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ABSTRACT

Motivation: Classification by supervised machine learning
greatly facilitates the annotation of protein characteristics from
their primary sequence. However, the feature generation step in
this process requires detailed knowledge of attributes used to
classify the proteins. Lack of this knowledge risks the selection
of irrelevant features, resulting in a faulty model. In this study,
we introduce a means of automating the work-intensive feature
generation step via a Natural Language Processing (NLP)-
dependent model, using a modified combination of N-Gram and
Skip-Gram models (m-NGSG).

Results: A meta-comparison of cross validation accuracy with
twelve training datasets from nine different published studies
demonstrates a consistent increase in accuracy of m-NGSG
when compared to contemporary classification and feature
generation models. We expect this model to accelerate the
classification of proteins from primary sequence data and
increase the accessibility of protein prediction to a broader range
of scientists.

Availability: m-NGSG is freely available at Bitbucket:
https://bitbucket.org/sm_islam/mngsg/src

Supplements: link to supplementary documents

Contact: Erich_Baker@baylor.edu

1 INTRODUCTION

It is well appreciated that primary polypeptide sequence
informs higher order protein structure. The primary sequence
provides the blueprint which encodes the purpose of the
protein, ultimately determining the proteins characteristics,
functions, subcellular localization and interactions (Pour-
El and American Chemical Society, 1979). However,
classical approaches using primary sequence alignment for the
prediction of remote homology detection are problematic due
to low signal to noise ratios in polypeptide strings (Teichert
et al., 2010). To circumvent this problem, non-alignment based
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methodologies are being investigated to demonstrate remote
homology (Bonham-Carter et al., 2014; Vinga and Almeida,
2003; Liu et al., 2014; Du et al., 2014). Here we illustrate
a novel approach that relies on Natural Language Processing
(NLP) to produce generalized feature sets for machine learning
classification of protein characteristics.

A polypeptide string can be treated as a text string where
hidden information is deciphered by implementing NLP
techniques. Generating n-grams (Cavnar et al., 1994) and skip-
grams(Guthrie et al., 2006) from text documents is a feature
extraction method which can produce meaningful information
for machine learning (ML) classification algorithms (Cavnar
et al., 1994; Guthrie et al., 2006), and has been used for the
categorization and sorting of documents based on their subject
matter (Tan et al., 2002; Hu and Liu, 2004; Pang et al., 2002).
Treating a primary protein sequence as a textual string is a
natural extension of this approach. Indeed, text mining has
been used previously for protein clustering and classification,
protein-protein interaction (PPI), protein folding, and cnRNA
identification (Zeng et al., 2015). Linguistic methodologies
based on primary sequence features have also been applied in
areas of secondary structure prediction (Ding et al., 2014b).

Sequence classification using supervised and unsupervised
machine learning methods is becoming popular due to
algorithm accessibility in conjunction with increasing amounts
of available biological data. Recent work in this area includes
the classification of protein structure (Islam et al., 2015),
localization (Yu and Hwang, 2008), function (Cai et al., 2003),
family (Chou, 2005) and protein-protein interaction (PPI)
(Zhao et al., 2012; Yu and Hwang, 2008) based on primary
sequence. These studies consistently report that ML approaches
are superior to alignment based predictions when deriving
protein characteristics from primary sequence, and perform
effectively in protein groups with low sequence similarity.
However, the success of ML models depends heavily on
training data, feature extraction, classifier algorithm selection
and optimization.
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Among these steps, robust results are disproportionately
influenced by feature selection. Thus, substantial effort is
required to obtain meaningful features from protein data. While
universal methods for feature extraction are problematic due to
the wide range of classification strategies, several generalized
feature generation methods have been proposed. Many of
these methods aim to address specific classification problems
(Islam et al., 2015; Bock and Gough, 2001; Dyrlv Bendtsen
et al., 2004), while others may be implemented as semi-
automated feature generators. For example, amino acid
composition (Verma and Melcher, 2012) and pseudo-amino
acid composition (Du et al., 2014) based feature extraction
schemes have been successfully used to solve a range of
classification problems (Garg et al., 2005; Xu et al., 2013;
Qiu et al., 2016; Tiwari, 2016). There are also hybrid feature
generation strategies which include both generalized and
data specific feature selection methods (Sharma et al., 2013;
Chaudhary et al., 2016; Ramaprasad et al., 2015). In each
case, however, manual intervention is required to produce the
optimal set of features.

Using n-grams and skip-grams in biological applications
driven by ML is not without precedent. For example, the
n-gram model has been used to classify protein sequences
into superfamilies using extreme machine learning (Cao and
Xiong, 2014). Homology between proteins with low sequence
similarity has also been successfully revealed using distances
between Top-n-gram and amino acid residue pairs (Liu et al.,
2014). Spaced words is a derivative of n-gram feature selection
in biological sequence analysis where the letters of one or
more indices in each word are replaced by blanks except the
first and last letters. This method of feature extraction is used
along with another method called kmacs to perform alignment-
free comparison in both DNA and protein sequences (Horwege
etal.,2014).

