
1 
 

Inferring proteome dynamics during yeast cell cycle using gene 

expression data 

 

Krzysztof Kuchta1,a, Joanna Towpik1,a, Anna Biernacka1,a, Jan Kutner1, Andrzej Kudlicki2, 

Krzysztof Ginalski1,* and Maga Rowicka2,* 

 

1Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University 

of Warsaw, 02-089 Warsaw, Poland; 

2Department of Biochemistry and Molecular Biology, Institute for Translational Sciences, 

and Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, 

TX 77555 

 

 

aThese authors equally contributed to this work. 

*To whom correspondence should be addressed. E-mails: kginal@cent.uw.edu.pl, 

merowick@utmb.edu. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170332doi: bioRxiv preprint 

https://doi.org/10.1101/170332


2 
 

Abstract 

Protein levels are most relevant physiologically, but measuring them genome-wide remains a 

challenge. In contrast, mRNA levels are much easier and less expensive to measure globally. 

Therefore, RNA levels are typically used to infer the corresponding protein levels. The 

steady-state condition (assumption that protein levels remain constant) is typically used to 

calculate protein abundances, as it is mathematically very convenient, even though it is often 

clear that it is not satisfied for proteins of interest. Here, we propose a simple, yet very 

effective, method to estimate genome wide protein abundances, which does not require the 

assumption that protein levels remain constant, and thus allows us to also predict proteome 

dynamics. Instead, we assume that the system returns to the baseline at the end of 

experiments; such an assumption is satisfied in many time-course experiments and in all 

periodic conditions (e.g. cell cycle). The approach only requires availability of gene 

expression and protein half-life data. As proof-of-concept, we calculated the predicted 

proteome dynamics for the budding yeast proteome during the cell cycle, which can be 

conveniently browsed online. The approach was validated experimentally by verifying that 

the predicted protein concentration changes were consistent with measurements for all 

proteins tested. Additionally, if proteomic data are also available, our approach can be used to 

predict how half-lives change in response to posttranslational regulation. We illustrated this 

application of our method with de novo prediction of changes in the degradation rate of Clb2 

in response to post-translational modifications. The predicted changes were consistent with 

earlier observations in the literature.  
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Introduction 

Measuring protein abundance provides information which is not apparent from gene 

expression data and is crucial for the description of the state of a biological system (1). 

Nevertheless, measured mRNA concentrations are often used to linearly approximate the 

corresponding protein levels, even though it is known that such approximation will be very 

imprecise (1). Such indirect and inaccurate information is used because mRNA levels (unlike 

protein abundances) are relatively easy to determine due to RNA and DNA base pair 

complementarity, which enables precise and high-throughput measurements, such as 

sequencing and microarrays. Measuring protein levels remains challenging, due to the 

different chemical properties of proteins and wide dynamical range of protein abundances. 

Overall conclusion of the studies on the correlations between mRNA and the protein 

expression data (1-6) is that protein levels cannot be determined from mRNA levels just by 

correlation. Similar mRNA expression levels can be accompanied by a wide range (up to 20-

fold difference) of protein abundances and vice versa (1). Relation between mRNA 

concentration, ���������	, and protein concentration, �
����	, of the i-th protein can be 

described in the first approximation by a kinetic equation: 

��������

��
� ��	
��,� · ���������	 � ��,��
����	, [Eq. 1] 

where ��,� � �� ���

��,�
, ��,� , ��,�  and ��	
��,�  are half-life, degradation rate and translation rate, 

respectively. Data regarding mRNA levels, protein abundances, degradation rates and 

translation rates are required to solve Eq. 1. Among these, only translation rates are not 

readily available for most model organisms. Eq. 1 is typically solved using the steady-state 

assumption, which is the easiest way to solve it mathematically, but it is also least 

physiologically relevant, since concentrations of many important proteins and their mRNAs 

are very dynamic. Therefore, we solve Eq. 1 in a new manner, instead of using steady-state 

assumption, we propose to use alternative boundary conditions. The alternative boundary 

condition we choose is that both mRNA and protein levels will be the same at time 0 and at 

the certain time T at the end of experiment. Such condition should be fulfilled in a typical 

control versus treatment experiment, at the time when treatment wears off as the cells go back 

to their original (control) state. Here, as proof-of-concept, we discuss a specific class of such 

experiments, where a system undergoes periodic changes, although periodicity of the data is 

not necessary to take advantage of our approach. 
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Results and Discussions 

