
i
i

“main” — 2017/7/31 — 17:35 — page 1 — #1 i
i

i
i

i
i

PyBoost: 2D Hierarchical Boosting 1

PyBoost: A parallelized Python implementation of
2D boosting with hierarchies
Peyton G. Greenside 1, Nadine Hussami 2, Jessica Chang 3 and Anshul
Kundaje 3,4,∗

1Biomedical Informatics, Stanford University, Stanford, 94305, USA,
2Electrical Engineering, Stanford University, Stanford, 94305, USA,
3Genetics, Stanford University, Stanford, 94305, USA,
4Computer Science, Stanford University, Stanford, 94305, USA

∗To whom correspondence should be addressed: akundaje@stanford.edu

Abstract

Motivation: Gene expression is controlled by networks of transcription factors that bind specific sequence
motifs in regulatory DNA elements such as promoters and enhancers. GeneClass is a boosting-based
algorithm that learns gene regulatory networks from complementary paired feature sets such as
transcription factor expression levels and binding motifs across conditions. This algorithm can be used to
predict functional genomics measures of cell state, such as gene expression and chromatin accessibility,
in different cellular conditions. We present a parallelized, Python-based implementation of GeneClass,
called PyBoost, along with a novel hierarchical implementation of the algorithm, called HiBoost. HiBoost
allows regulatory logic to be constrained to a hierarchical group of conditions or cell types. The software
can be used to dissect differentiation cascades, time courses or other perturbation data that naturally
form a hierarchy or trajectory. We demonstrate the application of PyBoost and HiBoost to learn regulators
of tadpole tail regeneration and hematopoeitic stem cell differentiation and validate learned regulators
through an inducible CRISPR system.
Availability: The implementation is publicly available here: https://github.com/kundajelab/

boosting2D/.

1 Introduction
Gene expression is carefully regulated by sets of transcription factor
complexes binding specific DNA sequence motifs to translate the same
genome into many different cell types from heart cells to brain cells.
However, the details of each cell’s unique regulatory program remain
poorly understood. To this end, many methods have been developed to
decipher the regulatory mechanisms that control gene expression across
different cell types and conditions [13] [2]. GeneClass and its sister
algorithm MEDUSA, which incorporates motif discovery, are examples of
such algorithms that have been successfully used to learn gene regulatory
programs and predict gene expression dynamics across different conditions
[6]. Recently, assays for chromatin accessibility such as DNase-seq and
ATAC-seq have become popular for genome-wide characterization of
cellular state. However, predicting chromatin accessibility genome-wide
presents a substantially larger computational burden than predicting a
fixed set of expressed genes. The original implementation of GeneClass,
implemented in Matlab, is prohibitively slow for these higher dimensional
applications. FastMEDUSA implements the MEDUSA algorithm in C++
to reduce the computational burden, but includes motif discovery, which
may only apply to specific prediction problems, does not include post-
processing modules to interpret the models and may be harder to further

develop for those not versed in C++ [1]. We introduce a parallelized,
Python-based implementation of GeneClass, called PyBoost, to address
this computational limitation and enable easy integration with post-
processing analysis. We provide accompanying analysis functionalities
to determine key regulators in any set of conditions and for any set of
regions or genes.

We also introduce a new implementation, called HiBoost, that enforces
a hierarchy over conditions in the target matrix. Many experimental
conditions have an inherent structure that can be defined hierarchically.
For example, the differentiation of a stem cell into diverse cell types
has a natural hierarchy starting at the stem cell root and cascading
through intermediate states to the terminal cell types. Time courses also
represent a natural order where each time step derives from a previous time
step hierarchically. PyBoost learns weak classifiers that are maximally
predictive over the entire data set. HiBoost allows each rule to be
constrained to a specific part of the hierarchy placed upon the conditions
to learn regulatory programs specific to that sub-tree of the hierarchy only.
For example, in hematopoeisis certain regulatory rules may only apply to
the myeloid lineage and not the lymphoid lineage and HiBoost enables
this distinction. Our implementation allows improved interpretation of
each regulatory rule in the context of the condition hierarchy and can
substantially improve interpretability of the model overall by allowing
context-specific rules.