Through the application of a modified NLP n-gram and
skip-gram (m-NGSG) approach, we have developed a primary
protein sequence feature selection method that is fully
automated, and agnostic to peptide function or chain size. A
meta-comparison of logistic regression mediated classification
approaches exploiting our feature generation method with other
published models illustrates enhanced functional and structural
binary and multi-class classification accuracy in every instance.
Without the requirement of expert intervention for optimal
feature selection, it is hoped that this automated approach will
reduce the time needed to employ ML classification strategies
for protein prediction.

2 METHODS
2.1 Feature generation, vectorization and model
construction

The n-gram and k-skip-bi-gram profiles are initially extracted
from each candidate protein sequence. They are given a
position identity with respect to the C-terminus of the
protein sequence. Thereafter, modifications of the length

of k-skip-bi-grams and positional identity are performed to
obtain potential motifs (or words). Finally, the motifs are
vectorized to construct feature vectors with a simultaneous
noise filtration. The length of initial n-gram and k-skip-bi-gram
motifs, and amplitude of their modification are determined
by six parameters (described in Supplementary Table S1.).
The parameters are optimized using a modified grid search
algorithm (see Algorithm 1 and 2 in Supplementary text)
depending on the training set of a five-fold cross-validation
using a logistic regression classifier. As the modified grid
search is seeded using different initial n-grams, they are
defined as seeds in this study (see the methods section in
Supplementary Text for details).

2.2 Meta-comparison

The performance of m-NGSG was compared with other
methodologies that use generalized or data-specific feature
extraction methods for model construction. Comparison
models were chosen based on the availability of benchmark
data reported by those models, the diversity of protein
characteristics classified, and the ability of the model to report
functional or structural classification of proteins with regard
to their sequence. The performance was compared with the
published models using logistic regression (Table 1).

In addition, m-NGSG was evaluated with a linear kernel
SVM classifier on the Subchlo raw and Subchlo60 datasets (Du
et al., 2009) to demonstrate that the m-NGSG feature extraction
algorithm works equally well with other classifiers.

The m-NGSG feature extraction method was also compared
with other generalized extraction methods. Here, the
Quantitative Structure-Property Relationship (QSAR) based
feature generation method (Simeon et al., 2016) was
implemented on the Subchlo60 data set from Subcholo model,
and compared with the m-NGSG feature generation model.
A logistic regression classifier was used with a regularization
parameter of C=1, and evaluated using Jackknife, 5-fold, and
10-fold cross validation.

3 RESULTS
3.1 Parameter optimization analysis

This study illustrates that n-gram and skip-gram text mining
approaches can be exploited to develop a generalized feature
extraction method for protein classification. N-gram and skip-
gram models are not used directly; rather, the models are
modified according to six parameters based on sequence
(Supplementary Table S1.). The parameters themselves are
optimized by using the modified grid search-based algorithm
m-NGSG (see Algorithm 2 in Supplementary text) and
compared to 12 benchmark datasets. In each case, the
automated generalized feature extraction algorithm obtained
features that outperformed the originally published feature sets
for linear regression.
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Table 1. Description of the models those are used in meta-comparison.

Model Dataset Description Original Feature Classifier Ref
Name Extraction Method
Subchlo  Two pair of training datasets of protein Pseudo Amino acid Evidence theoretic K-nearest Du
sequences from 4 classes based on their composition (PseAAC) neighbor(ET-KNN) with a jackknife cross er al.
localization in choloplast. One dataset validation. (2009)
includes the raw sequences of proteins here
annotated as Subchlo raw. Another dataset
consists of sequences less than 60% identity
annotated as Subchlo60
osFP One pair of training and testing dataset of AAC/DPC/TPC, AC, Features having a threshold 0.7 for the =~ Simeon
protein sequences from 2 classes (monomer CTD, Ctriad, QSO, Pearson correlation coefficient were etal.
vs oligomer) based on oligomeric states of PseAAC removed.Decision tree with ten-fold cross (2016)
proteins. We selected the benchmark protein validation following splitting the whole
sequences less than 95% identity. training set into 80% and 20% training and
test set respectively. This process was
repeated for 100 time to get an unbiased
confidence interval of the accuracy.
iAMP-2L  One pair of training and test dataset of two PseAAC fuzzy k nearest neighborhood (FKNN) with aXiao
classes of protein sequences based on Jackknife cross validation. etal.
antimicrobial activity (2013)
Cypred One pair of training and test dataset consist of AAC, cyclicpeptide SVM with (RBF) kernel coupled with 10-foldKedarisetti
two classes of sequences based on cyclic and specific motifs cross validation. etal.
noncyclic structure. (2014)
PredSTP  One training dataset divided into two classes ~ normalized distance SVM with RBF kernel coupled with 200-foldIslam
based the cysteine bonding pattern in the 3D between cystine pairs cross validation. etal.
structure of the proteins. explained in [ref] along (2015)
with hydrophobic,
hydrophilic, neutral and
count of some other
amino acids.
TumorHPD Two training datasets annotated as AAC, DPC, BPP SVM with 5-fold cross validation. Sharma
TumorHPDn1 and TumorHPD 2 in this etal.
paper. The sequences are divided in two (2013)
classes based on their affinity to tumor cells.
TumorHPD 1 consists the raw protein
sequences while TumorHPD 2 consists only
the sequences not more than 10 amino acids
long.
HemoPI  Three pairs of training and test set annotated AAC, DPC, BPP SVM with 5-fold cross validation. Chaudhary
as HemoPI, semiHemoPI and nonHemoPI etal.
two in the paper which contains hemolytic, (2016)
semihemolytic and nonhemolytic peptides,
respectively. Here we compared model that
classifies the raw hemolytic and
nonhemolytic peptides annotated as HemoPI
1, and the model that classifies hemolytic and
semihemolytic peptides annotated as HemoPI
2
IGPred One pair of training and test set those are PseAAC followed by SVM with RBF kernel coupled witha  Tang
divided into two classes those fall into two ANOVA based feature Jackknife cross validation. etal.
groups: immunoglobulin and Selection technique (2016)
nonimmunoglobulin
PVPred One pair of training and test set those are g-gap dipeptide SVM with RBF kernel coupled witha  Ding
divided into two classes those fall into two composition plus Jackknife cross validation. etal.
groups: virion and nonvirion . PseAAC followed by (2014a)
ANOVA based feature