Taking advantage of an availability of genome-wide data of mRNA levels, half-lives and 

average protein abundances in the model organism S. cerevisiae, we predicted dynamic 

protein abundances based on gene expression levels. We chose to use a simple, classical 

model of translation (7,8), which could be described by Eq. 1 above. The protein 

concentration �
����	 depends on the number of mRNAs (���������	), which are translated 

with rate constant ��	
��,� , the protein-specific translation rate. Protein degradation is 

characterized by the rate constant  ��,� � �� ���

��,�
, where ��,�  is a protein half-life. The proposed 

model does not include variables reported sometimes to be proportional to the translation 

rates, such as ribosome occupancy or ribosome density (9). The reason, as we will show later, 

is that the minimal model, based only on data that is known with certainty to be relevant, 

performs better, as discussed below. Despite the simplicity of this model, it has been shown 

(10) that it may accurately capture the dynamical changes in protein abundances for a 

majority of human proteins. These results suggest that the model can be suitable for other 

eukaryotic systems (like S. cerevisiae) as well. 

As described in detail in Materials and Methods, a protein concentration and its translation 

rate can be calculated from a time-course of its gene-expression measurements and its 

average abundance. As proof-of-concept, we chose five different S. cerevisiae cell cycle 

synchronized gene expression data sets (Table 1): alpha (3395 proteins), brd26 (2840 

proteins), brd30 (2699 proteins), brd38 (2751 proteins), cdc15 (3173 proteins) and cdc28 

(3424 proteins). First, we used periodogram to estimate consensus period for cell cycle 

periodically expressed genes in each of these data sets (Materials and Methods and Table 1). 

Second, we mathematically analyzed raw data on yeast protein half-lives, to remove negative 

values and improve overall accuracy of half-life estimates (Materials and Methods). Next, we 

used an existing compendium of the budding yeast mRNA and protein consensus levels to 

estimate these levels in our conditions (Materials and Methods). Finally, we numerically 

solved Eq. 1, using the Fixed Point Iteration method, for all periodically expressed proteins in 

these five data sets. This resulted in predicted time-courses of dynamical protein abundances, 

with 1-minute resolution during the whole cell cycle, for all budding yeast proteins available 

in each of five different data sets. All predicted dynamic protein concentrations and 

translations rates can be browsed, compared and downloaded via our web server 

(http://dynprot.cent.uw.edu.pl/). 
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Validation of predicted dynamic protein abundances 

In order to verify the temporal protein levels calculated using our model, we utilized western 

blotting to measure the actual protein concentrations for five representative proteins in cell 

cycle synchronized yeast culture (Materials and Methods). Representative proteins were 

chosen from the three groups: (1) proteins with relatively constant mRNA levels and 

predicted protein levels (Fig. 1A), (2) proteins with highly variable mRNA and relatively 

constant predicted protein levels (Fig. 1B), (3) proteins with variable mRNA and predicted 

protein levels during the cell cycle (Fig. 1C). For proteins with variable mRNA levels, we 

also required that they were transcriptionally regulated during the yeast cell cycle to 

guarantee that the observed changes in their levels would be meaningful; to confirm mRNA 

levels periodicity in the yeast cell cycle the SCEPTRANS web server was used (11). The 

choice of individual proteins within a group was based on availability of commercial 

antibodies. The first group is represented by Rad50p, the protein required for DNA damage 

repair, genetic recombination during meiosis and telomere maintenance (12,13). The levels of 

RAD50 transcript remains almost constant during the cell cycle and due to a very long half-

life of Rad50p (344 minutes, calculated as described in Materials and Methods using data of 

(14)) our model predicted that Rad50p levels should remain virtually constant during our 

experiments (Fig. 1A). Indeed, western blot analysis of the time-course Rad50p data 

confirmed this prediction (Fig. 2A). The second group is represented by histone Hht1 and 

Rnr1, the major isoform of the large subunit of ribonucleotide-diphosphate reductase, which 

is required for dNTPs synthesis (15). As these proteins are crucial for DNA replication, levels 

of their transcripts peak during S phase and decrease shortly afterwards. Despite this high 

variability of HHT1 and RNR1 transcripts, concentrations of their proteins during the cell 

cycle are predicted to be constant by our model due to the long half-lives of Hht1p and Rnr1p 

(349 and 77 min, respectively) (Materials and Methods, our analysis based on raw data of 

(14)). These predictions were confirmed by western blotting data showing no significant 

variability in the levels of Hht1and Rnr1 proteins during cell cycle progression (Fig. 2B). The 

last validation group consists of two proteins: Cdc5 and Clb2, which are directly involved in 

controlling cell cycle progression. Cdc5 is a polo-like kinase, necessary for meiotic 

progression (16), while Clb2 is a B-type cyclin required for transition from G2 to M phase 

(17). Their function is thus restricted to only specific stages of cell division. Consistent with 

this, both proteins are known to have transcripts levels strongly regulated during the cell 

cycle (11,18). According to our calculations based on O’Shea and colleagues data (14,19), 
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Cdc5 and Clb2 half-lives are 10 and 22 min, respectively. Our model predicts that Cdc5 and 

Clb2 concentrations would exhibit strong variability during the yeast cell cycle (Fig. 1C). 