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 31, 2017. ; https://doi.org/10.1101/170803doi: bioRxiv preprint 

https://doi.org/10.1101/170803


i
i

“main” — 2017/7/31 — 17:35 — page 2 — #2 i
i

i
i

i
i

2 Greenside et al.

2 Methods

2.1 Algorithm

2.1.1 PyBoost
PyBoost, like GeneClass, is a boosting-based algorithm that builds
Alternating Decisions Trees (ADTs) of weak classifiers. Weak classifiers
or "rules" are composed of a paired motif and regulator, added on to an
existing node in the ADT, that give a predicted classification. Training
labels can be gene expression, chromatin accessibility or other phenotypes.
The goal of pyBoost is to predict a binary output or target matrix S of
dimension (element e x condition c) where an element can correspond to
specific genes or transcripts, non-coding regions for accessibility, or other
genomic measures. Conditions may be different cell types or experimental
conditions. The paired feature sets required for this prediction, each
corresponding to one dimension of the target matrix, are a binary matrix
M of motif hits of dimension (motif m x element e) and a binary matrix
R of regulator dynamics of dimension (condition c x regulator r). At
each iteration, the motif and regulator with minimum loss are selected
with a corresponding score α indicating the direction and strength of
prediction. This rule can be added to any existing node in the ADT. After
each iteration, the examples are re-weighted to prioritize those examples
that have not been correctly predicted and the next rule is chosen based on
this weighting of the training data. The result of this algorithm after many
iterations is a gene regulatory network, in the form of an ADT, consisting
of motif and regulator pairs with corresponding prediction scores and the
sets of examples they apply to. Each of these rules contributes additively
to the margin of prediction for each example, which can be analyzed after
generating the ADT to understand how predictions were made. See [5] for
further algorithm details.

2.1.2 HiBoost
HiBoost extends the PyBoost algorithm to incorporate a hierarchy placed
upon the conditions in the target matrix. Weak classifiers are extended
from (motif m, regulator r, ADT node parent p, score s) to include the
node in the condition hierarchy to which that specific rule applies, giving
each rule the updated form (motif m, regulator r, ADT node parent p,
score s, hierarchy node h). The rule is then applied to all conditions that
fall within the subtree of the hierarchy rooted at the rule’s hierarchy node
h. When adding new nodes to the ADT at each iteration, the new ADT
node can be added at the current h of the node being added to or at any of
the direct children of h, chosen by which of these nodes has the minimal
loss at the given iteration. Thus each path down the ADT also represents
a trajectory down the condition hierarchy [Figure 1].

Fig. 1. HiBoost extends the standard ADT from PyBoost by adding to each rule a node in
the condition hierarchy such that the ADT node applies to the condition subtree rooted at
that condition hierarchy node.

2.2 Implementation

PyBoost and HiBoost are implemented in Python 2.7 with all freely
available libraries. The algorithm can be parallelized across a user-
specified number of threads. The number of nodes to check for each
new rule grows at every iteration and parallelization allows simultaneous
evaluation of every current ADT node for the minimum loss. The algorithm
can also run with sparse instantiations of feature and weight matrices to
further reduce runtime. In addition to the prior, stabilization, and post-
processing modules discussed below, user inputs enable the generation of
predictive stumps in place of an ADT structure, the ability to shuffle any
of the three input matrices, which can be useful in identifying an empirical
null model for a given ADT, the ability to supply a specified holdout matrix
for train/validation splits, and an option to compress regulators that have
the same pattern across conditions for improved interpretation.

2.2.1 Prior Matrix
While the algorithm may pair any motif with any regulator for the best
predictive power, many regulators are known to bind to particular types
of motifs. To facilitate the association of regulators with biologically
plausible motifs, we enable a prior matrix Pmr over all motif-regulator
pairs to prioritize meaningful pairings between motifs and regulators. In
addition, we enable a prior matrix between regulatorsPrr to preferentially
add rules on to ADT nodes where there is a known interaction between the
current regulator and the regulator in the parent ADT node. The initial loss
L0 for both priors is tuned by a prior constant c, indicating the strength of
the prior, as well as a decay rate d, which can reduce the influence of the
prior over many iterations, to generate the loss augmented by the prior:
LP = L0(1+Pcdn). The decay rate can be used to prioritize establishing
known regulatory programs in early nodes of the ADT before lessening
the prior matrix to enable discovery of novel regulatory programs.

