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Abstract

Phytoplanktonic communities maintain a high diversity in a seemingly homogeneous en-
vironment, competing for the same set of resources. Many theories have been proposed to
explain this coexistence despite likely competition, such as contrasted responses to temporal
environmental variation. However, theory has developed at a faster pace than its empirical
evaluation using field data, that requires to infer biotic and abiotic drivers of community
dynamics from observational time series. Here, we combine autoregressive models with a
data set spanning more than 20 years of biweekly plankton counts and abiotic variables,
including nutrients and physical variables. By comparing models dominated by nutrients
or physical variables (hydrodynamics and climate), we first explore which abiotic factors
contribute more to phytoplankton growth and decline. We find that physical drivers - such
as irradiance, wind, and salinity - explain some of the variability in abundances unexplained
by biotic interactions. In contrast, responses to nutrients explain less of phytoplankton
variability. Concerning biotic drivers of community dynamics, multivariate autoregressive
models reveal that competition between different groups (at the genus level for most) has a
much weaker effect on population growth rates than competition within a group. In fact, the
few biotic interactions between genera that are detected are frequently positive. Hence, our
system is unlikely to be best represented as a set of competitors whose differing responses to
fluctuating environments allow coexistence, as in “paradox of the plankton” models with a
storage effect or a relative nonlinearity of competition. Coexistence is more likely to result
from stabilizing niche differences, manifested through high intragroup density-dependence.
Competition between planktonic groups and nutrients are often invoked as drivers of phyto-
plankton dynamics; our findings suggest instead that more attention should be given to the
physical structure of the environment and natural enemies, for coastal phytoplankton at least.

Key words: population dynamics, interactions, time series, MAR, network, competition,
mutualism, hydrodynamics, seasonality, plankton, diatoms, dinoflagellates, Arcachon.

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2017. ; https://doi.org/10.1101/171264doi: bioRxiv preprint 

https://doi.org/10.1101/171264
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

What maintains the diversity of species-rich communities is an old yet still challenging ques-

tion for ecological theory (Hutchinson 1961; Jewson et al. 2015; Li and Chesson 2016). The

continued coexistence of phytoplanktonic taxa is amongst the most puzzling: species, gen-

era and even classes of plankton are sometimes competing for the same limited resources

in a seemingly homogeneous environment (Titman 1976; Tilman et al. 1982). This state of

affairs led Hutchinson (1961) to refer to the “paradox of the plankton”, a paradox for which

many theoretical answers have been proposed (Record et al. 2014). Classic mechanisms for

biodiversity maintenance, such as niche separation or spatial variation in the environment,

are not seen as obvious in the case of plankton, because species apparently compete for the

same set of resources in environments that can be rather well-mixed in the absence of strong

stratification of the water column (Huisman et al. 1999b).

Neutrality, i.e., per capita equivalence of birth and death rates, is another potential

explanation (Hubbell 2001). There are varied life-histories in phytoplankton (Litchman and

Klausmeier 2008), but neutrality does not require organisms to be equal, just that trade-

offs in life history traits equalize their fitness (Hubbell 2001; Doncaster 2009). However,

experimental work does suggest a difference in net reproduction rates among plankton species

under varying nutrient concentrations (Tilman et al. 1982), which means that birth and death

rates are in fact likely to vary a lot depending on environmental conditions.

Another leading hypothesis relates to the temporal variation in the environment (Hutchin-

son 1961; Chesson 2000; Litchman and Klausmeier 2001; Li and Chesson 2016). There is

often a rather strong seasonal variation in the environment experienced by plankton (e.g.,

temperature and irradiance). A number of abiotic variables have some extra temporal varia-
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tion as well, often due to perturbations from nearby ecosystems, especially in coastal systems

like estuaries and lagoons (e.g., nitrogen (N), phosphorus (P), silicon (Si), due to terrestrial

inflows). Theory posits that diversity maintenance can be precisely due to this temporal

variation in the environment (Chesson 2000; Li and Chesson 2016), as in models for the

storage effect (Chesson and Huntly 1997). Such models are different from neutral mod-

els, as species have differentiated responses to environmental variables. Some near-neutral

models do include temporal responses to the environment (Kalyuzhny et al. 2015), but near-

neutral models usually assume that species compete in a zero-sum game, where no species

can increase without a decrease in some other species (but see Jabot and Lohier 2016).