Selettion technique.

Abbreviations: Pse AAC = Pseudo amino acid composition; APC = Amino acid composition; DPC = Dipeptide composition;
TPC= Tripeptide composition; AC = Auto correlation; CTD = Composition,Transition, Distribution; Ctraid= Conjoint triad;
QSO=Quasi-sequence-order; BPP = binary profile pattern (presence or absence of a motif of interest)


https://doi.org/10.1101/170407

bioRxiv preprint doi: https://doi.org/10.1101/170407; this version posted July 31, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

For the benchmark datasets iAMP-2L, Cypred, TumorHPD
1, TumorHPD 2, IGPred and PVPred, the optimization strategy
for m-NGSG reported the same parameters (see Supplementary
Fig.S1.) with identical accuracy (Supplementary Fig.S2)
regardless of the initial seed, indicating convergence in these
data sets. For the subchlo raw training set, parameters n, k,
and y showed variation with some seeds, (see Supplementary
Fig.S1). Overall, the subchlo raw training set accuracy for
different seeds ranged from 89%-89.70% (Supplementary
Fig.S2). For the subchloro60 training set, parameters n, k, y,
and ¢ demonstrated variability over the first four seeds and
then became stable while the accuracy ranged from 65.76%
to 68.07%. In the PredSTP training set, there was slight
variation in parameter n, k and y which was also reflected
in the variation of accuracies for the corresponding seeds.
Parameters for the HemoPI 1 training set varied for seed three,
and training set HemoP]I 2, which classifies between hemolytic
and semihemolytic peptides, presented variation in parameters
n, k, kp, y and c for seed 3, 4 and 5 (see Supplementary Fig.
S1 and Fig.S2).

The goal of parameter optimization is to identify parameters
that contribute to the best accuracy after five-fold cross
validation. Although the principle approach is a modified grid-
search, it demonstrates an ability to converge on accuracy
regardless of initiating seeds. Supplementary Fig.S3 illustrates
the convergence characteristic of the optimization algorithm
which calculates the mode value of accuracies generated from
different seeds against the percent change of the accuracies
from each seed for a specific training set when compared to
the mode accuracy. Flat areas in supplementary Fig.S3 indicate
low percentage change compared to the mode which suggests
convergence.

3.2 Meta-comparison of prediction performance on
benchmark datasets

Once the parameters were optimized for each benchmark
training set, the reported accuracy was compared to the m-
NGSG model built with the optimized feature set. A logistic
regression classifier was used for all models. To compare
the cross-validation accuracy, we mimicked the approach
published as part of the original dataset, either five-fold,
ten-fold or jackknife validation.

3.2.1 Subchlo: Subchlo is a multi-class classifier designed
to predict the localization of chloroplast proteins. Subchlo raw
is a dataset of protein sequences based on their location in
chloroplast and the Subchloro60 dataset represents proteins
with approximately 60% sequence identity. Subchlo raw and
Subchlo60 were both cross-validated by a jackknife method
in the original publication, resulting in a combined accuracy
of 89.69% and 67.18%, respectively. The accuracy of the m-
NGSG model is 91.59% and 73.92% for the same datasets (see
Supplementary Table S2 ). This indicates a 2.12% and 7.73%
increase of accuracy by our model compared to the reported
model for the two given datasets (Figure 1A).

3.2.2 osFP: The osFP model classifies fluorescent proteins
into monomer or oligomeric states. In the original study,
different QSAR (Quantitative StructureActivity Relationship)-
based feature selection models were investigated. The best
model yielded an average of 72.13% and 72.89% accuracy
for the training and test sets after 100 iterations (see
Suplementary Table S5). In contrast, m-NGSG generated
an average of 78.02% and 79.21% accuracy for the same
sets, yielding an 8.16% and 8.6% increase of accuracy
respectively (Figure 1). To confirm the superiority of m-
NGSG model over the QSAR based feature selection method,
we also performed a comparison on Subchlo60 dataset.
The comparison demonstrated that m-NGSG’s performance
is better than that of other feature generation methods (see
Supplementary Table S6 and Supplementary Fig.S4).

