bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

HapCHAT: Adaptive haplotype assembly for efficiently
leveraging high coverage in long reads

Stefano Berettal'f, Murray Patterson®!*, Simone Zaccarial?, Gianluca
Della Vedova!, and Paola Bonizzoni'*

I Department of Informatics, Systems, and Communication, University of
Milano-Bicocca, Milano, Italy and

2 Department of Computer Science, Princeton University, Princeton, NJ,
Us.

t The authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors
*x To whom correspondence should be addressed.

Abstract

Motivation: Haplotype assembly is the process of reconstructing the hap-
lotypes of an individual from sequencing reads. Computational methods for
this problem have shown to achieve high accuracy on long reads, which are
becoming cheaper to produce and more widely available. Larger amounts
of data, usually originating from increased coverage, are highly beneficial
for improving the quality of the detection of the genetic variations that are
intrinsic to the diploid nature of the human genome. However, the high
accuracy of such methods comes at a cost of computational resources. The
increased error rates that affect all current long-read technologies require
even higher coverage: making the analysis of such data the key computational
task to be solved in order to improve the accuracy of the predictions made
by haplotype assembly methods.

Results: We propose a new computational approach for assembling hap-
lotypes that is specifically designed to cope with a different error rate at
each variant site, while minimizing the total number of these corrections
necessary for a feasible solution. The complete strategy has been imple-
mented in HapCHAT: Haplotype Assembly Coverage Handling by Adapting
Thresholds. An experimental analysis on sequencing reads with up to 60x
coverage reveals accuracy improvements with increasing coverage. Moreover,
despite the fact that this adaptive approach is slightly heuristic, the extent
of its efficiency over current state-of-the-art long-read haplotype assembly

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

methods allows the leveraging of higher enough coverage that it pays of in
terms of accuracy prediction, while decreasing the running time.

Keywords: Single Individual Haplotyping, Long Reads, Haplotype As-
sembly, Minimum Error Correction,

Availability: HapCHAT is available at https://hapchat.algolab.eu under
the GPL license.

Contact: murray.patterson@unimib.it, |bonizzoni@disco.unimib.it

1 Introduction

Due to the diploid nature of the human genome, knowing the individual hap-
lotypes on which a particular variation or set of variations occurs has a strong
impact on various studies in genetics, from population genomics (Brown-
ing and Browning, 2011; Tewhey et al., 2011), to clinical and medical ge-
netics |Glusman et al| (2014), or to the effects of compound heterozygos-
ity (Tewhey et all, [2011}; |Roach et al., 2010), such as cancer (van de Ven
et al., 2012)). The reconstruction of the haplotypes of the human genome of
an individual from sequencing reads, known as haplotype assembly or read-
based phasing, is made possible either by sequencing technologies supported
by experimentally (molecular) phasing (Amini et al., 2014} Snyder et al.l
2015)), or computational methods. While experimental phasing suffers from
several technological limitations that still make it a very expensive solution,
computational methods continue to thrive as sequencing reads continue to
become larger, of higher quality, and more widely available.

Due to the availability of curated, high-quality haplotype reference panels
on a large population of individuals (Loh et al. |2016; O’Connell et al., 2016)),
the state of the art in computational methods for inferring the haplotypes of
an individual are population-based statistical methods that infer a maximum-
likelihood phasing (Li and Stephens|, 2003; |Browning and Browning, [2011)),
given these panels. The accuracy of these methods, however, depends heavily
on the size and diversity of the population used to compile these panels,
meaning poor performance on rare variants, while de novo variants are
completely missed. These types of variants appear in the sequencing reads
of the individual, making haplotype assembly (or read-based phasing) the
obvious solution, since it involves the assembly of a pair of haplotypes directly
from the reads. However, since it is necessary to have reads spanning enough
pairs of neighboring variants to make this type of approach effective, second
generation reads have been historically too short to allow haplotype assembly

https://hapchat.algolab.eu
murray.patterson@unimib.it
bonizzoni@disco.unimib.it
https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

to gain any momentum. However, the recent improvements in sequencing
of long reads encourages the use of haplotype assembly, which may offer
cost-effective methods that support accurate and comprehensive haplotype
reconstruction. Current third generation sequencing platforms offered by
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are
able to produce much longer reads than the previous generations, where
reads are now several megabases in length, and are hence much more capable
to capture together more variants than the short reads that are commonplace
today (Roberts et al, 2013; Kuleshov et al., [2014; [Ip et al. |2015]). Nanopore
technologies still have limitations for read-phasing due to a high error-rate
while PacBio technologies offer long reads with an acceptable error rate
making it promising for accurate read-based phasing by the intensive use of
computational methods.

Read-based phasing is closely tied to the Minimum Error Correction
(MEC) Problem, since solving the MEC is to find an assignment of the
sequencing reads to a pair of haplotypes (i.e., a phasing) that minimizes the
number of errors to correct. Since this task is NP-hard (Lippert et al., 2002),
methods for haplotype assembly have been historically either heuristic (Bansal
and Bafna), |2008; [Mazrouee and Wang, 2014)), while exact methods are Integer
Linear Programming (ILP) approaches (Fouilhoux and Mahjoub| |2012; Chen
et all |2013), or Dynamic Programming (DP) approaches that are Fized-
Parameter Tractible (FPT) in some parameter (He et al., 2010). The success
of these exact methods has been, rather ironically, based on the fact that
reads are short, however, since the ILP approach of (Chen et al., 2013) works
best on short blocks, and has preprocessing steps to ensure this, while the
DP approach of (He et al., 2010) has read-length as the fixed parameter.
Both of these cases rely on the reads being short, and have been shown to
scale poorly, or not at all, for long-read data, even when the coverage is
low (Patterson et all 2014). The need for taking advantage of long reads
with the advent of the third generation technologies such as PacBio and
ONT, along with the deficiencies of the above methods has brought about a
new generation of haplotype assembly methods targeting long reads (Deng
et al., [2013; Kuleshov, |2014; |[Patterson et al., [2014, 2015) — these methods
are FPT in the coverage, rather than the read-length, and (Patterson et al.,
2014} 2015), is actually linear in the read-length, allowing it to scale to any
read-length that is available.