However, total biomass across species/genera often fluctuates across several orders of mag-

nitude throughout the year, blooms being the most obvious defining feature of planktonic

dynamics. This makes phytoplanktonic communities fundamentally different from other

species-rich communities, such as forests or coral reefs, where the fluctuations in biomass

are clearly milder and near-neutral dynamics may be more plausible (Hubbell 2001; Segura

et al. 2017; we will come back to the likelihood of neutral dynamics for phytoplankton in

our discussion).

Temporal variation is therefore a likely culprit for coexistence in plankton - as initially

proposed by Hutchinson (1961). In this scenario, all species are assumed to outcompete

others at some point in time, with alternance in the ranking of competitors preventing com-

petitive exclusion (Descamps-Julien and Gonzalez 2005). This mechanism is likely to work

if species have differing nonlinear responses to the environment (i.e., relative nonlinearity of

competition), or a covariance between environmental conditions and competitive strength,

as in the storage effect (Chesson 2000; Fox 2013; Li and Chesson 2016). The plausibility of a

fluctuation-driven coexistence mechanism has been empirically verified on diatoms that be-
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long to different genera (e.g., Descamps-Julien and Gonzalez 2005) though some experiments

and models also suggest that planktonic communities might be in a chaotic or seasonally-

driven chaotic state (Huisman and Weissing 2001; Benincà et al. 2008; Dakos et al. 2009).

Such chaotic state invokes other fluctuation-driven coexistence mechanisms, with nonlin-

earities in functional forms promoting endogeneously-driven fluctuations. Of course, these

mechanisms are not exclusive, and coexistence is generally due to the joint influence of equal-

izing factors generated by differential responses to the environment (i.e., species have the

same fitness when averaged over the variation in the environment) and stabilizing mecha-

nisms (i.e., species increases when rare) that make coexistence all the more likely (Chesson

2000).

In summary, diversity maintenance in planktonic communities seems essentially tied to

abundance fluctuations throughout the year, due to both abiotic and biotic factors. There-

fore, any framework examining competition among planktonic species should account for

both the broad variations in environmental conditions and in planktonic abundances over

time. Multivariate autoregressive (MAR) modeling is one such dynamic framework that

has been increasingly used to examine interactions between planktonic groups in a dynamic

environment (Klug et al. 2000; Ives et al. 2003; Hampton and Schindler 2006; Huber and

Gaedke 2006; Scheef et al. 2013; Griffiths et al. 2015; Gsell et al. 2016). MAR models enable

the estimation of interaction strengths between taxa (Ives et al. 2003; Mutshinda et al. 2009)

as well as the dependence of population growth rates on abiotic variables (Hampton et al.

2013), both necessary to model planktonic dynamics. These models are linear on a log-scale,

hence they represent population growth processes as multiplicative, power-law functions of

densities that can approximate more complex nonlinear functional forms (Ives et al. 2003).

One can also consider an increasing degree of nonlinearity using phase-based MAR models
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(also called “Threshold AR” models, Stenseth et al. 2015), in order to examine in detail the

plausibility of nonlinear coexistence mechanisms.

Most plankton-based MAR analyses so far (but see Huber and Gaedke 2006) have ag-

gregated data at the class level, therefore preventing any attempt to examine the strengths

of competitive interactions among species or genera. Recent papers highlight that a finer

taxonomic resolution would allow for a better understanding of community dynamics (Grif-

fiths et al. 2015; D’Alelio et al. 2016). Here, we take take advantage of a long-term dataset

of coastal phytoplankton monitoring (>20 years of biweekly counts) with fine taxonomic

resolution - to the genus level - to investigate:

(1) What are the abiotic drivers of population growth (i.e., factors that initiate or termi-

nate blooms)? Are nutrients or hydrodynamics factors most influential?