Indeed, the levels of Cdc5p and Clb2p as determined by western blotting vary strongly, 

reaching peaks at 65 and 115 min (M phase), and 55 and 110 min (G2/M transition), 

respectively (Fig. 2C). However, assuming that Clb2 has a constant half-life of 22 min (as 

calculated based on (14)), gives less than ideal agreement of predicted protein concentrations 

with western blot measurements (Fig. 2C).  

Extension of the model to accommodate post-translational regulation 

Discrepancies between predicted and experimental protein levels during the cell cycle may be 

caused by known inaccuracies of the western blot (up to 2-fold) or by post-translational 

regulation. To address this question, we also constructed a more complex model, allowing 

variable half-life throughout the cell cycle, to verify if considering dynamical half-lives 

would result in much better consistency of predictions with the experimental data. We tested 

the expanded model on the case of Clb2, since it was the only protein tested showing 

discrepancy with the predicted model beyond what would be expected from western blot 

measurement errors. The expanded model allows Clb2 to switch between longer and shorter 

half-lives depending on the stage of the cell cycle. We have generated such models for Clb2 

with half-lives ranging from 1 to 40 minutes, with 1-minute step, and changing throughout 

the cell cycle. We chose the model which best fit the western blot data, which turned out to 

be the model assuming very short Clb2 half-life between the minutes 30 and 55 after the 

alpha-factor release and longer during the rest of the cell cycle (Fig. 3). Indeed, it was 

reported earlier that the Clb2 half-life was less than 1 min for cells arrested in G1 by α factor 

(14,19) and in our best-fitting models the Clb2 half-life was 1 minute (shorter values were not 

considered) during the G1 phase (Fig. 3). Clb2 had a longer half-life, closer to the value 

measured in (14,19) during the Clb2 activity window, which is at the G2/M transition. These 

results show another important application of our method: if half-life (and/or translation 

rates) are unavailable they can be estimated with good accuracy from corresponding gene 

expression and proteomic time-courses, even in very challenging cases in which half-life is 

variable and the protein time-course is inferred from relatively inaccurate western blots. 

Correlation between mRNAs and protein abundances in time-course data 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170332doi: bioRxiv preprint 

https://doi.org/10.1101/170332


7 
 

It is typically assumed that with an increase in quality of both gene-expression and proteomic 

data, the correlation between mRNA and protein abundance would grow. However, a 

significant correlation between mRNA and protein concentration can be expected only for 

some groups of proteins. Greenbaum et al. showed a significant increase in correlation 

between mRNA and proteins levels for proteins localized in the same cell compartment or 

with the same MIPS functional category (2). O’Shea and colleagues later showed that 

proteins of similar function tend to have similar half-lives. So far, the highest achieved 

correlations between mRNA and protein concentrations is the result of Futcher et al. (3), who 

found relatively high correlations (r=0.76) after transforming the data to normal distributions. 

The 0.7-0.8 range likely represents the highest correlation possible to achieve. On the other 

hand, protein half-lives are known to have a dynamic range of several orders of magnitude 

(14), and therefore even similar mRNA expression levels can be accompanied by a wide 

range of protein abundance levels, and vice versa (1). In general, it is increasingly recognized 

that mRNA abundances are only a weak surrogate for the corresponding protein 

concentrations mainly because of post-transcriptional control of gene expression. Our studies 

allow us to look deeper at this problem. We found that even though the Spearman and 

Pearson correlation between average protein and mRNA concentrations is highly significant 

(Table 2), temporal protein and mRNA concentrations are only weakly correlated (Fig. 4), 

with typical correlation not higher than 0.2. As expected, the highest correlations between 

temporary protein and mRNA abundances were observed for proteins with short half-lives, 

when proteins levels follow close behind mRNA concentrations (Fig. 5). These data show 

that even in the simplified case of not considering post-translational modification, mRNA 

levels are good estimates of temporal protein abundances during the whole cell cycle only for 

a handful of proteins, highlighting the usefulness of modeling them, as described above. 