These methods that are FPT, i.e., exponential, in the coverage, have
moved the problem from read-length to the coverage. While this has been
a positive move in general — this new wave of methods can tease out a
better overall accuracy from sequencing reads than its predecessors — these

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

data still have a high coverage, which remains an important parameter.
Hence, there is still much work to be done in order to tackle high coverage:
WhatsHap (Patterson et al., 2014, [2015)), for example, cannot handle a
maximum coverage much higher than 20x, while current datasets have
average coverages well over 60x (Zookl |2014). This problem has been
partially addressed with HapCol (Pirola et al., [2015)), a method that is
exponential in the number of errors to correct at each site, since this is in
general much lower than the coverage at a site, given that error rates of
PacBio tend to be quite reasonable (around 15% (Roberts et al., [2013)).
This allows scaling to 25-30x coverage over WhatsHap at 20x, while using
less time, and significantly less memory (Pirola et al.l 2015).

In this work, we handle even higher coverage than HapCol (Pirola et al.,
2015) by allowing the adjustment of the number of errors to correct at each
site, dynamically, as the method runs (cf. Section . This allows both the
handling of columns that require more errors than average (for which HapCol
fails), while not exploring scenarios that involve a number of corrections that
is much higher than necessary for a site, saving a significant amount of time.
This is coupled with a merging procedure (c¢f. Section that merges pairs
of reads that are highly likely to originate from the same haplotype, allowing
this method to scale to the coverages of today. The complete strategy has
been implemented in HapCHAT: Haplotype Assembly Coverage Handling
by Adapting Thresholds. An experimental analysis on real and simulated
sequencing reads with up to 60x coverage reveals that we are able to leverage
high coverage towards better accuracy predictions, as we see a trend towards
increasing accuracy as coverage increases. We compare our method to some
of the state-of-the-art methods in haplotype assembly: HapCol (Pirola et al.,
2015)); the newest version of WhatsHap (Martin et al., 2016)), to which many
features have since been added; and HapCUT2 (Edge et al., 2016), which has
also improved significantly over its predecessor, HapCUT (Bansal and Bafna,
2008]). We show, not only that HapCHAT is more efficient than WhatsHap
and HapCol, but that it also obtains better accuracy predictions than these
methods, indeed by better leveraging the information provided in the high
coverage of these sequencing reads.

2 Background

Let v be a vector, then v[i] denotes the value of v at position i. A haplotype
is a vector h € {0,1}". Given two haplotypes of an individual, say hj, ha,
the position j is heterozygous if hi[j] # ha[j], otherwise j is homozygous. A

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

fragment is a vector f of length I belonging to {0,1, —}!. Given a fragment
f, position j is a hole if f[j] = —, while a gap is a maximal sub-vector of f
of holes that is, a gap is preceded and followed by a non-hole element (or by
a boundary of the fragment).

A fragment matriz is a matrix M that consists of n rows (fragments)
and m columns (SNPs). We denote as L the maximum length for all the
fragments in M, and as M; the j-th column of M. Notice that each column
of M is a vector in {0, 1, —}" while each row is a vector in {0,1, —}".

Given two row vectors 1 and ry belonging to {0, 1, —}™, r1 and 79 are in
conflict if there exists a position j, with 1 < j < m, such that r[j] # r2[j]
and r1[j], r2[j] # —, otherwise 1 and ry are in agreement. A fragment matrix
M is conflict free if and only if there exist two haplotypes hi, ho such that
each row of M is in agreement with one of hy and hs. Equivalently, M is
conflict free if and only if there exists a bipartition (Py, Py) of the fragments
in M such that each pair of fragments in P; is in agreement and each pair of
fragments in P is in agreement. A k-correction of a column Mj, is obtained
from M; by flipping at most k values that are different from —. A column
of a matrix is called homozygous if it contains no 0 or no 1, otherwise (if it
contains both 0 and 1) it is called heterozygous. We say that a fragment 4
is active on a column Mj, if M;[i| = 0 or M,[i] = 1. The active fragments
of a column M; are the set active(M;) = {i : M;[i] # —}. The coverage of
the column Mj is defined as the number cov; of fragments that are active
on Mj, that is cov; = |active(M;)|. In the following, we indicate as cov the
maximum coverage over all the columns of M. Given two columns M; and
M, we denote by active(M;, M;) the intersection active(M;) N active(M;).
Moreover, we will write M; ~ M, and say that M;, M; are in accordance,
if M;[r] = My[r] for each r € active(M;, M;), or M;[r] # M,[r] for each
r € active(M;, M;). Notice that M; ~ M; means that these two columns are
compatible, that is, they induce no conflict. Moreover, d(M;, M;) denotes the
minimum number of corrections to make columns M; and M; in accordance.