3.2.3 iAMP-2L: TheiAMP-2L model classifies antimicrobial
peptides from nonantimicrobial peptides. Supplementary Table
S2 and Table S3 illustrates the increased performance of
m-NGSG over the iAMP-2L when using jackknife cross
validation method. The accuracy of m-NGSG on the training
set was 91.25%, yielding a 5.71% rise over the previously
reported accuracy. When we used m-NGSG to evaluate the
performance on the benchmark independent test set, we
achieved a 4.6% rise from the accuracy reported by the original
model (Figure 1A).

3.2.4 Cypred and PredSTP: Both Cypred and PredSTP
classify proteins based on their structural characteristics. While
Cypred performed comparably to m-NGSG (99.20% accuracy
after 10-fold cross-validation in the original publication vs
99.53% for m-NGSG), m-NGSG did provide a modest 0.35%
increase. On a bechmark out of sample test data set, the m-
NGSG model narrowly outperformed Cypred by 0.28%. On
the other hand, a comparison on training set cross validation
accuracy between PredSTP and m-NGSG produces a 2.50%
gain of accuracy from the original model (see Supplementary
Table S2 and S3, and Figure 1).

3.2.5 TumorHPD 1 and 2: TumorHPD classifies tumor
homing peptides to identify analogs of tumor homing ability.
Two training sets were used to generate the models: raw
tumor homing peptides, TumorHPD I, and tumor homing
peptides less than or equal to ten residues long TumorHPD 2.
Among three different generation methods they used (Sharma
et al., 2013), amino acid composition yielded the best accuracy
82.52% and 80.28% for the training set TumorHPD 1 and 2,
respectively. The accuracy of m-NGSG the same datasets were
83.40% and 82.55%, respectively (see Supplementary Table
S2) which using logistic regression yielding a 1.07% and 2.83%
rise from the original model(Figure 1A).

3.2.6 HemoPl 1 and 2: HemoPl 1 model -classifies
hemolytic and nonhemolytic proteins, while HemoPI 2
classifies hemolytic and semi hemolytic peptides. The
performance data for the training and test sets were available
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for the models developed from hybrid feature sets. The original
model searched for the best accuracy by considering whole
proteins and fractions of the proteins. Here, we compared the
m-NGSG accuracy with only the whole length proteins. Our
model generated 97.97% accuracy for HemoPI 1 and 79.5%
accuracy (Supplementary Table S2) for HemoPI 2 training sets
offering a 2.8% and 1.92% increase from the original models
respectively . When we compared m-NGSG on the benchmark
independent test sets, it achieved an increase of 3.26% and
0.7% for HemoPI 1 and HemoP]I 2 respectively (Figure 1).

3.2.7 IGPred and PVPred: 1GPred predicts immunoglobulin
protein, and PVPred predicts virion proteins from primary
sequence data. The size of these these proteins is very different
from that of previously classified proteins. Immunoglobulin
and virion proteins have very long sequences. In both models
important features were selected using ANOVA analysis before
performing the jackknife cross validation. Therefore, we also
performed jackknife cross validation with and without an
ANOVA-based feature selection method where we used the
minimum number of features offering the best cross-validation
accuracy (see Supplementary Fig.S5). The accuracy of m-
NGSG model was 100% with ANOVA-based feature selection,
and 92.60% with jackknife cross validation (Supplementary
Table S2), while the accuracy of the original IGPred model with
jackknife test was 96.60%. The accuracy for the independent
test set was 100% regardless the model (Supplementary
Table S3). For PVPred, the accuracy of jackknife cross
validation with and without feature selection was 89.25%
and 77.19% respectively, with corresponding accuracies of
90% and 93.33% on the benchmark independent test sets.
The original feature selection assisted model showed 85.02%
accuracy for jackknife cross validation and 86.66% accuracy
for the independent test set (Supplementary Table S3)

4 DISCUSSION

The crucial steps of machine learning-based classifications
are the selection of datasets that unambiguously represent
informative classes, creation of meaningful features from
the dataset that can optimally correlate to different classes,
and an appropriate choice of machine learning algorithms
which effectively classify the data based on the data
points and descriptors. Predicting protein characteristics from
primary sequence is becoming popular as appropriate data
sources experience rapid growth and computer libraries for
machine learning algorithms become accessible to bench
biologists. However, generating effective features from
protein sequences continues to require enormous manual
intervention, and automated approaches have narrowly
scoped structure prediction. Chemical property-based feature
generation algorithms and dipeptide or tripeptide motif-specific
approaches (Chaudhary et al., 2016; Kedarisetti et al., 2014)
account for the the majority of these feature generation
methods. In particular, Pseudo Amino Acid Composition
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Fig. 1. The percentage changes of accuracies m-NGSG in cross-
validation compared to the original models for each dataset. IGPred *
and PVPred* shows the comparative accuracy changes without feature
selection while IGPred** and PVPred** shows accuracy changes after
mimicking the feature selection method of the original model (A). The
percentage changes of accuracies m-NGSG on the independent test sets
(depending on availability) compared to the original models. IGPred *
and PVPred* shows the comparative accuracy changes without feature
selection while IGPred** and PVPred** shows accuracy changes after
mimicking the feature selection method of the original model (B).