Estimating translation rates 

Translation rate (TR) is protein production rate (denoted by ��	
��,�  in Eq. 1). Translation 

rates are not easy to measure directly, and traditionally are estimated utilizing a steady-state 

condition (TRss, Material and Methods, Eq. 7). However, steady-state condition is not 

typically fulfilled in physiological conditions. Moreover, there is a growing evidence that 

unlike degradation rate, translation rate is very plastic and is a mechanism to control protein 

abundances, in response to changing mRNA levels (e.g. (20)). Our approach provides a 

method for estimating condition-specific translation rate without requiring steady-state 
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condition nor knowing protein abundance, but using time-series gene expression data instead 

(TRtc, Material and Methods, Eq. 2 and 3). To compare translation rates calculated using these 

two different approaches we computed ������  (Materials and Methods, Eq. 6), which varies 

from 0 to 1 depending on how different TRss and TRtc are. We found that there are relatively 

few proteins for which ������  is greater than 0.1 (65 out of 3395 in the alpha data set, 59 out 

of 2840 in the brd26 data set, 25 out of 2699 in the brd30, 30 out of 2751 in brd38, 254 out of 

3173 in cdc15 and 64 out of 3424 in cdc28). This result shows that our method offers a useful 

alternative to estimate translation rates when protein abundances are not known, but time-

course genes expression data is available. We think the three main reasons for the observed 

discrepancies between these two methods of computing translation rates, which will be 

described in more detail below, are: (a) the effects of α-factor synchronization, (b) 

measurement errors of mRNA and protein concentrations and (c) time-dependence of half-

lives. (a) α-factor synchronization would cause mRNA levels of some genes to be changed, 

for example upon α-factor synchronization mRNA abundances of SST2/YLR452C (which 

regulates desensitization to α-factor (21)) and SW11/YGL028C (which may play a role in 

conjugation during mating based on its regulation by Ste12p (22)) are elevated. Indeed, for 

these two proteins we obtained ������ � 0.1. (b) The second likely source of differences is 

measurement errors of data used: here mRNA and protein concentrations and degradation 

rates. (c) Third, as we will discuss below, some half-lives are time-dependent and neither 

steady-state nor the time-course based methods we used so far accommodate such time 

dependency. Due to very different manner of estimating TR using either the steady-state or 

time-course method it is not surprising that time-dependence of actual protein half-lives 

would affect these calculations in a different manner, causing observed discrepancies. In 

summary, main source of differences in translation rates we computed is related to our 

experimental conditions, with additional effects resulting from using time-course, not average 

expression values and from measurement errors. 

TR was expected to correlate with many factors known to contribute to protein production, 

such as protein abundance, ribosome density, ribosome occupancy, mRNA concentration, 

codon adaptation index (CAI) or tRNA adaptation index (TAI) (23,24). However, the TRss we 

computed (Fig. 6A) does not show high correlation with features expected to be correlated 

with it. For example, it seems intuitive and it has been proposed in Arava et al. (23) that TR 

would be proportional to ribosomal density (i.e. number of ribosomes bounded to mRNA) 

and ribosomal occupancy (number of mRNA associated with ribosomes) (their product is 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170332doi: bioRxiv preprint 

https://doi.org/10.1101/170332


9 
 

denoted by TA1 in Fig. 6A). However, there is no such correlation, neither Spearman nor 

Pearson (Fig. 6A). Although this could suggest that ribosomal density or occupancy do not 

contribute meaningfully to translation rates, the lack of high positive correlation between TR 

and proposed TR contributing factors is in fact the result of high standard deviations of 

��,�

����������
, the proportionality factor between translation rate and average protein 

concentration for i-th protein. Indeed, the factors mentioned earlier, which are reported as 

likely to correlate with TR in some publications, are highly correlated with average protein 

concentration (Fig. 6B). TR is associated with average protein concentration, however, this 

correlation is not very high (0.18 for cdc15, 0.20 for brd30 and 0.19 for others) due to the 

important impact of half-life, which can vary by at least two orders of magnitude, on protein 

concentration (Eq. 8). Another interesting observation is that very complex attempts at 

modeling translation rate, such as Ribosomal Flow Model, do not fare better than simpler 

models: in our comparison complex RFM (24) performed worse. 

To visualize which cell compartments and protein functions are associated with high or low 

value of half-life and translation rate, we analyzed different MIPS functional categories and 

localizations using SCEPTRANS webserver (Fig. 7). Global analysis shows that half-lives 

and translation  rates have almost the same levels in all functional categories. However, there 

are some interesting exceptions to this principle: in the cell wall and extracellular categories 

there are proteins with relatively short half-lives (that is high degradation rates) and high 

translation rates (Fig. B and D). Additionally, proteins involved in protein synthesis have 

much shorter half-lives than average (Fig. 7A). 