The Minimum Error Correction (MEC) problem (Lippert et al.l 2002;
Bonizzoni et al.l |2003), given a matrix M of fragments, asks to find a conflict
free matrix C' obtained from M with the minimum number of corrections.
In this work, we consider the variant of the MEC problem, called k-cMEC
in which the number of corrections per column is bounded by an integer
k (Pirola et al., 2015)). More precisely, we want a k-correction matriz D for
M where each column Cj is a k-correction of column M;, minimizing the
total number of corrections. We recall that in this paper we will consider
only matrices where all columns are heterozygous.

Now, let us briefly recall the dynamic programming approach to solve the

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

k-cMEC problem (Pirola et al.l 2015). This approach computes a bidimen-
sional array D[j, C;] for each column j > 1 and each possible heterozygous
k-correction C; of M;, where each entry D[j,C;] contains the minimum
number of corrections to obtain a k-correction matrix C' for M on columns
My, ..., M; such that the columns C; are heterozygous. For the sake of
simplicity, we pose DI0,-] = 0. For 0 < j < m, the recurrence equation for
D[j,C;] is the following, where §; is the set of all heterozygous k-corrections
of the column M;.

D|j,C;] = i Dlj—-1,C;= d(M;,C5) ».
5.6 =, i D=1l d0.Cp)}

For the complete description of the dynamic programming recurrence we
refer the reader to (Pirola et al., [2015; |Bonizzoni et al., [2015)).

3 Methods

In this section, we highlight the new insight of HapCHAT for the assembly of
single individual haplotypes, with the specific goal of processing high coverage
datasets. In fact, as reported in the original HapCol paper (Pirola et al.,
2015), the FPT algorithm is exponential in the coverage and the number
k of allowed corrections in each position. Therefore, we developed a pre-
processing step which merges reads belonging to the same haplotype based on
a graph clustering method. Moreover, we also improved the HapCol method
by introducing a heuristic procedure to cope with problematic positions,
i.e. those requiring more than k corrections.

As anticipated, the combination of all these improvements allowed the
possibility of reconstructing haplotypes using higher coverage (w.r.t. the
original HapCol method) reads, while reducing the runtimes.

3.1 Pre-processing

The first step of our pipeline is to merge pairs of fragments that, with
high probability, originate from the same haplotype. With p we denote the
probability that a single nucleotide is an error — we recall that p ~ 0.15
and that errors are uniformly distributed for PacBio reads. Let r; and
ro be two reads that share m 4+ x sites, agree on m of those sites and
disagree on z sites. Then the probability that 1 and 7y originate from
the same haplotype is approximately ps(ri,r2) = p*(1 — p/3™), while the
probability that they originate from two different haplotypes is approximately

pa(ri,m2) = p™ (1 —p/3%).

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A simple approach to reduce the size of the instance is to merge all
pairs (r1,72) of fragments such that ps(rq,r2) is sufficiently large. But that
would also merge some pairs of fragments whose probability pg is too large.
Since we wanted to be conservative in merging fragments, we partition the
fragment set into clusters such that ps/pg > 10° for each pair of fragments in
the cluster. Then, for each site, the character that is the result of a merge is
chosen applying a majority rule, weighted by the Phred score of each symbol.

3.2 Adaptive k-cMEC

Here, we describe how we modified the HapCol dynamic programming
recurrence in order to deal with problematic columns for which the maximum
allowed number of corrections is not enough to obtain a solution. As stated in
the original HapCol paper (Pirola et al., [2015]), the number k; of corrections
for each column M; is computed, based on its coverage cov; and on two input
parameters: € (average error-rate) and « (the probability that the column
M; has more than k; errors). In fact, the number of errors varies among
different columns proportional to the coverage and so HapCol estimates the
number of corrections, accordingly. This is done in order to bound the value
of k, which is fundamental since HapCol implements an FPT algorithm that
is exponential in both coverage and maximum number of allowed corrections.
For this reason, we would prefer to have small values of k;. A side effect of
this approach is that, given k;, there might be some columns M; for which
it is not possible to find a solution.

Therefore, we developed a heuristic procedure which has the final goal of
finding, for each column M, a value of k; for which a solution exists. We recall
that the recurrence equation governing the original dynamic programming
approach considers all k;-correction C; € §;. We slightly modify the definition
of k-corrections to cope with those problematic columns, by increasing the
number of allowed corrections. Let C;) be a k-correction of M; with exactly
k corrections, let hjo = k; and h;; = hj;—1 + [logy(hji—1) + 1]. Then
ky = mini:D[j,Cj,hjyi,l#oo {h;;} if i > 0, where D[-,-] # oo means it is a
feasible correction. Starting from this notation, the new set of possible
corrections of column Mj is

5]:{Oj,k1§k§k;}

Notice that the sequence of h;; is monotonically increasing with ¢, hence
we can compute k;‘ by starting with k; and increasing it until we are able to
find a k7-correction for the column Mj. The dynamic programming equation
is unchanged, but our new construction of the set ¢; guarantees that we are

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

always able to compute a solution. Moreover, just as for HapCol, we cannot
guarantee that we solve optimally the instance of the MEC problem.

One of the key points of this procedure is how we increment h;;, that is
by adding a logarithmic quantity. This guarantees a balance between finding
a small value of k7 and the running time needed for the computation.

4 Results

We now describe the results of our experiements. In Subsection we
describe the data that we use, or simulate. In Subsection [4.2] we detail the
experiments that we set up in order to compare our tool with others. Finally
in Subsection we discuss the results of these experiments.