2.2.2 Stabilization
Multiple motif-regulator pairs will often have highly similar or identical
loss. As in Kundaje et al. [6], we enable stabilization of the algorithm
by allowing multiple motif-regulator pairs that have loss within a small
range of the absolute minimum loss to be included in a given rule.
The corresponding rule bundle size can be tuned through user provided
parameters. In HiBoost, all of the bundled rules are added at the same
condition hierarchy node.

2.2.3 Post-Processing
We provide margin-based post-processing tools to extract feature sets -
either motifs, regulators, ADT nodes or ADT paths - that regulate specific
examples. For a user-provided set of conditions c and/or elements e, we
rank feature sets by their contribution to the margin for that specified subset
of the data. For making comparisons between features, margin scores for
each feature are normalized by the number of examples they apply to.
This tool can be used to track the relative importance of features across
conditions or between regions. The example-by-feature matrix that outputs
the normalized margin score for each example by each feature can be used
in downstream analysis such as unsupervised clustering of feature sets or
examples.

3 Results

3.1 PyBoost: Tadpole tail regeneration

We applied PyBoost to learn key regulators of tadpole tail regeneration. We
profiled gene expression (RNA-Seq) and chromatin accessibility (ATAC-
seq) at a series of time points during tail regeneration after the tail was
injured. One of the top regulators discovered by PyBoost was SPIB. The
influence of this regulator on tail regeneration was validated through an
inducible CRISPR system [Figure 2].

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 31, 2017. ; https://doi.org/10.1101/170803doi: bioRxiv preprint 

https://doi.org/10.1101/170803


i
i

“main” — 2017/7/31 — 17:35 — page 3 — #3 i
i

i
i

i
i

PyBoost: 2D Hierarchical Boosting 3

Fig. 2. A. PyBoost was used to discover key regulators of tadpole tail regeneration from
paired expression and accessibility data profiled in a time course of tail regeneration. B.
SPIB was discovered as a top regulator and validated to strongly affect tail regeneration
through an inducible CRISPR system.

3.2 HiBoost: Hematopoietic differentiation hierarchy

We applied HiBoost to learn regulatory programs governing chromatin
accessibility dynamics during differentiation of hematopoieitic stems cells
into 13 healthy terminal blood cells as well as 3 leukemic cell types [4].
HiBoost allows condition-specific rules at any point in the differentiation
hierarchy. Out of 500 iterations, 278 were placed on the root hierarchical
node while the remaining 222 were placed on non-root hierarchy nodes
that would not have been available without the hierarchy implementation.
The training and testing errors were similar between hierarchical (0.228
train error, 0.231 test error) and non-hierarchical methods (0.228 train
error, 0.230 test error). Multiple rules were placed on the leukemic
tree allowing context-specific interpretation of these regulators. The 7
unique proteins identified through these rules all have known leukemic
associations including BACH1 [9], PBX1 [10], NFATC3 [8], ILKZF1
[11], MSX2 [14], HES1 [12] and ZFPM2 [7].

4 Discussion
We have introduced a Python-based, parallelized implementation of
GeneClass, called PyBoost, with a novel ability to learn regulatory
programs according to a specified condition hierarchy, called HiBoost. We
include analysis tools for interpretation of the model. Our implementation
is an easy-to-install and easy-to-use method using all freely available
libraries. As compared to the most popular boosting libraries, such as
XGBoost [3], we enable efficient use of paired feature spaces and improved
interpretability from a single ADT. Our implementation can be applied to
any problem where a 2-dimensional target matrix is predicted from separate
featurizations of each dimension of that matrix. We have applied HiBoost
to learn interpretable regulatory programs specific to the hematopoietic
hierarchy and applied PyBoost to discover novel regulators of tadpole
tail regeneration, which were validated experimentally. We hope our
implementation will be broadly useful to researchers interested in learning
gene regulatory networks in a wide variety of biological contexts.