In summary, the proposed model (Eq. 1), combined with periodic data set (other time-course 

data sets can be used as well) allowed us to estimate not only genome wide changes in 

protein abundances, but also both translation and degradation rates of proteins. The model 

performs especially well in the most interesting case of substantial dynamic changes in 

protein abundances over time. It is also capable of detecting post-translational regulation of 

proteins for which corresponding time-course abundance data are available. Finally, 

calculated protein concentration time-courses were validated experimentally for several 

proteins. 
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Conclusions 

Taking advantage of the ready availability of genome-wide data of mRNA levels, we propose 

a model which predicts dynamic levels of protein abundances based on time-course of gene 

expression levels and measured or predicted half-lives. We experimentally verified the 

proposed computational approach in the model organism S. cerevisiae by measuring protein 

concentration changes for selected proteins in the α-factor synchronized cell cycle using 

western blotting. We also showed how our approach can be used to infer post-transcriptional 

or post-translational regulation, if both gene expression and proteomic time-course data are 

available. Additionally, we propose a method for estimating translation rates without using 

the standard, but typically non-physiological steady-state assumption. Instead, we propose to 

use a boundary condition of the beginning and end protein concentration equivalence, which 

is typically satisfied not only in periodic processes like the cell cycle, but also in common 

time-course experiments, when the system is allowed to return to baseline after treatment. 

Our approach may be useful in many experimental conditions where steady-state condition is 

clearly not satisfied, like in differentiation, but adaptive changes in translation rates play 

important regulatory role (20). 

Motivation for our study was deeply practical: to provide estimated in silico time-course data 

for proteins for which corresponding gene expression measurements are known or to 

integrate genomic and proteomic data to elucidate possible post-translational regulation. Most 

other studies in the field were motivated instead by the desire to explain the observed degree 

of correlation between protein abundance and gene expression levels (1,2,25) or to estimate 

translation rates (24). Nevertheless, it seems that our estimation of translation rates – a 

necessary step on the path to estimate protein levels - is also rather accurate, perhaps more so 

than other popular methods (Fig. 6). Of course, in the case when proteomic data are 

unavailable, our predictions will be of limited accuracy for proteins undergoing post-

translational modifications and possibly additionally due to inaccuracies in the data 

measurement, especially half-lives (the half-life data we used in this study, (14), has 

multiplicative error of up to 2). Our goal, however, is not to produce accurate predictions for 

all proteins, but instead provide predictions that are far better than using mRNA as a proxy 

for a large number of proteins that are not highly unstable, but also do not undergo substantial 

post-translational regulation in the conditions studied. As was shown in our verification, and 

as should be expected, depending on half-life, protein abundance profiles may show 
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anywhere between no resemblance, to very high resemblance to the underlying mRNA 

expression profiles. Therefore, our predicted protein profiles can be of valuable help for 

scientists interested in dynamic changes of protein abundances during their process of 

interest, but who only have gene expression profiles available, which are much easier and less 

expensive to measure than protein levels. Moreover, if a protein is known or predicted to 

undergo a post-translational modification, such as methylation (26) or phosphorylation (27), 

it can be flagged for potential lower accuracy of our predictions. If corresponding proteomic  

timecourse is available, potential temporal changes to half-life can be calculated, following 

the approach we used for Clb2. To allow such analysis in a variety of organisms and 

conditions, we are developing a webserver, based on the proof-of-concept study presented in 

this paper, to provide predicted protein time-course profiles based on user-provided gene 

expression and protein half-life data. Currently, all our predictions for proteome dynamics in 

the budding yeast in different conditions can be conveniently browsed and visualized at 

http://dynprot.cent.uw.edu.pl/. 

In summary, we have shown that a simple model of the relationship between mRNA and 

protein levels usually leads to rather accurate prediction of protein levels, if post-translational 

regulation is not involved. Our approach can be used to obtain an approximate view of 

proteome dynamics (without post-translational regulation), to integrate gene expression and 

proteomic time-course data if both are available, or to more specific tasks, such as estimating 

changing degradation rates, as in our example with Clb2. Our approach was verified 

experimentally to provide useful results and we believe that such an approximated 

simulations of proteome dynamics may become a part of time-course gene expression 

analysis, either performed for the whole genome, or for pathways or genes of interest. 

Recently, the availability of genome-wide measured protein degradation rates in various 

organisms (14,28) is growing (20,29), which makes our approach more broadly applicable. 