4.1 Data description

The Genome in a Bottle (GIAB) Consortium has released publicly available
high-quality sequencing data for seven individuals, using eleven different
technologies (Zook, 2014). Since our goal is to assess the performance of dif-
ferent single-individual haplotype phasing methods, we study Chromosomes
1 and 21 of the Ashkenazim individual NA24385. This individual is the
son in a mother-father-son trio. We downloaded from GIAB the genotype
variants call sets NIST_CallsIn2Technologies 05182015, a set of variants for
each individual of this trio that have been called by at least two independent
variant calling technologies. In order to be able to compare against methods
that use reference panels or information from multiple individuals, e.g., a trio,
for single-individual haplotype phasing, we considered for each chromosome
all bi-allelic SNPs that: (a) appear also in the 1000 Genomes reference panel
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz, and (b)
have been called in all three individuals of the Ashkenazim trio, i.e., also
in the mother and the father. This resulted in 140744 SNPs for Chromo-
some 1, of which 48023 are heterozygous, and 26419 for Chromosome 21,
of which 8941 are heterozygous. We refer to this set of SNPs for a chro-
mosome as the set of benchmark SNPs for the chromosome — each set is
in the form of a VCF file. Since the authors of (Garg et al., [2016) also
study GIAB sequencing reads, and have made the pipeline for collecting
and generating their data publicly available at https://bitbucket.org/
whatshap/phasing-comparison-experiments/, we use or modify parts of
this pipeline to generate our data as detailed in the following.

https:// mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz
https://bitbucket.org/whatshap/phasing-comparison-experiments/
https://bitbucket.org/whatshap/phasing-comparison-experiments/
https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Phasing Benchmark Because population-based statistical methods are
among the most developed types of approaches, thanks to the availability of
curated, high-quality reference panels, we use the output of a statistical phaser
— a phasing of the benchmark SNPs — as a benchmark for comparing all of the
following (read-based) phasing methods. Note that population-based and
read-based phasing approaches use completely independent sources of informa-
tion for phasing — another good reason for this comparison. More specifically,
we use the population-based phasing tool SHAPEITv2-r837 (Delaneau, 2013])
with default parameters. We provided as input to this program, the 1000
Genomes reference panel, mentioned in (a) above, the corresponding genetic
map http://www.shapeit.fr/files/genetic_map_b37.tar.gz, and the
unphased genotypes, i.e., the set of benchmark SNPs of the corresponding
chromosome. It is the resulting phasing that we use as a benchmark for
comparing the different read-based phasing methods.

GIAB PacBio Reads One of the more recent technologies producing long
reads — those which are the most informative for read-based phasing — is the
Pacific Biosciences (PacBio) platform. PacBio is one of the eleven technolo-
gies on which GIAB provides sequencing reads. We hence downloaded the set
of aligned PacBio reads ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/
data/AshkenazimTrio/HGO02_NA24385_son/PacBio_MtSinai_NIST/MtSinai_
blasr_bam_GRCh37/hg002_gr37_1.bam/ for chromosomes 1 and 21 of the son,
which have average coverages of 60.2x and 53.3x and average mapped read
lengths of 8687bp and 8712bp, respectively. We then downsampled both read
sets to average coverages 25x, 30x, 35x, 40x, 45x and 50x, and the read
set corresponding to chromosome 1 to the additional average coverages 55x
and 60x. This was done using the DownsampleSam subcommand of Picard
Tools, which randomly downsamples a read set by selecting each read with
probability p. We downsample recursively, so that each downsampled read
set with a given average coverage is a subset of any downsampled read set
with an average coverage higher than it.

Simulated PacBio Data Aside from the PacBio data described in the
previous section, we also produce and run our experiments on a simulated
read set for each chromosome. Reference panels may leave out some variants
with low allele frequency — a good reason for doing read-based phasing — and
statistical methods might be susceptible to systematic bias in the data. For
these reasons, we complement our study with an experimental analysis on
simulated reads, as follows.

http://www.shapeit.fr/files/genetic_map_b37.tar.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_1.bam
https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

We first obtain a pair of “true” haplotypes off of which we simulate
reads. Given one side of the phasing, by SHAPEIT, of the variants (the
set of benchmark SNPs) of the appropriate chromosome, we incorporate
this side into the reference genome (hgl9) by flipping the variant sites that
are the alternative allele in this side of the phasing. The opposite side is
done analagously. Using each true haplotype as the input, we produce a
corresponding set of reads for this haplotype using PBSIM (Onol 2013)), a
Pacbio-specific read simulator. We input to PBSIM the optional parameters
--depth 60 so that our simulated reads have sufficient coverage, and as
--sample-fastq a sample of the original GIAB PacBio reads described in
the previous section, so that our simulated reads have the same length and
accuracy profile as the corresponding real read set. We align the resulting
simulated reads to the reference genome using BWA-MEM 0.7.12-r1039 (Li,
2013)) with optional parameter -x pacbio. Finally, this pair of aligned read
sets, representing the reads coming off of each haplotype is merged using the
MergeSamFiles subcommand of Picard Tools, obtaining the final simulated
read set. In the same way as we have done with the read sets for the real
chromosomes, we downsample each to average coverages 25x, 30x, 35X,
40x, 45x and 50x and the simulated read set for chromosome 1 to the
additional average coverages 55x and 60x.

To summarize, the data we use or simulate regards both real and simulated
reads on chromosome 1 for a set of 8 average coverages, and on chromosome
21 for a set of 6 average coverages, for a total of 28 read sets, each in the
form of a BAM file. It is on these 28 read sets, along with the the set of
benchmark SNPs for each chromosome — a pair of VCF files — that we carry
out our experiments, as described in the following section.

4.2 Experimental Setup

We compare our tool, HapCHAT to the most recent state-of-the-art read-
based phasing methods of WhatsHap (Patterson et al., [2015; [Martin et al.,
2016), HapCol (Pirola et al., 2015) and HapCUT2 (Edge et al., [2016)). A
short description of each tool, and how we set it up for this comparison on
the data described in Subsection [4.1]is as follows.