(2) What are the strengths of interactions between groups and how does variation in

biotic factors affect the joint dynamics of the community?

(3) What are the implications of our results, obtained on a rich diatom and dinoflag-

ellate assemblage, for biodiversity maintenance (i.e., what coexistence mechanisms can be

expected)?

Material and methods

Study area and sampling details

Arcachon Bay (AB) is a 155 km2 coastal lagoon located in the south-west of France (Fig.1).

AB is connected to the Atlantic Ocean by two main channels (41 km2), and total freshwater

inflow distributes between the Eyre river (83%) and Porge canal (11%), rainfall and ground-

water (6%, Rimmelin et al. 1998). Using a 2D-hydrodynamics model, Plus et al. (2009)
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estimated AB’s tidal prism, i.e. the volume of water leaving the bay at ebb tide, around

384 million m3, which can be compared to the much lower maximum daily water discharge

of 12 million m3 from the Eyre, the main river entering the bay. Plus et al. (2009) also

computed a flushing time for the lagoon between 13 and 30 days and highlighted a high

return flow factor (fraction between 0.94 and 0.95, 1 being the maximum value), meaning

that a compound carried out of the lagoon is likely to return to it. The environment is

therefore well-mixed at large spatial scales, and mostly marine-influenced. In addition, the

wind regime has a strong influence on the hydrodynamics of the bay: westerly winds rep-

resent about 77% of total wind and can increase water residence time in the bay up to 10

days, leading to surges up to 50 cm (Rimmelin et al. 1998; Plus et al. 2009, 2015). The

oceanic temperate climate is characterized by an amount of precipitation averaging 785 mm

year−1, a total irradiance around 475 kJ cm−2 year−1 and an average water temperature

around 15.6°C, with a strong seasonality for all parameters (rainfall are 40% less abundant

in summer than in winter, irradiance is 4-time stronger and temperature varies between 9°C

and 23°C). More details on AB (e.g., absence of stratification of the water column) are given

in Appendix S1: Section S1.1.

Water samples were collected at 2 sites: Teychan (44°40’25” N / 1°09’31” W, water depth

= 17.30m) and Buoy 7 (B7, 44°32’32” N / 1°15’49” W, water depth = 14.5m), from 1987

to 2015 (709 dates) and 2003 to 2015 (311 dates), respectively. For more information on

water sampling, see Appendix S1: Section S1.2. Teychan is located near the limit drawn

by Bouchet (1993) between water masses influenced by oceanic waters or by continental

inputs, in the middle of AB (Fig.1), while Buoy 7 is at the oceanic entrance of the channel.

Teychan is therefore expected to be more sensitive to continental inputs while Buoy 7 should

be mainly subject to marine influences (Bouchet 1993; Glé et al. 2007).
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Figure 1: General view of Arcachon Bay and location of sampling points (Teychan and
Buoy 7) within the study area. Exact coordinates and further information about the

sampling sites are given in the main text.

Plankton ecology in Arcachon Bay

There is a wide temporal variability in AB, with an early phytoplankton bloom in spring

and usually a late one in autumn. Based on a five-year spatialized field study of micro-

phytoplankton primary production, Glé et al. (2007) concluded that part of the marine

plankton in AB may be coming from the adjacent Bay of Biscay oceanic waters, and the

bloom within the lagoon could therefore be “seeded” by the ocean. According to their study,

marine plankton find favorable conditions in AB as nutrient stocks from freshwater inflows

are higher than in the ocean. A low turbidity, associated with a well-mixed water column

(see Appendix S1: Fig S2), improves light penetration and favors a rapid population growth

in response to elevated irradiance happening as early as the end of February, depending on
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climatic variability. According to Glé et al. (2008), increases in plankton abundance lead to

nutrient depletion that is reflected in a lower productivity during summer. Both experimen-

tal (Glé 2007) and modeling (Plus et al. 2015) studies have shown so far that N might be

limiting during summer in the interior of AB, while P restriction might be the main driver

of productivity in external waters (Glé et al. 2008). On a shorter timescale, daily ebb and

flow participate in nutrient cycling (amounting to 55% P and 15% N in the bay according to

Deborde et al. 2008) while annual plankton loss to the ocean is estimated between 383 and

857 tC year−1 by Plus et al. (2015). A switch from early, large plankton assemblage with low

biodiversity to a more diverse and smaller-bodied community has been noticed by Glé et al.