Contributions
PG implemented the software, analyzed the hematopoiesis data and wrote
the manuscript with feedback from all authors. NH and AK designed the
hierarchical algorithm. JC applied the software to regeneration data and
experimentally validated predictions. AK provided guidance and feedback.

Acknowledgements
We would like to thank Nathan Boley and Anna Shcherbina for their help
and feedback on the software.

References
[1]S. Bozdag, A. Li, S. Wuchty, and H. A. Fine. Fastmedusa: a

parallelized tool to infer gene regulatory networks. Bioinformatics,
26(14):1792–1793, 2010.

[2]H. J. Bussemaker, H. Li, and E. D. Siggia. Regulatory element
detection using correlation with expression. Nature genetics,
27(2):167–174, 2001.

[3]T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. ACM.

[4]M. R. Corces, J. D. Buenrostro, B. Wu, P. G. Greenside, S. M. Chan,
J. L. Koenig, M. P. Snyder, J. K. Pritchard, A. Kundaje, W. J. Greenleaf,
et al. Lineage-specific and single-cell chromatin accessibility charts
human hematopoiesis and leukemia evolution. Nature genetics, 2016.

[5]A. Kundaje, S. Lianoglou, X. Li, D. Quigley, M. Arias, C. H. Wiggins,
L. Zhang, and C. Leslie. Learning regulatory programs that accurately
predict differential expression with medusa. Annals of the New York
Academy of Sciences, 1115(1):178–202, 2007.

[6]A. Kundaje, X. Xin, C. Lan, S. Lianoglou, M. Zhou, L. Zhang, and
C. Leslie. A predictive model of the oxygen and heme regulatory
network in yeast. PLoS Comput Biol, 4(11):e1000224, 2008.

[7]P. Lin, L. J. Medeiros, C. C. Yin, and L. V. Abruzzo.
Translocation (3; 8)(q26; q24): a recurrent chromosomal abnormality
in myelodysplastic syndrome and acute myeloid leukemia. Cancer
genetics and cytogenetics, 166(1):82–85, 2006.

[8]H. Medyouf and J. Ghysdael. The calcineurin/nfat signaling pathway:
a novel therapeutic target in leukemia and solid tumors. Cell cycle,
7(3):297–303, 2008.

[9]T. Miyazaki, Y. Kirino, M. Takeno, S. Samukawa, M. Hama,
M. Tanaka, S. Yamaji, A. Ueda, N. Tomita, H. Fujita, et al. Expression
of heme oxygenase-1 in human leukemic cells and its regulation by
transcriptional repressor bach1. Cancer science, 101(6):1409–1416,
2010.

[10]J. J. Moskow, F. Bullrich, K. Huebner, I. O. Daar, and A. M. Buchberg.
Meis1, a pbx1-related homeobox gene involved in myeloid leukemia
in bxh-2 mice. Molecular and Cellular Biology, 15(10):5434–5443,
1995.

[11]C. G. Mullighan, X. Su, J. Zhang, I. Radtke, L. A. Phillips, C. B.
Miller, J. Ma, W. Liu, C. Cheng, B. A. Schulman, et al. Deletion of
ikzf1 and prognosis in acute lymphoblastic leukemia. New England
Journal of Medicine, 360(5):470–480, 2009.

[12]F. Nakahara, M. Sakata-Yanagimoto, Y. Komeno, N. Kato, T. Uchida,
K. Haraguchi, K. Kumano, Y. Harada, H. Harada, J. Kitaura,
et al. Hes1 immortalizes committed progenitors and plays a role
in blast crisis transition in chronic myelogenous leukemia. Blood,
115(14):2872–2881, 2010.

[13]E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and
N. Friedman. Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression data. Nature
genetics, 34(2):166–176, 2003.

[14]C. Zhao, X. Han, Y. H. Zhang, X. Huang, A. Dai, G. Lu, C. C. Yin,
L. Chen, and M. J. You. Frequent epigenetic inactivation of msx2 in
acute myeloid leukemia. Blood, 116(21):4645–4645, 2010.

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 31, 2017. ; https://doi.org/10.1101/170803doi: bioRxiv preprint 

https://doi.org/10.1101/170803