WhatsHap WhatsHap (Patterson et al., 2015)) is a C++ implementation
of a dynamic programming algorithm for the wMEC that is fixred parameter
tractable in the maximum coverage at any site of the input. For WhatsHap
to be useful in practice, it therefore needs to prune any instance to a target

10

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

mazimum coverage, since its runtime and memory scale exponentially with
the maximum coverage at any site.

While WhatsHap has shown to outperform a selection of state-of-the art
read-based phasing tools in (Patterson et al., |[2015]), some tools have since
been developed (such as HapCol (Pirola et al., 2015), which we compare here,
that outperform WhatsHap in terms of time and memory usage. However,
WhatsHap has been enriched with many features, such as a read selection
procedure, detailed in (Fischer and Marschall, 2016)), which is now built-in:
reads are selected down to maximum coverage 15 by default. Another feature
is a realignment preprocessing step (Martin et al., 2016 which realigns
locally the variants to the alternative allele (of the reference genome), to
correct some of the errors in the reads, which has been shown to significantly
boost prediction accuracy (Martin et al., 2016), especially for noisy reads
such as PacBio. In addition to these improvements, WhatsHap is now a
production-quality tool that works with standard formats such as BAM and
VCEF. As far as we know, it is the only production-quality tool for read-based
phasing, aside from the ReadBackedPhasing command of GATK (DePristo
et al., 2011), which has been discontinued.

For each of the 28 read sets, we provide to WhatsHap (version 0.13)
its BAM file and the VCF file for the corresponding chromosome. We run
WhatsHap on this input pair in realignment mode by providing it with
optional parameter --reference, the reference genome (hgl9), producing
the resulting phased VCF file. We then do another parallel set of runs of
WhatsHap in realignment mode, but pruning to target maximum coverage 20
instead (note that the first set was pruned to the default maximum coverage
of 15), by providing the optional parameter -H 20. It is the resulting set of
56 phasings by WhatsHap, in the form of phased VCF that we use for the
basis of comparison with the other methods.

HapCol HapCol (Pirola et al., 2015) is an implementation in C++ of a
dynamic programming algorithm for the k-MEC problem that we explain in
detail in Sections P and 3.2l

For each of the 28 read sets, together with the VCF file of the corre-
sponding chromosome, we convert it to the custom input format for HapCol.
Since HapCol does not have a read selection procedure — something it does
need for data at 60x coverage (cf. Section [l) — we then apply the read
selection procedure of (Fischer and Marschall, |2016)) to prune this set to the
target maximum coverages of 15x, 20x, 25x and 30x. On these resulting
112 input files, we run HapCol with its default value of a = 0.01 (and of

11

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

e = 0.05). Since HapCol is not adaptive, but we want to give it a chance
to obtain a solution on its instance, should a given alpha be infeasible (cf.
Section , we continue to rerun HapCol with an « of one tenth the size of
the previous until a solution exists. HapCol outputs a pair of binary strings
representing the phasing, which we then convert to phased VCF. It is this
set of resulting 112 phasings (phased VCF files) that we use to compare with
the other methods.

HapCUT2 HapCUT?2 (Edge et all 2016 is heuristic for the wMEC prob-
lem which is based on finding a MAX-CUT of the corresponding graph
representation of the instance. It is the successor of HapCUT (Bansal and
Bafnay, [2008)), and has been improved to the extent it seems to be competitive
enough to merit comparison.

For each of the 28 read sets, we use the extractHAIRS program that
comes with HapCUT to convert its BAM / VCF pair into the custom input
format for HapCUT2. We provide this program the optional parameter
--maxIS 600 which is the maximum insert size for a paired-end read to be
considered as a single fragment for phasing (default 1000). We also extract
another 28 sets of parallel inputs for HapCUT2 as above, but also providing
the additional optional parameter --indels 1, which also extracts reads that
span indels. We then ran HapCUT2 on these 56 instances, each producing a
custom output which is then converted to phased VCF with the subcommand
hapcut2vct of the WhatsHap toolbox.

HapCHAT Our tool, HapCHAT has been partially integrated into the
WhatsHap codebase, allowing us to take advantage of features such as
realignment in our phasing method as well. Hence, for each of our 28 read
sets, we first run HapCHAT in realignment mode followed by our merging
step described in Section which reduces the coverage. If necessary, the
reads are further selected via a greedy selection approach (based on the
Phred score), with ties broken at random, to downsample each dataset to
the target maximum coverages of 15x, 20x, 25x and 30x.

In summary, with 28 read sets at 4 resulting target maximum coverages,
we hence have 112 resulting phasings, in phased VCF format, for which the
comparison of HapCHAT to other methods is based.