Moreover, there is also substantial progress in understanding how protein half-life is encoded 

in its sequence, which gives hope that these values may be predicted computationally from 

sequence alone in the coming years (30,31), which would allow the extension of our 

approach to any organism for which gene expression data are available. 
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Materials and Methods 

Definitions 

Ribosome density is an average number of ribosomes bound to mRNA per unit of mRNA 

length (100nt). 

Ribosome occupancy is a fraction of transcripts associated with ribosomes, i.e. engaged in 

translation, with values in [0,1] interval. 

Quantitative model of gene expression 

Using periodic gene expression data enables us to eliminate translation rate, ktrans,i, values 

from equation [Eq. 1]. In order to do that, we introduced function ������	 defined as follow: 

������	 � �������

������,�
.   

Since for a small change of time ∆� 

� ������ �  �

�

����

�
���� � ��� � ����� · ∆�,  

the first order differential equation [Eq. 1] can be rewritten in the form: 

����� � ∆��	 � ����,�·∆�

����,�·∆�
· ������	 � ∆�

����,�·∆�
· ��������� � ∆��	 � ���������	�. [Eq. 2] 

The boundary condition of the equation above: 

�
����	 � �
��� � ��	  

is equivalent to: 

������	 � ����� � ��	,  

where T is the period of the cell cycle. 

The proportionality factor ��	
��,� can be obtained from a following formula: 

��	
��,� � ������

������
, [Eq. 3] 
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where ��
�	�, ����	� are the mean values �
�	 and ���	 after time T, respectively. 

Data sets used 

Average protein and mRNA concentrations have been taken from previous Beyer et al. 

studies (25). Test data sets alpha, brd26, brd30, brd38, cdc15 and cdc28 are cell-cycle 

synchronized gene expression data sets described in detail in Table 1. Data sets alpha and 

cdc15 have been published by Spellman et al. (32); cdc28 by Cho et al. (33) and brd26, brd30 

and brd38 by Pramila et al. (34). The gene expression log2 ratios, Li(t), were transformed to 

mRNA concentrations [molecules/cell] in the following manner: 

������	 � 2����� · ���������

� �	�
���
,  

where �2����� � is the arithmetic average of 2����� in one cell cycle period and �������	� is the 

cell-cycle average mRNA concentration in molecules per cell, based on literature (25). Linear 

interpolation was used to approximate a value of mRNA concentration in every minute 

during cell cycle, based on computed values at points of measurements (equation above). 

Estimating the consensus period for periodically expressed genes 

The set of genes transcriptionally regulated during the cell cycle will be defined as the genes 

with a transcriptional modulation consistent with the periodicity T of the mitotic cell division. 

We utilized the measure of periodicity defined as the periodogram, P, (35-37) of transcript 

concentration: 


��� � �

� �
�!�
·  !� "�#�cos ��"#

$
��# 



'� � !� "�#� sin !�"#

$
' �# 



'�*




�

,  [Eq. 4] 

where a and b are the beginning and end of the time-course, respectively, function E is the 

transcript concentration and σ is the standard deviation of gene expression E. To 

accommodate uneven distribution of time points, we estimate P(T) using the unbiased 

formula of (36). The statistical significance of a single frequency (corresponding to 

periodicity with period T) in the periodogram, assuming a Gaussian null hypothesis, is 

expressed by 

+ � ,#-��
%���	,  [Eq. 5] 
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(35-38). Here, we do not have a reliable value of the period T measured independently from 

the transcriptome profiles. Therefore, similar as in (11,39), before applying Eq. 4, we 

estimated the most likely period of transcriptional oscillation in the system from the 

expression data. We have followed the Maximum Likelihood approach, using Eq. 4 and 5 for 

each gene independently over a range of possible periods, computing the logarithms of 

likelihood of periodicity for every gene and every period. These logarithms summed over all 

genes yield the total likelihood of every period, and the period with the maximum total 

likelihood has been adopted as the consensus period of regulation in the system. Estimated 

cell cycle periods for different data sets are described in Table 1. 