(2008) although the latter study was restricted to a single year (2003), characterized by a

dry winter and a strong summer heat wave. AB is also characterized by a higher average

salinity and lower turbidity than other French Atlantic coastal bays where biotic and abiotic

factors are similarly monitored (David et al. 2012).

Phytoplankton data

The National Phytoplankton and Phycotoxin Monitoring Network (REPHY1) involves plank-

ton collection every two weeks, within two hours at high tide (for more details, see Appendix

S1: Section S1.2). Data collection started in 1987 in AB (Teychan), so the full dataset con-

sists in 709 sampling dates. The full dataset is used in all analyses except for multivariate

autoregressive models including all planktonic groups (see “MAR(1) models”): as crypto-

phytes were not recorded properly before 1996, and this could affect the counts of other taxa,

we focused on observations post-1996 for MAR(1) models.

Taxonomic units were aggregated at the genus level following previous work on this and

1http://envlit.ifremer.fr/infos/rephy_info_toxines
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other plankton datasets (Hernandez et al. 2013; Hernández Fariñas et al. 2015) according to

the plankton experts’ knowledge (see Acknowledgements). We made only two exceptions to

this “genus rule”: cryptophytes and euglenophytes could not be consistently identified below

the class level, but their abundance throughout the time series justified to keep them in the

analyses.

Our analyses therefore focused on the best-resolved and abundant planktonic groups over

time (Table 1). Hereafter, we remained consistent with the terminology used in population

dynamics theory and used the word “population” for groups described in Table 1. The term

“community” encompassed all planktonic taxa interacting in AB.

Table 1: Name and composition of the planktonic groups used in the paper, with their
average proportion in the planktonic community, calculated as the ratio of their summed
abundance over the summed abundance of all identified planktonic organisms, and the

frequency of detection, calculated as the ratio of samples in which the group was present
over the total number of samples over the whole time series at Teychan and Buoy 7 in

Arcachon Bay

Code Groups Average fraction Frequency of
in the community detection

(%) (%)
AST Asterionella + Asterionellopsis +

Asteroplanus 0.19 0.80
CHA Chaetoceros 0.12 0.89
CRY Cryptophytes 0.44 0.64
EUG Euglenophytes 0.01 0.64
GUI Guinardia 0.03 0.73

GYM Amphidinium + Gymnodiniaceae + 0.01 0.73
Gyrodinium + Katodinium

LEP Leptocylindrus 0.12 0.67
NIT Ceratoneis + Nitzschia + 0.03 0.94

Hantzschia + Bacillaria
PRP Protoperidinium + Peridinium 0.01 0.78
PSE Pseudo-nitzschia 0.06 0.66
RHI Neocalyptrella + Rhizosolenia 0.01 0.63
SKE Skeletonema 0.06 0.62
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Plankton abundance values (cell L−1) were linearly interpolated over a regular time se-

quence with a 14-day time step to correct for some sampling irregularity (following Hampton

et al. 2006). Missing values observed during blooms and spanning 2 time steps or less were

replaced by an interpolated value, as these missing values were almost surely not zeroes, but

a lack of detection. Remaining dates for which no individual was observed for a given group

were treated as missing values instead of indicators of null abundance. We evaluated several

methods for reconstructing time series without gaps and they are detailed in Appendix S1:

Section S2.1; we followed Hampton and Schindler (2006).