4.3 Experimental results

We have run all tools with a timeout of 1 day and according to the description
of Section The times reported here do not include the time necessary to

12

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Ashkenazim HapCHAT HapCol WhatsHap HapCUT?2

Chr. Avg. Cov. | Max25 Max30 | Max25 Max30 | Max15 Max20
Cov. 25 | 0.251 0.251 | 0.542 - 0.254 0.254 2.359
Cov. 30 0.242 0.242 0.489 - 0.258 0.258 2.218
Cov. 35 0.244 0.242 | 0.466 - 0.253 0.249 2.009

Chr. 1 Cov. 40 0.244 0.242 | 0.459 - 0.255 0.251 1.744
Cov. 45 | 0.244 0.246 | 0.426 - 0.255 0.250 1.684
Cov. 50 0.237 0.235 | 0.404 - 0.244 0.235 1.539
Cov. 55 0.241 0.239 | 0.391 - 0.246 0.243 1.460
Cov. 60 0.248 0.245 | 0.391 - 0.261 0.243 1.396

Cov. 25 0.396 0.396 | 0.536 0.513 | 0.396 0.396 1.943
Cov. 30 0.396 0.396 | 0.466 - 0.396 0.396 1.728
Cov. 35 0.431 0.431 | 0.489 0.500 0.442 0.431 1.723
Cov. 40 0.419 0.419 | 0.511 0.500 | 0.419 0.430 1.694
Cov. 45 0.442 0.442 | 0.534 - 0.442 0.465 1.599
Cov. 50 0.453 0.453 | 0.546 0.569 | 0.453 0.465 1.363

Chr. 21

Table 1: Switch error percentage on real Ashkenazim data, on chromosomes
1 and 21. The best result for each instance is boldfaced.

Simulated HapCHAT HapCol WhatsHap HapCUT?2

Chr. Avg. Cov. | Max25 Max30 | Max25 Max30 | Max15 Max20
Cov. 25 0.039 0.035 | 0.218 - 0.035 0.039 1.036
Cov. 30 0.033 0.028 | 0.181 - 0.035 0.030 0.658
Cov. 35 | 0.028 0.028 | 0.161 - 0.033 0.037 0.495

Chr. 1 Cov. 40 | 0.024 0.026 | 0.148 - 0.026 0.030 0.376
Cov. 45 | 0.022 0.022 | 0.139 - 0.024 0.024 0.320
Cov. 50 0.022 0.020 | 0.134 - 0.020 0.024 0.251
Cov. 55 0.024 0.022 0.126 - 0.024 0.022 0.244
Cov. 60 | 0.017 0.020 | 0.108 - 0.020 0.024 0.231

Cov. 25 0.035 0.035 | 0.116 0.116 | 0.035 0.035 0.367
Cov. 30 0.023 0.023 0.139 0.128 | 0.012 0.012 0.201
Cov. 35 0.023 0.023 | 0.151 - 0.023 0.023 0.188
Cov. 40 0.035 0.035 0.151 0.151 | 0.023 0.023 0.176
Cov. 45 0.058 0.058 | 0.162 - 0.058 0.058 0.106
Cov. 50 0.058 0.058 0.139 - 0.035 0.035 0.117

Chr. 21

Table 2: Switch error percentage on simulated data, on chromosomes 1 and
21. The best result for each instance is boldfaced.

13

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

read the input (BAM) file, which is more-or-less the same for each method.
Because we want to focus on comparing each method — preprocessing and
phasing, and this reading step can be quite costly (Martin et al., |2016)), it
only skews this analysis. The results are summarized in Tables and
Figure 1} The supplementary material contains more detailed results.

The quality of the predictions obtained with the experiments is summa-
rized in Tables where the switch error percentage is reported. Each true
haplotype is a mosaic of the predicted haplotypes. A switch error is the
boundary (that is two consecutive SNP positions) between two portions of
such a mosaic. The switch error percentage is the ratio between the minimum
number of switch errors and the number of phased SNPs (expressed as a
percentage). It is immediate to notice that both HapCol and HapCUT2
compute predictions that are not as good as those computed by HapCHAT
or WhatsHap. Note that for HapCUT2, we only report the results of phasing
without indels: the accuracy performance of phasing with indels was worse
in all cases, while runtimes did not differ significantly. While the switch
error percentage of HapCHAT and WhatsHap is close, we point out that
HapCHAT computes the best prediction for almost all instances — the only
exceptions are 3 instances on simulated of chromosome 21. On the other
hand, HapCUT2 is the fastest tool, as reported in Tables Notice also
that HapCol with maximum coverage 30 is unable to phase any instance
on chromosome 1 and 5 out of 12 instances on chromosome 21 within the
allotted 1-day timeout.

Since HapCHAT or WhatsHap produce the best predictions, we focus our
analysis on those two tools. The results on chromosomes 1 and 21 are quite
different. In fact, on chromosome 1 (both Ashkenazim and simulated datsets)
HapCHAT always obtains the best phasings, which WhatsHap is able to
match only in 5 (out of 14) instances. On the other hand, WhatsHap predic-
tions are often close to those obtained by HapCHAT. On chromosome 21,
WhatsHap and HapCHAT obtain the same results on 9 out of 12 instances.
On the remaining 3 instances (all on simulated data) WhatsHap produces
significantly better predictions than HapCHAT, but there is no clear cause
for this behavior. The analysis of the running time shows that HapCHAT
is much faster: at the largest maximum coverage for both tools, HapCHAT
always run in less than half the time needed by WhatsHap. This suggests
that, on chromosome 21, it is possible to run HapCHAT with maximum
coverage 35 to obtain a new set of predictions. Finally, the memory usage
of HapCHAT is always smaller than WhatsHap (when run with max cover-
age 20) and almost always smaller than HapCUT2. Moreover, HapCHAT
has never required more than 4Mbytes of RAM, making it uninteresting to

14

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Ashkenazim HapCHAT HapCol WhatsHap HapCUT?2
Chr. Avg. Cov. | Max25 Max30 | Max25 Max30 | Max15 Max20

Cov. 25 305 591 | 39456 - 418 8790 46

Cov. 30 482 1292 | 46564 - 420 10178 55

Cov. 35 635 2193 | 50071 - 435 11271 64

Chr. 1 Cov. 40 730 3095 | 50301 - 453 11775 75
Cov. 45 833 3888 | 51570 - 455 11882 82

Cov. 50 856 4579 | 53030 - 460 12079 91

Cov. 55 925 5103 | 54012 - 487 12207 105

Cov. 60 958 5550 | 53496 - 494 12355 110

Cov. 25 82 185 7479 72947 84 1857 13

Cov. 30 114 399 3323 - 83 2071 15

Chr. 21 Cov. 35 137 609 3701 32935 87 2146 18
Cov. 40 158 766 3818 33337 89 2286 20

Cov. 45 167 895 3914 - 92 2355 23

Cov. 50 167 986 4268 32346 100 2376 25

Table 3: Time in seconds of the tools on Ashkenazim data, chromosomes 1
and 21. The best result for each instance is boldfaced.

deepen the analysis of RAM usage.