(PseAAC) has been the most frequently used approach to
classify proteins per their functional properties(Xiao et al.,
2013; Mohabatkar et al., 2013), subfamilies(Chou, 2005),
interactions with other proteins(Jia ez al., 2015) and subcellular
localizations(Lin ef al., 2008). Methods that classify based on
physicochemical or biochemical properties rely heavily on the
AAindex database (Kawashima and Kanehisa, 2000).

However, as protein sequences are strings of amino acid
residues, they can be treated as normal text that can be
interpreted through by NLP-based techniques. The m-NGSG
algorithm presented herein generates features in a text mining
manner where words are artificially generated from protein
sequences using modified n-gram and skip-gram models. The
models themselves are optimized based on the combination of
six parameters (Supplementary Table S1.). NLP processing of
protein strings creates a corpus of words that is subsequently
used for vectorization to generate features for each individual
data point. To fully automate the classification process,
a modified grid search algorithm is employed to obtain
the optimal values of the six parameters. The parameter
optimization itself is performed after 5-fold cross validation to
confirm the whole training set is not exposed to the classifier
during the optimization step, limiting the risk of bias during
the meta-comparison. Moreover, all the optimization was done
with a logistic regression classifier with the same regularization
parameter value to avoid disparity in this step.

Interestingly, although the optimization algorithm primarily
depends on a modified grid search, in most cases parameters
converge to a single value regardless of the initial seed
(Supplementary Fig.S1). Also, in many cases, the different
starting seeds yield the same accuracy (Supplementary Fig.S2).
These outcomes indicate that the optimization algorithm

10

I  3.67
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searches for the maximum value while retaining the ability to
converge.

A collection of contemporary models were chosen for meta-
comparison based on their diversity of classification topic
(such as functional, structural and subcellular localization),
database size, sequence length and feature selection methods
(Table 1). Benchmark training datasets from comparison
model publications were used (Supplement datasets). With the
exclusion of the osFP dataset, the meta-analysis comprised six
of the eleven independent test sets (five were unavailable). In
the case of osFP, the original dataset was divided into training
and test sets and ten-fold cross validation was performed only
on the training set. For the models without an independent
test set, evaluation with cross validations on the benchmark
datasets were performed as an adequate replacement to reveal
the comparative performance between the models.

The m-NGSG model outperformed cross-validation accuracy
of each model it was compared against, with the increase
in accuracy ranging from 0.35%-9.95% over the original
models (Figure 1A). Moreover, we observed up to an 8.67%
increase in accuracy over the original model when compared
to independent test sets (Figure 1B). As shown in Figure 1A,
the cross validation accuracy of IGPred and PVPred without
feature selection was considerably less than the original model
where ANOVA based feature selection was performed before
the execution of jackknife cross validation accuracy, while
the same ANOVA based feature selection method in m-NGSG
model displayed higher jackknife cross validation accuracy
on the same training set. The accuracy on the independent
test set demonstrated a 0% and 7.7% increment from the
original IGPred and PVPred, respectively, regardless of which
feature selection was used (Figure 1B). This result illustrates
that feature selection method followed by cross validation
test biases the cross validation process without improving the
performance of a model.

Two of the models in our meta-comparison (TumorHPD 1
and HemoPI 1) reported accuracy based on protein fragments
as well as whole protein sequence. While fragment-based
models provided for slightly better accuracy, they are not
included in this study because they are beyond the scope
of demonstrating a generalized feature extraction method on
whole sequences.

The Subchlo60 and osFP datasets were used to compare the
performance of the m-NGSG model with motif composition,
represented by AAC/DPC/TPC, and chemical property-based
feature generation methods, represented by AC, CTD, Ctriad,
SOCN, QSO and PseAAC methods (Supplementary Table S5
and S6). The m-NGSG model demonstrates a 2.12% increase
over the PseAAC-based model on the Subchlo raw dataset.
However, with the low sequence identity Subchlo60 data set we
observed a 7.73% increase in accuracy (Figure 1A). This result
indicates that m-NGSG performs comparatively better than
chemical property-based method when the sequence identity
in the training dataset is lower. In addition, the accuracy of
m-NGSG outperformed all of the competitors in the osFP
model (Supplementary Table S5), illustrating the robustness of

the m-NGSG model for feature generation when compared to
presently available approaches.

During the vectorization step, instead of counting feature
frequencies for each data-point, only the binary profile of
the features were considered. This approach reduces the
complication of the model, subsequently minimizing the
chance of over-fitting.