Correcting the estimated protein degradation half-lives 

Belle et al. (14) reported protein half-lives, as estimated from the observed degradation rate, 

that sometimes have very high values, and, at times, negative ones. Since such values are not 

realistic, we adopted the following algorithm to estimate the most likely true half-lives for 

these proteins. We assumed that the measured quantity (degradation rate ��,�, which is related 

to half-life ��,�  by ��,� � �� ���

��,�
) may include an error that has a Gaussian distribution, with a 

variance corresponding to the inverse of 300 minutes (the maximum reliably measureable 

value according to (14)) divided by the scaling factor ln(2). The negative reported half-lives 

result from experimental error, therefore, we used the described above error model and prior 

assumption that a half-life must be positive to correct the data. The true degradation rate was 

computed by integrating the normal distribution, limited and normalized to the positive part 

of its domain, and the inverse of this value multiplied by ln(2) was adopted as the corrected 

half-life. The correction was small for half-lives significantly shorter than 300 minutes, but 

significant for values longer than 300 minutes or negative reported values. 

Calculating protein concentrations 

We used Fixed Point Iteration numerical method to solve Eq. 2 for each protein and mRNA 

data set. As a starting point for iterations we used ����0�	 � 0  and ∆� � 1  minute. We 

continued iterative calculations until convergence, specifically until the condition |������	 �
����0�	| / 5 · 10��& had been met. 

Comparison between steady-state and time-course based translation rates 
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To determine the differences between steady-state derived translation rate, ����, and time-

course derived translation rate, ���', we defined the coefficient ������: 

������ � |$����$���|

)*��$���,$����
, [Eq. 6] 

where time-course derived translation rate, ���', is defined by Eq. 3 and steady-state derived 

translation rate, TRss, is defined as follows: 

����,� � ��,� · ������

������
 . [Eq. 7] 

Incorporating post-translational regulation 

To accommodate post-translational regulation, we expanded our approach by allowing time-

dependence of degradation rates. We will illustrate detecting post-translational modification 

discussing the example of Clb2. For Clb2, fitting constant degradation rate results in poor fit, 

both for half-lives based on O’Shea and colleagues report (14) (Fig. 3B) and for the much 

shorter half-life reported by Amon et al. (19) (Fig. 3A). Therefore, we propose instead a time-

dependent half-life function that will be also periodic in the consecutive cell cycles. To 

describe a half-life that is modified by post-translational regulation within K minute window 

starting at the time t0 within the cell cycle with the period T, we propose the following step 

function �����: 

����� � 1��
�                                                        �& / � / �& � 2

��
�                          0 3 � 3 �& 45� �& � 2 3 � / �6. [Eq. 8] 

To find values of ��
�, ��

� , �& and K optimally describing time dependence of Clb2 half-life we 

numerically optimized these parameters, considering for half-lives ��
� and ��

� all values in the 

range from 1 minute to 40 minutes, with 1 minute step, and for �& and K all possible times 

from the first to the last minute of the cell cycle, again with 1 minute step. For each set of 

parameters for the function ����� , we solved the equation Eq. 2, as described previously 

(Calculating protein concentrations). The set of parameters offering the best fit with 

experimental data was chosen as the best estimate of true Clb2 half-life. Thus, we were also 

able to calculate the time-dependent degradation rate for Clb2 as  ����� � �� ���

�����
. The best fit 

was achieved for variable half-life, with Clb2 protein becoming extremely unstable outside of 

the window of its activity during the cell cycle (Fig. 3C). This result shows that our approach 
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allows one to re-discover, ab initio, the timing of post-translational regulation of a protein, if 

only gene expression and proteomic time-courses are available. 

α-Factor based synchronization 

Yeast strain DBY8724 (Mat a GAL2 ura3 bar1::URA3) was kindly provided by P. T. 

Spellman. Obtained S. cerevisiae cells were synchronized by α-factor arrest as described by 

Spellman et al. (32) and later used by Pramila et al. (34). Cells were grown to an OD600 of 0.2 

in YEP glucose pH 5.5, an asynchronous sample was taken and α-factor (Sigma Aldrich) was 

added to a concentration of 25 ng/ml. After 2 hours cells were released from α-factor arrest 

by pelleting and re-suspended in fresh medium to an OD600 of 0.2 (Fig. 8C, time 0). Every 5 

min, for the next 120 min, 25 samples were taken (25 ml for western blot analysis, 1 ml for 

FACS analysis and 1 ml to count budding index). Cell cycle progression was monitored by 

bud counting and DNA content analysis (FACS) (Fig. 8A and 8B). 

Budding index calculation and FACS analysis 

For budding index calculation, two hundred cells were examined at every time point. The 

budding percentage was calculated as the number of budded cells divided by the number of 

all cells. To monitor the DNA synthesis, samples were prepared as described previously (40) 

and DNA content was measured using a BD FACSCalibur Flow Cytometer. 