An analysis of Tables [1] and 2] towards finding the effect of average and
maximum coverage shows that, on chromosome 1, increasing the maximum
coverage results (unsurprisingly) in improved predictions. Considering larger
datasets (that is larger average coverage) shows that there is a trend of
improving predictions made by WhatsHap and HapCHAT with larger average
coverage up to 50. For average coverages larger than 50, the predictions
worsen. On chromosome 21, the maximum coverage has almost no effect
(actually WhatsHap gives worse predictions for larger maximum coverages on
3 instances of Ashkenazim data), while the quality of the predictions worsen
for larger datasets. This fact suggests that there is a tradeoff between the
length of the chromosome and the number of reads to analyze that result in
the best phasing.

The plots in Figure[l|represent the quality of the predictions computed by
WhatsHap and HapCHAT as a function of the running time, for chromosome 1
on the Ashkenazim dataset. Besides the switch error rate, we have also
investigated the Hamming distance, that is the number of calls that are
different from the ground truth. Both plots confirm that HapCHAT computes
predictions that are at least as good as those of WhatsHap (and clearly
better in terms of Hamming distance) in a fraction of time.

15

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Simulated HapCHAT HapCol WhatsHap HapCUT?2
Chr. Avg. Cov. | Max25 Max30 | Max25 Max30 | Max15 Max20

Cov. 25 313 572 | 38863 - 427 9306 36

Cov. 30 479 1317 | 47367 - 427 10647 42

Cov. 35 605 2167 | 18813 - 441 11132 51

Chr. 1 Cov. 40 697 3052 | 20007 - 456 12159 58
Cov. 45 766 3754 | 56403 - 462 12023 64

Cov. 50 803 4399 | 57135 - 462 12166 72

Cov. 55 842 4882 | 56745 - 500 12397 79

Cov. 60 835 5277 | 21070 - 485 12564 86

Cov. 25 91 251 3321 29686 80 2008 11

Cov. 30 117 456 3793 34198 83 2178 12

Chr. 21 Cov. 35 133 635 4535 - 88 2276 15
Cov. 40 142 T 3848 32098 92 2240 17

Cov. 45 148 894 4006 - 95 2383 20

Cov. 50 150 937 4259 - 97 2349 21

Table 4: Time in seconds of the tools on simulated data, chromosomes 1 and
21. The best result for each instance is boldfaced.

Tool: HapChat-Max Cov. 15 ® HapChat-Max Cov. 20 ® HapChat-Max Cov. 25 ® HapChat-Max Cov. 30 4 p-Max Cov. 15 A p-Max Cov. 20

Switch Error Rate (%)

Hamming Distance (%)

0 2500

5000

7500

10000

A LI]

12500 0 2500

Time (s)

5000

7500

10000

12500

Figure 1: Switch error rate and Hamming distance as a function of running
time, achieved by HapCHAT and WhatsHap at different max coverages on
the Ashkenazim chromosome 1 dataset. For each tool and each max coverage
we represent a point for each of the 8 possible values of the average coverage.

16

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

5 Conclusions

We have presented HapCHAT, a tool that is able to phase high coverage
PacBio reads. We have compared HapCHAT with WhatsHap, HapCol,
and HapCUT2 on real and simulated whole-chromosome datasets, with
average coverage up to 60x. The real datasets have been taken from the
GIAB project. Our experimental comparison shows that HapCHAT computes
better predictions than the other tools, while requiring less time than all other
tools, except for HapCUT2 (which is faster must gives worse predictions).

Adapting k allowed HapCHAT to achieve a better fit than HapCol of the
number of corrections needed at each variant site. One could possibly obatin
an even better fit by adapting & with backtracking: the need for correcting a
number of errors at a given variant site could be met instead by correcting
fewer errors upstream.

Acknowledgements

We would like to thank Tobias Marschall and Marcel Martin for several
illuminating discussions.

Funding

We acknowledge the support of the Cariplo Foundation grant 2013-0955
(Modulation of anti cancer immune response by regulatory non-coding RNAs).

References

Amini, S., Pushkarev, D., Christiansen, L., et al. (2014). Haplotype-resolved
whole genome sequencing by contiguity preserving transposition and com-
binatorial indexing. Nature genetics, 46(12), 1343.

Bansal, V. and Bafna, V. (2008). HapCUT: an efficient and accurate al-
gorithm for the haplotype assembly problem. Bioinformatics, 24(16),
i153-1159.

Bonizzoni, P., Della Vedova, G., Dondi, R., and Li, J. (2003). The haplotyping
problem: An overview of computational models and solutions. J. Comput.
Sci. Technol., 18(6), 675-688.

17

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Bonizzoni, P., Dondi, R., Klau, G. W, et al. (2015). On the fixed parameter
tractability and approximability of the minimum error correction problem.
In CPM, volume 9133 of LNCS, pages 100-113.