To maintain the equality the in comparison at the cross
validation step with the training set, we adopted the same
cross validation method with the same dataset reported in the
original method. Logistic regression with the default values
from scikit-learn library was used as classifier for both the
optimization and meta-comparison step. We used the same
classifier in the meta-comparison process because the ultimate
goal of the study is to elucidate the potential effectiveness of
the m-NGSG feature generation method, not the classification
algorithm. Even though the classifier selection is beyond the
scope of the study, we reported the accuracy of cross validation
with SVM for Subchlo raw and Subchlo60 dataset which shows
a better performance than logistic regression for both datasets
(Supplementary Table S4). This data indicates that the m-
NGSG feature generation method is compatible with multiple
classifiers.

5 CONCLUSION

The meta-comparison results outlined in this study illustrate
that the m-NGSG is an effective fully automated feature
generation method. This model will benefit the machine
learning-based protein classification community, particularity
those interested in classification based on primary protein
sequence. It is expected that m-NGSG will significantly
reduce the work load at the feature generation step regardless
of protein characteristics and sequence size. Moreover, by
analyzing the feature importance, the distinguishing part of the
sequence (motif) in a protein class can be revealed, which is
often difficult to discover using multiple sequence alignment.
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S| Method
Feature extraction.
Binary profile of n-grams in a protein sequence. N-grams, strings of contiguous sequences consisting of n items, are valuable

features extracted from text or speech, and are useful in NLP and sentiment analysis (Socher R et al., 2013; Ghiassi
M et al.., 2013; Cui H, Mittal V and Datar M, 2006) Given that a primary protein sequence can be treated as a string

of amino acids, n-gram-based feature extraction methods can be applied to predict functionality from a sequence.

Interestingly, n-grams from a protein sequence also offer biologically meaningful information, as each n-gram represents
a protein sequence motif. N-gram motifs provide information helpful in inferring protein functionality, and can be
represented as:

GM; il

where GM stands for Gram Motif, and s is a positive integer not longer than the length, L, of the corresponding
protein sequence (s|s € N, s <= L). s = 0 represents a null motif, s = 1 represents all single residue motifs (uni-grams),
s = 2 represents all dipeptide motifs (bi-grams excluding their uni-gram components), and s = n represents all
n-peptide motifs. p is the permutation index of the participating residue(s) parameterized by s. Since there are 20
different amino acids, there can be 20° different values of p for an s-gram. For example, if we consider the amino acid
sequence MISHW, then M is one of the 20 possible elements of uni-gram (s = 1) as p = 20° = 20' = 20. Similarly, MI
is one of the 400 possible elements of dipeptides (s = 2) as p = 20° = 20% = 400.

Binary profile of k-skip-bi-grams. Skip-grams are a technique largely used in the field of speech processing that allow
items, or in our case substrings, to be ignored during processing (Mikolov T et al., 2013a; Mikolov T et al., 2013b;
Bian J et al.,2014). In m-NGSG we adopted the k-skip-bi-gram approach where the skip distance, k, allows a total of
k or fewer skips to construct the bi-gram. For example, for protein sequence MISHW, the 2-skip-bi-grams will be MI,
IS, SH, HW, MXS, IXH, SXW, MXXH and IXXW where skips are represented by X. The k = 0 skips are MI, IS, SH,
and HW, the k& = 1 skips are MXS, IXH, SXW, and the k = 2 skips are MXXH, IXXW. This approach can be useful
in comparing k-length mutational events across protein sequences. In order to avoid duplicating features extracted
with the n-gram method, we exclude the motifs produced where k& = 0.

SM} 2]

SM stands for Skip Motif and b is the number of skips between two amino acids. b is a positive integer that is at most
two less than the length of the protein sequence (b|b € N,;b < L — 2). b = 0 represents no skips between a specific
permutation of two residues, b = 1 represents one skip, and b = 2 represents two skips. p is the permutation index of
the participating residue(s) parameterized by s. Since there are 20 different amino acids, there can be 202 different
values of p for a given value of b.

Modification of skips in k-skip-bi-gram motifs. The m-NGSG employs a modification of the k-skip-bi-gram model that
allows buffering on the number of skips. That is, after obtaining the exact number of skips from a k-skip-bi-gram, an
estimated number of skips is determined as:

SM; 3]

P

where ¢ represents the estimated number of skips based on the given parameter a, and b is the number of skips in a
motif as determined from the k-skip-bi-gram.

c=b+ ((a —b)%a) 4]

Islam et al.
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Table S1. Description of parameters employed in m-NGSG (modified n-gram skip-gram) based feature generation from an individual
sequence.

n determines the maximum length of an n-gram motif

k determines the maximum number of skips in a k-skip-bi-gram
motif

np determines the maximum length of an n-gram motif that gets
a positional value

kp determines the maximum skips in a k-skip-bi-gram motif that
gets a positional value

Y determines the positional buffering parameter in both n-gram
and k-skip-bi-gram motifs

c determines the skip buffering parameter in k-skip-bi-gram
motifs

For example, if X represents a single skip, the motifs MXXH and MXH are considered unique without buffering.
However, if the skips are buffered by 2 (a = 2), the buffered skip value of motif MXXH will be ¢ = 2+ ((2 —2)%2) = 2,
yielding the original motif MXXH. On the other hand, skip buffering MXH gives the value ¢ =1+ ((2 — 1)%2) = 2,
and yields a new motif MXXH. This motif is different from the original MXH, but is identical to the previous example
MXXH. In this way, the buffered skip model can account for insertion/deletion events.