Abiotic data

Environmental variables collected at Teychan and Buoy 7 included water temperature (TEMP

in °C), salinity (SAL, in g kg−1), nutrients (ammonia NH4+, silicates Si(OH)4, phosphates

PO3−
4 and nitrates-nitrites NOx=NO2 + NO3−, all in µmol L−1) and suspended particulate

matter (SPM, in mg L−1), with an organic part assessment (SPOM, in mg L−1). They were

measured following Aminot and Kérouel (2004, 2007) (see Appendix S1: Section S1.2 for

more details).

Some abiotic variables (nutrients and SPM) could not be recorded at Teychan until 2007.

Their values were therefore replaced by measurements at the closest hydrological station,

Tès (44° 39’59 N / 1° 08’40 W; 1.4 km from Teychan), which shows a similar hydrodynamic

functioning (see Appendix S1: Fig. S3). For Buoy 7, all abiotic variables could be measured

onsite for each year.

Daily meteorological data -rainfall (mm), irradiance (J cm−2), wind direction and velocity

(m s−1) - were provided by Météo France for the nearby Cap Ferret station (44° 37’ N /

1° 14’ W) and were used as inputs for both sampling stations. Wind energy was extracted
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from these data as the squared velocity (m2 s−2).

Daily North Atlantic Oscillation (NAO) index was downloaded from the National Oceanic

and Atmospheric Administration (NOAA) Weather Service for Climate Prediction Centre

website2. Monthly Atlantic Multidecadal Oscillation (AMO) index was downloaded from

the NOAA Physical Science Division website3.

All environmental data were linearly interpolated on the same dates as plankton sampling

dates, removing missing values (see Appendix S1: Fig. S3).

We also transformed abiotic variables to represent meaningful biological and physical

processes. We summed NH+
4 and NOx as nitrogen suppliers (Ntot). We integrated inflow

(CumDebit), rainfall (CumPrec) and irradiance (CumRg) between t − 1 and t to represent

the growth conditions of plankton groups between two sampling dates (Glé et al. 2007).

NAO was averaged over the same period and a variable summarizing the effect of wind

was constructed using the mean wind energy over 3 days (F. Ganthy, Ifremer, personal

communication).

All datasets and R scripts for analyses are available online in a GitHub repository4.

Environmental drivers of population dynamics

The high number of possible explanatory variables with some degree of auto-correlation and

cross-correlation (see Appendix S1, Figs. S4 - S7) led to a collinearity problem indicated

by a very high condition index (CI=150, well above the thresholds of 10 or 30 indicated by

Belsley 1991). To select relevant variables, our approach was three-fold: (a) spectral analyses

2http://www.cpc.ncep.noaa.gov/products/precip/Cwlink/pna/nao_index.html accessed on
2016/03/22

3http://www.esrl.noaa.gov/psd/data/timeseries/AMO/ accessed on 2016/06/30
4https://github.com/fbarraquand/PhytoplanktonArcachon_MultivariateTimeSeriesAnalysis

This release will be made public upon publication.
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enabled us to detect significant coherency (i.e., correlation in the spectral domain) between

biotic and abiotic cycles to select variables that seemed coupled to plankton abundance, (b)

nutrients being highly correlated (Appendix S1: Fig. S4-Fig. S7), we selected the most

relevant ones based on literature values on planktonic requirements, which then led us to (c)

compare a nutrient-limitation model using N and P as covariates (including the possibility

for saturating functions of nutrients) to a physics-driven model using irradiance, salinity

and wind energy as covariates. This comparison was based on log-linear, single species

autoregressive modeling. A “full model” including both types of drivers was also compared

to the aforementioned more parcimonious models. Climate indices (NAO and AMO) formed

a third group of variables for which we developed a monthly model. Coefficients associated

to climate indices were low and explained little the observed variation, which was in line with

previous results for AB (David et al. 2012); we therefore chose to discard such large-scale

indices from further analyses, as they were also more difficult to interpret ecologically.

