (for a given value of D) if it satisfied 
!(fate)  >  1/14 for all 7 fates.  
 

9. Validation of PBA-predicted fate probabilities for HPC  
 
To validate PBA predictions of HPC fate probability, we compared them to the fate 
probabilities of 12 HPC subsets measured in previous studies (Table 2; Supplementary 
Figure 6). For each of the 12 cell surface marker-defined hematopoietic compartments, 
we used a published microarray profile to search for similar cells in our own dataset 
using a naïve Bayesian classifier, implemented as follows.  
 
The Bayesian classifier assigns cells to microarray profiles based on the Likelihood of 
each microarray profile for each cell, with the Likelihood calculated by assuming that 
individual mRNA molecules in each cell are multinomially sampled with the probability 
of each gene proportional to the microarray expression value for that gene. Consider a 
matrix ! of mRNA counts (UMIs) with ! rows (for cells) and ! columns (for genes), and 
also a matrix ! with ! rows (for microarray profiles) and ! columns for genes. M was 
quantile normalized and then each microarray profile was normalized to sum to one. E 
was previously normalized in Methods section 5. The (!×!) matrix Sij giving the 
Likelihood of each microarray profile j for each cell i is,  
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!!" = !! !!"
!!"

!

!!!
 

 
where !! is a normalization constant that ensures !!"! = 1.  
 
We assigned !! cells with highest log-Likelihoods to each microarray profile j, with !! 
determined from prior literature to reflect the abundance of each cell type among HPCs 
(see Supp. Table 2). Previous studies only provide abundance ratios between cell 
compartments, so we estimated !! values by first estimating the number of ST-HSCs in 
our data, and then multiplying this value by the relative of abundance of each 
compartment compared to ST-HSCs. We estimated that the number of ST-HSCs in our 
data set was ! = 5, reasoning that: (1) 1% of adult bone marrow is Kit+ (i.e. in our 
dataset); (2) the proportion of HSCs in adult bone marrow is 1-2 in 100,000 (5) and thus 
1-2 in every 1,000 Kit+ cells is an ST-HSC; (3) our dataset contains approximately 5000 
cells. Final assignments are indicated on the knn graphs in Figure 5. 
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Table	1:	Marker	genes	used	to	identify	the	most	mature	cells	in	each	lineage.	
	

	

	
	
	
Table	2:	Summary	of	12	HPC	subpopulations	with	microarray	profiles	and	fate	
assays	from	previous	papers,	used	to	validate	PBA		
	
	
*NM	=	not	measured	
Name	 Lineage	

Potential1		(%)	
Er-Mk-G-Mo-Ly-D	

Microarray	
reference	

Microaray	
accession	
codes	(replicates)	

Differentiation	
assay	

Differentiation	
reference	

Figure	in	
original	
reference	

Num.	
cells2	

PreMegE	 50-50-0-0-NM-NM	 Pronk,	2007	 GSM2076(82-86)	 Agar	 Pronk,	2007	 Figure	3	 123	
PreCFU-E	 95-5-0-0-NM-NM	 Pronk,	2007	 GSM2076(90-91)	 Agar	 Pronk,	2007	 Figure	3	 123	
MkP	 0-100-0-0-NM-NM	 Pronk,	2007	 GSM2076(87-89)	 Agar	 Pronk,	2007	 Figure	3	 123	
Pre	GM	 12-8-45-35-NM-NM	 Pronk,	2007	 GSM2076(79-81)	 Agar	 Pronk,	2007	 Figure	3	 123	
CMP	 14-16-37-32-NM-NM	 Teng,	2008	 GSM7911(17-18)	 Methylcellulose	 Akashi,	2000	 Figure	1	 124	
MEP	 45-55-0-0-NM-NM	 Teng,	2008	 GSM7911(08-09)	 Methylcellulose	 Akashi,	2000	 Figure	1	 304	
GMP	 0-0-60-40-NM-NM	 Teng,	2008	 GSM7911(19-21)	 Methylcellulose	 Akashi,	2000	 Figure	1	 184	
CDP	 NM-NM-0-0-0-100	 Teng,	2008	 GSM7911(14-16)	 In	vivo	 Naik,	2007	 Supp	Fig	1	 33	
CLP	 0-0-0-0-100-0	 Teng,	2008	 GSM5383(48-50)	 In	vivo	 Rumfelt,	2006	 Figure	2	 34	
MDP	 0-0-0-75-0-25	 Teng,	2008	 GSM7911(05-07)	 S17	stroma	 Fogg,	2006	 Figure	2B	 124	
MPP2	 25-25-25-25-NM-NM	 Pietras,	2015	 GSM16746(29-30)	 Methylcellulose	 Pietras,	2015	 Figure	2	 35	
MPP3	 10-10-40-40-NM-NM	 Pietras,	2015	 GSM16746(31-33)	 Methylcellulose	 Pietras,	2015	 Figure	2	 35	
	
																																																								
1	Lineage	potential	refers	to	the	proportion	of	colonies/mice	that	produce	a	terminal	cell-type	when	
inoculated	with	the	given	progenitor	population.	Potentials	are	normalized	to	add	up	to	one.	When	
measurements	were	made	for	HSCs,	the	potentials	were	renormalized	so	that	HSC	would	have	uniform	
potential	across	cell	types.	