Modification of estimated C-terminus position in n-grams and k-skip-bi-grams. : During feature extraction from a protein
sequence m-NGSG determines the relative position of the motifs with respect to the C-terminus. N-gram or
k-skip-bi-gram motifs are tagged with a maximum position identity, noted as s gram (for n-gram) and b*"-skip-bi-
gram(k-skip-bi-gram), respectively. This position is measured after obtaining the exact distance from the C-terminus
and applying a buffering distance to capture shared positional identity for n-gram motifs,

GM;, (x;y) [5]

and k-skip-bi-gram motifs,
SMy, (z3y) [6]
z=z+((y —2)%y) (7]

where x represents the distance identity of motif GM; or SMy based on the given parameter y, and z is the
distance of the onset of the WM, motif from the C-terminus of the sequence buffered by y. m-NGSG initializes y
based on yo, defined by ModifiedGridSearch, and increases with the length, I, of the motif, as:

y=yo+1—1 (8]

As an example, if we consider NTerm-AYHGFTVCKY-CTerm as a protein sequence, then two tyrosines will be
members of the set of uni-gram motifs, and should be considered as identical. However, if we choose to account
for position, each will be assigned position identity information as defined by equation (5). If the initial buffer
value yo equals 5 then the positional identity of the first Y and the last Y will be z = 9 + ((5 — 9)%5) = 10 and
=14 ((5—1)%5) = 5, respectively. Here the distance of first Y is 9 and the second Y is 1 from the C-terminus. In
this way, rather being identical, the tyrosines will be recorded as Y10 and Y5 in the feature set. This approach can be
generalized to n-grams. The bi-gram AY has a positional identity of 12, because its onset is 10 residues away from the
C-terminus, and the buffer value will be 6 because yo is 5 and the length of the motif is 2.

Feature selection and model construction. Ultimately, six parameters determine the final set of features to be generated
from a given sequence (Table S1). The feature extraction algorithm generates descriptors (motifs) from a list of
protein sequences, which function as words in a document. To reduce noise, words that make up more than 30% of
the corpus and words that appear less than 3 times are removed as an alternative to ¢f-idf (Joachims T 1996). Next,
the model creates a sparse matrix using a vectorization method where each of the retained words or motifs composes
a vector. The value of the vectors for data-points in the sparse matrix describes the presence or absence of the feature
in a corresponding data-point. In other words, each row of a vector reports the presence of a selected motif in a
protein sequence. Finally, a logistic regression model (Ruczinski I et al.,2003) is trained with the training data set,
and its accuracy is calculated with five-fold cross-validation. The model construction scheme is done in python 2.7
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using the numpy, pandas and scikit-learn packages (Pedregosa F et al., 2011). When running logistic regression, a
regularization constant of 1 and default parameters are used.

Parameter optimization algorithm. The feature generation function depends on the six parameters described in Table
S1. Here, a modified grid-search optimization algorithm, Algorithm 2, chooses parameters for generalized classification
problems based on the accuracy of five-fold cross-validation using a logistic regression model. Briefly, it iterates
over pairs of parameters to maximize accuracy, using maximal previous knowledge to inform future iterations. Each
grid-search is initiated from a value of the parameter for the n-gram motifs (n) which is referred to here as the seed.

Algorithm 1 Logistic Regression Accuracy

1: procedure LOGREGACC(k, n, kp, np, y, ¢)

2: Generate features using the given parameters
3: Run logistic regression using the given features, and determine accuracy by five-fold cross validation
4: return the accuracy from logistic regression

Algorithm 2 Modified Grid Search

1: procedure MODIFIEDGRIDSEARCH(The parameters that yielded the best accuracy in logistic regression on the
test set)

2: for superSeed = 1,3,...25 do

3: Initialize all parameters to superSeed

4: while True do

5: k = argmax,, logRegAcc(k,n,kp,np,y,c)

6: n = argmax,, logRegAcc(k,n,kp,np,y,c)
7 if k and n are unchanged then

8: break

9: while True do

10: kp = argmax,, logRegAcc(k,n,kp,np,y,c)
11: np = argmax,, , logRegAcc(k,n,kp,np,y,c)
12: if kp and np are unchanged then

13: break

14: while True do

15: y = argmax, logRegAcc(k,n,kp,np,y,c)
16: ¢ = argmax, logRegAcc(k,n,kp,np,y,c)
17: if y and ¢ are unchanged then

18: break

19: return parameter values with best 5-fold cross validation accuracy from all trials.
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Table S2. Comparison between cross-validation accuracies reported on different benchmark training datasets and the correspond-
ing accuracies achieved employing the m-NGSG model. Accuracies are displayed in percentage values.