Browning, S. R. and Browning, B. L. (2011). Haplotype phasing: existing
methods and new developments. Nature R. Genetics, 12(10), 703-714.

Chen, Z.-Z., Deng, F., and Wang, L. (2013). Exact algorithms for haplotype
assembly from whole-genome sequence data. Bioinformatics, 29(16), 1938—
45.

Delaneau, O. (2013). Haplotype estimation using sequencing reads. American
Journal of Human Genetics, 93, 687-696.

Deng, F., Cui, W., and Wang, L. (2013). A highly accurate heuristic algorithm
for the haplotype assembly problem. BMC Genomics, 14(S2).

DePristo, M. A. et al. (2011). A framework for variation discovery and
genotyping using next-generation dna sequencing data. Nature Genetics,
43(5), 491-498.

Edge, P., Bafna, V., and Bansal, V. (2016). HapCUT2: robust and accurate
haplotype assembly for diverse sequencing technologies. Genome Research,
27(5), 801-812.

Fischer, Sarah O. and Marschall, Tobias (2016). Selecting Reads for Haplo-
type Assembly. bioRxiv 046771, doi:10.1101/046771

Fouilhoux, P. and Mahjoub, A. (2012). Solving VLSI design and DNA
sequencing problems using bipartization of graphs. Computational Opti-
mization and Applications, 51(2), 749-781.

Garg, S., Martin, M., and Marschall, T. (2016). Read-based phasing of
related individuals. Bioinformatics, 32(12), i234-1242.

Glusman, G., Cox, H., and Roach, J. (2014). Whole-genome haplotyping
approaches and genomic medicine. Genome Medicine, 6(9), 73.

He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., and Eskin, E. (2010).
Optimal algorithms for haplotype assembly from whole-genome sequence
data. Bioinformatics, 26(12), i183-i190.

Ip, C., Loose, M., Tyson, J., et al. (2015). MinION analysis and reference
consortium: Phase 1 data release and analysis. F1000 Research, 4.

18

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Kuleshov, V. (2014). Probabilistic single-individual haplotyping. Bioinfor-
matics, 30(17), i379-1385.

Kuleshov, V. et al. (2014). Whole-genome haplotyping using long reads and
statistical methods. Nature Biotechnology, 32(3), 261, 266.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv:1303.3997.

Li, N. and Stephens, M. (2003). Modeling linkage disequilibrium and identi-
fying recombination hotspots using single-nucleotide polymorphism data.
Genetics, 165(4), 2213-2233.

Lippert, R., Schwartz, R., Lancia, G., and Istrail, S. (2002). Algorithmic
strategies for the single nucleotide polymorphism haplotype assembly
problem. Briefings in Bioinformatics, 3(1), 23-31.

Loh, P., Danecek, P., Palamara, P., et al. (2016). Reference-based phasing
using the haplotype reference consortium panel. Nature Genetics, 48(11),
1443—-1448.

Martin, M., Patterson, M., Garg, et al. (2016). WhatsHap: fast and accurate
read-based phasing. bioRziv, 085050.

Mazrouee, S. and Wang, W. (2014). FastHap: fast and accurate single individ-
ual haplotype reconstruction using fuzzy conflict graphs. Bioinformatics,
30(17), 371-378.

O’Connell, J., Sharp, K., Shrine, N., et al. (2016). Haplotype estimation for
biobank-scale data sets. Nature Genetics, 48(7), 817-820.

Ono, Y. (2013). PBSIM: Pacbio reads simluator-toward accurate genome
assembly. Bioinformatics, 29, 119-121.

Patterson, M., Marschall, T., Pisanti, N., et al. (2014). WhatsHap: Haplotype
assembly for future-generation sequencing reads. In RECOMB, volume
8394 of LNCS, 237-249.

Patterson, M., Marschall, T., Pisanti, N., et al. (2015). WhatsHap: Weighted
haplotype assembly for future-generation sequencing reads. J. of Compu-
tational Biology, 6(1), 498-509.

Pirola, Y., Zaccaria, S., Dondi, R., et al. (2015). HapCol: accurate and
memory-efficient haplotype assembly from long reads. Bioinformatics.
32(11), 1610-1617.

19

https://doi.org/10.1101/170225

bioRxiv preprint doi: https://doi.org/10.1101/170225; this version posted July 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Roach, J., Glusman, G., Smit, A., et al. (2010). Analysis of genetic inheritance
in a family quartet by whole-genome sequencing. Science, 328(5978), 636—
639.

Roberts, R. J., Carneiro, M. O., and Schatz, M. C. (2013). The advantages
of SMRT sequencing. Genome Biology, 14(6), 405.

Snyder, M., Adey, A., Kitzman, J., and Shendure, J. (2015). Haplotype-
resolved genome sequencing: experimental methods and applications. Na-
ture Reviews Genetics, 16(6), 344-358.

Tewhey, R., Bansal, V., Torkamani, A., et al. (2011). The importance of
phase information for human genomics. Nature R. Genetics, (3), 215-23.

van de Ven, M., Andressoo, J., van der Horst, G., et al. (2012). Effects of
compound heterozygosity at the xpd locus on cancer and ageing in mouse
models. DNA Repair, 11(11), 874-83.

Zook, J. M. (2014). Integrating human sequence data sets provides a resource
of benchmark snp and indel genotype calls. Nature Biotechnology, 32,
246-251.

20

https://doi.org/10.1101/170225

	Introduction
	Background
	Methods
	Pre-processing
	Adaptive k-cMEC

	Results
	Data description
	Experimental Setup
	Experimental results

	Conclusions