2	All	cell	numbers	represent	a	ratio	with	respect	to	short-term	stem	cells	(ST-HSC).	When	data	was	not	
available	for	a	specific	progenitor	population,	we	used	data	from	a	population	with	the	same	functional	
potential,	or	otherwise	made	a	conservative	guess.		

3	Conservative	guess	
4	(Busch,	2015)	
5	(Pietras,	2015)	

Name	 Marker	genes	
Erythrocyte	(Er)	 Hbb-bt,	Hba-a2,	Hba-a1,	Alas2,	Bpgm	
Megakaryocyte	(Mk)	 Pf4,	Itga2b,	Vwf,	Mef2c	
Granulocyte	(G)	 Lcn2,	S100a8,	Ltf,	Lyz2,	S100a9	
Monocyte	(Mo)	 Csf1r,	Ly6c2,	Ccr2,	Glipr1	
Lymph	(Ly)	 Cd79a,	Igll1,	Vpreb3,	Vpreb1,	Lef1	
Dendritic	(D)	 H2-Aa,	Cd74,	H2-Eb1,	H2-Ab1,	Cst3	
Basophil	(Ba)	 Ifitm1,	Ly6e,	Srgn	
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Supplementary Figure 1: Entry/exit boundaries for a simulation of lineage bifurcation.
Figure supporting Fig. 3 and Methods section 2, showing the entry/exit locations in the first two 
dimensions of the m-dimensional gene expression simulation. Each cell was generated at simulation 
time t=0 in a gene expression state chosen uniformly at random in the indicated m-dimensional source 
box. Cells exit through one of the two sink boxes.
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Supplementary Figure 2: 
Robustness tests for the PBA 
algorithm. 

(a-d), Comparison of PBA predictions 

to “true” (simulated) fate bias and 

temporal order under imprecise 

assumptions about the entry/exit and 

diffusion parameters, D and R.  
             These analyses also showed that: (a) 

, imprecisely estimating the exit rates 

           between two fates with a ten-

fold error skews estimated fate 

probabilities but maintains high 

correlations; (b), treating every point 

as an exit does not diminish the 

accuracy of predicted temporal 

ordering; (c), decreasing the assumed 

diffusion rate predicts fate 

commitment to occur prematurely, 

causing PBA to under-estimate the 

number of bi-potent cells; (d), 

increasing the assumed diffusion rate 

has the opposing effect, leading to 

over-estimate the number of bi-potent 

cells. (a-c), Pearson correlation 

between “true” and “predicted” values 

of fate bias and temporal order for a 

range of algorithm parameter values: 

(e), the number of cells sampled; (f), 

number of graph neighbors k 
(measured as fraction of total graph 

size); (g), simulation dimensionality m 

(i.e. number of independent genes per 

cell). For each case, the relevant 

parameter is varied while keeping the 

other parameters fixed (N=200, k=20, 

m=50). In general, inference of 

temporal order is more accurate than 

fate probability. 
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Supplementary Figure 3: Testing PBA robustness to gene expression oscillations. 

PBA models gene expression dynamics as a diffusion-drift process down a potential landscape. 
This model makes an implicit assumption that no oscillations exist, since potential fields are 
irrotational. We measured the error that could be introduced by this assumption, by implanting a 
rotational gene expression field into the simulated fate bifurcation at two different points (left 
and right column), shown in (a). (b), Example simulated cell trajectories in presence of a 
rotational field; (c), location of sampled cells in the first two simulated gene expression 
dimensions; (d-e), Fidelity of PBA dynamic predictions measured by the Pearson correlation 
between “true” (simulated) and predicted quantities. Despite violating the assumptions of PBA, 
the oscillations did not significantly impact accuracy for fate probability (d) and timing (e). Blue 
curves indicate the mean correlation value as a function of the rotational field strength measured 
relative to the gradient field strength. Error bars indicate 90% confidence intervals from 10 
independent trials. Panel insets show comparisons at the indicated rotational field strengths. 
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(Supporting Figure 4A-C) (Supporting Figure 4D-F)

Supplementary Figure 4: Accuracy of PBA for a 
range of diffusion strengths in the GRN simulations 
shown in Figure 4. The optimal diffusion parameter 
value was used in Figure 4.
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Supplementary Figure 5: Matching cell subsets to known progenitor subpopulations. 

Identification of the endpoints of each lineage represented in our dataset, which occur when Kit 
is down-regulated. For each of seven fates, we identified endpoints as the 10 cells (red dots) with 
highest standardized (z-score) expression of known marker genes (Supplementary Table 1).  
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Supplementary Figure 7: The PBA diffusion parameter (D) is constrained by 
subpopulation fate probabilities and by the fraction of multipotent cells. 

(a), The diffusion constant (D) sets the stochasticity of the PBA model and impacts the predicted 
fate probabilities for HPCs. (b), A systematic scan of D values shows that prediction accuracy 
remains high over a broad range of D values. (c), The PBA-predicted proportion of multipotent 
cells plotted as a function of D. The physiological range is highlighted (pink) (see Methods). 
This analysis reveals a narrow range of physiologically plausible D values that includes the point 
of maximum prediction accuracy. Dashed lines relate the panels in (a) to values of D plotted in 
(b,c). 
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