Classification dataset Reported ac- | m-NGSG ac-
curacy onthe | curacy on the
training set training set

Subchlo raw 89.69 91.59

Subchlo60 67.18 73.92

iAMP-2L 86.32 91.25

Cypred 99.2 99.55

PredSTP 94.3 96.66

TumorHPD 1 82.52 83.4

TumorHPD 2 80.28 82.55

HemoPI 1 95.3 97.97

HemoPI 2 78 79.5

IGPred 96.92 91.66

IGPred with feature selection 96.9 100

PVPred 85.02 77.19

PVPred with feature selection 85.02 93.48

Table S3. Comparison between accuracies reported on independent test sets and the corresponding accuracies achieved employ-
ing the m-NGSG model. Accuracies are displayed in percentage values.

Classification dataset Reported ac- | m-NGSG ac-
curacy on the | curacy on the
test set test set

IAMP-2L 92.23 96.47

CypredL 98.7 98.98

HemoPI 1 96.4 99.54

HemoPI 2 75.7 76.23

IGPred 100 100

IGPred with feature selection 100 100

PVPred 86.66 93.33

IGPred with feature selection 86.66 93.33

Table S4. Comparison among the models on Subchlo raw and Subchlo60 datasets. LR and SVM stands for logistic regression and
support vector machines classifiers, respectively. The comparison shows the accuracies for separate localization based classes
along with the overall accuracies. Accuracies are displayed in percentage values.

Locations Subchlo Subchlo raw | Subchlo raw | Subchlo60 origi- | Subchlo60 Subchlo60
raw original | m-NGSG LR m-NGSG nal method m-NGSG LR m-NGSG
method SVM SVM

Stroma 78.87 78.87 78.87 67.35 69.38 65.30

Thylakoid lu- | 55 63.33 66.66 43.18 54.76 59.52

men

Thylakoid 96.12 98.64 98.06 83.72 88.97 88.97

membrane

Envelope 84.44 80.00 84.44 40 51.38 53.84

Overall 89.69 91.59 92 67.18 73.92 75.09
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Table S5. Comparison of evaluation matrices of the m-NGSG model with the feature generation methods used in osFP dataset.
Accuracies are displayed in percentage values.

Methods CV  Accu- | CVMCC Test set | Test set
racy% Accu- MCC
racy%
AAC/DPC 7213 + | 042 4+ | 7289 + | 043 =+
/TPC 4.18 0.08 7.08 0.15
AC 7071 + | 038 &+ | 7030 + | 0.38 &+
4.45 0.09 8.55 0.18
CTD 6940 £+ | 039 + | 70.18 <+ | 0.38 =+
4.95 0.10 7.79 0.17
Ctriad 6864 + | 034 + | 71.26 + | 040 =+
5.99 0.12 8.36 0.17
QSO 6898 + | 034 + | 69.93 £ | 037 =+
4.21 0.09 6.90 0.14
PseAAC 6939 + | 035 <+ | 69.67 <+ | 0.36 =+
4.97 0.10 8.03 0.17
m-NGSG 7802 + | 050 &+ | 79.21 £+ | 054 <+
0.93 0.02 1.47 0.03

Table S6. Comparison of accuracies on the Subchlo60 dataset obtained by different generalized feature generation methods and
m-NGSG. Comparisons were showed for Jackknife, 5-fold and 10-fold cross-validations. Logistic regression was used as classifier
for all models. Accuracies are displayed in percentage values.

Method Accuracy %
Jackknife 5-fold CV 10-fold CV
AAC/DPC/TPC 49.41 45.00 49.61
AC 59.14 58.07 59.61
CTD 58.36 57.3 55.38
Ctriad 52.52 50.38 52.69
SOCN 57.19 55.76 57.69
QSO 49.41 45.00 49.61
m-NGSG 73.92 70.00 72.69
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Fig. S2. Represents the accuracies resulted from different seeds in a specific datasets. Each subplot represents an individual dataset. The x axis shows seed

identities and the y axis shows the accuracy values.
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Fig. S3. The percent change of accuracy for each seed compared to the mode accuracy of all the seeds for a specific dataset. The smaller the percentage
deviation from the mode value, the better its convergence. iAMP-2L, Cypred, TumorHPD one, TumorHPD two, IGPred and PVPred showed perfect convergence,
while the other datasets shows convergence for most of the seeds.
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Fig. S4. Cross-validation accuracy comparison between the original method and m-NGSG using Logistic Regression (LR) and linear kernel SVM (SVM) on
Subchlo raw (A)and Subchlo60(B) datasets.
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A Feature selection for IgPred training data
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B Feature selection for PVPred training data
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Fig. S5. Performance of accuracies with number of features used. The features were added based on their importance according to ANOVA analysis. Using
less features increase the cross-validation accuracy while a decrease of accuracy on the independent test set is evident as less features engender a bias cross
validation. Figure A and B show the effect on accuracy and MCC values with increasing number of features on IGPred and PVPred datasets, respectively.
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