Western blot analysis 

Cell extracts were prepared by TCA precipitation (41) and then subjected to the western blot 

analysis. Protein samples were separated on Mini-PROTEAN TGX 4–20% (Bio-Rad) gels 

and transferred to PureNitrocellulose Paper 0.45 μm (Bio-Rad). Blots were blocked using 

0.2% I-Block buffer (Applied Biosystems), cut horizontally and probed with primary 

antibodies followed by incubation with appropriate horseradish peroxidase-conjugated 

secondary antibodies. The primary antisera used to detect selected proteins were from Santa 

Cruz Biotechnology (Rad50, Cdc5, and Clb2), Abcam (H3), Agrisera (Rnr1) and Millipore 

(Act1) and the secondary antisera were from Dako. Protein bands were visualized with the 

Immoblilon Western (Millipore) and scanned in G-Box imaging system (Syngene). Band 

intensities were quantified using Gene-Snap software (Syngene).  
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Fig. 1. Comparison of mRNA vs. predicted protein concentrations for selected proteins in the 

alpha data set. 
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Fig. 2. Comparison of experimental vs. predicted protein concentrations for selected proteins. 
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Fig. 3. Variable half-life allows best fit of predicted (red) and experimentally measured 

(green) temporal protein concentration profiles. A and B: half-lives reported in the literature 

(left) for Clb2 does not lead to good fit of predicted and measured protein concentration 

temporal profiles (right), especially for half-life reported in (14) (B). C: variable half-life 

(left), found through numerical simulations (Material and Methods) allows for best fit 

between dynamic Clb2 abundances predicted from mRNA time-course and measured protein 

abundance time-course from the same condition. 
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Fig. 4. Histogram of the Spearman correlation between protein and mRNA concentrations 

during the cell cycle for all available proteins in the following data sets: alpha (3395 

proteins), brd26 (2840 proteins), brd30 (2699 proteins), brd38 (2751 proteins), cdc15 (3173 

proteins) and cdc28 (3424 proteins). 
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Fig. 5. Relationship between Spearman correlations of protein and mRNA levels during the 

cell cycle and protein half-lives. 
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Fig. 6. The Spearman (red bars) and Pearson (blue bars) correlations between: A: steady-state 

translation rates and translation rates descriptors, B: average proteins concentrations and 

translation rates descriptors. TA1, TA2 and TA3 were computed using the following 

formulae: TA1 = (ribosome density) * (ribosome occupancy) * (mRNA concentration), 

TA2 = (ribosome density) * (ribosome occupancy) * (mRNA concentration) * CAI, 

TA3 = (ribosome density) * (ribosome occupancy) * (mRNA concentration) * CAI/(0.06 + 

(ribosome density)) * (ribosome occupancy * mRNA concentration). 
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Fig. 7. Half-lives (in minutes) (A and B) and translation rates (C and D) in each of the 

functional and localization categories as described in MIPS database, as retrieved from 

SCEPTRANS. 
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Fig. 8. α-factor cell cycle synchronization. A: comparison of budding indices of our α-factor 

synchronization with those of Pramila et al. (34) and Li et al. (42), both for wild type (WT) 

and appropriate mutants. B: FACS results for asynchronous culture (as) and selected time 

points of our synchronization. C: yeast cells sampled from asynchronous culture and at 

selected time points. 
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Table 1. Data sources used. 

Data set S. cerevisiae strain Cycle period Data granularity Reference 

alpha DBY8724 (GAL2 ura3 bar1::URA3) 56 min 7 min 
Spellman et. al 

[1998] 

brd26 
BY2125 (W303:MATa ade2-1 trp1-1 

can1-1000 leu2-3, 115 his3-11 ura3 

ho ssd1-d) 

60 min 5 min 

Pramila et. al 

[2006] 
brd30 60 min 5 min 

brd38 60 min 10 min 

cdc15 W303αcdc15-2 ts 116 min 10 min 
Spellman et. al 

[1998] 

cdc28 K3445 (YNN553) contains cdc28-13 
allele 

79 min 10 min Cho et. al [1998] 
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Table 2. Pearson and Spearman correlations between average mRNA and average protein 

concentrations. 

Data set Pearson Person p-value Spearman Spearman p-value 

alpha 0.51 4.0e-224 0.58 2.3e-301 

brd26 0.43 2.1e-127 0.56 8.2e-236 

brd30 0.47 5.6e-148 0.57 3.0e-231 

brd38 0.53 4.0e-196 0.56 6.2e-227 

cdc15 0.52 1.1e-218 0.58 1.4e-279 

cdc28 0.52 2.0e-232 0.58 3.9e-302 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2017. ; https://doi.org/10.1101/170332doi: bioRxiv preprint 

https://doi.org/10.1101/170332