Spectral analyses

Plankton groups show periodic cycles that can be related to seasonal cycles. Correlating

short- and long-term cycles for both variable types can help extract planktonic responses

to environmental variability from process noises. For this, we compared each genus pe-

riodogram, using a modified Daniell kernel with a smoothing window of 2 time steps (1

month) and no tapering, with abiotic variables. Coherence significance was determined with

a corrected (Bonferroni) 5% threshold.
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Nutrient limitations

Nutrient uptake is a highly variable process both within and between plankton genera

(Paasche 1973; Fisher et al. 1988; Sarthou et al. 2005; Reynolds 2006; Litchman et al. 2007).

To assess potential limitations to growth and insert ecologically meaningful predictors into

autoregressive models, we used recently published half-saturation values for both marine

diatoms and dinoflagellates found in Litchman et al. (2007). These were used to create satu-

rating functions of nutrient concentrations. Concentrations were considered saturating when

twice superior to 0.65 µM L−1, 1.25 µM L−1 and 1.0 µM L−1 for P, N and Si, respectively,

for diatoms, and 1.4 µM L−1 and 7.0 µM L−1 for P and N, respectively, for dinoflagellates.

We averaged values for cryptophytes from two models (Hood et al. 2006; Rigosi et al. 2011):

saturating values were twice above 1.2 µM L−1 and 2.7 µM L−1 for N and P, respectively.

Based on available literature, nutrient requirements for the euglenophytes could not be so

thoroughly assessed: average half-saturation values from Fisher et al. (1988) were used for

N (2.0 µM L−1) and from Chisholm and Stross (1976) for P (1.4 µM L−1).

Single-species autoregressive models

Before using multivariate autoregressive (MAR) models, each planktonic group was studied

on its own. The modeling philosophy adopted here classically assumes that a multidimen-

sional dynamical system might be represented as a delayed unidimensional dynamical system

(Takens 1981; Turchin 2003), even in a stochastic context (Abbott et al. 2009). Accordingly,

each population can be described by an autoregressive (AR) model where the number of

time lags depends on the dimensionality of the system. The goal was to identify potential

abiotic drivers of population dynamics before the multivariate analyses, in order to fit later

on more parsimonious MAR models (Fig. 2; bear in mind that a full-matrix MAR(1) model
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with covariates can require to estimate up to 204 parameters).

AR(p)

ARX(p)

MAR(1) and TAR

Selection of maxi-
mum lag order of

autoregressive model
Spectral coherence

Key environ-
mental variables

Known nutri-
ent limitations

Estimation of species
interaction strength

and responses to
environmental variables

Figure 2: Workflow of the main statistical analyses.

Lag order selection For log-linear AR modeling, focusing on one species at a time, we

assumed that the plankton’s ecology did not vary greatly between sites and concatenated

data from both stations to increase the effective sample size in the statistical analyses. We

fitted a log-linear AR(p) model, which allowed the determination of the maximum lag order p.

The shape of growth-abundances curves (see Appendix S2: Fig. S1) and analyses of residuals

(Appendix S2: Section S2.5) confirmed that log-linearity on a log-scale - Gompertz rather

than Ricker growth (Ives et al. 2003) - was an appropriate approximation. We used the arima

function from the stats package (Venables and Smith 2013) in R (version 3.3.2) to estimate

coefficients and corresponding Akaike Information Criterion (AIC) for each AR(p) model.

The number of time lags considered varied between 1 and 30, the maximum reasonable value

for the length of our dataset (780 dates for taxa monitored after 1996). The likelihood was

estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method, an
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approximation of Newton’s method, with a maximum of 100 iterations.

Adding environmental variables AR(p) models with abiotic predictors affecting growth

rates - sometimes called ARX(p) - were then used to study the environmental effects on

planktonic growth, according to equation 1.

µs,t = αs +

p−1∑
i=0

βs,ins,t−i +
V∑
j=1

γs,juj,t + εs,t (1)

where µs,t = ns,t+1 − ns,t is the population growth rate on a log scale for genus s, αs is

the genus-specific productivity when population size is zero on a log scale, βs,i is an AR

coefficient that can represent intragroup density-dependence at lag i, uj,t is environmental

variable j for time t, with effect γs,j on the population growth rate εs,t is a random variable

modeling both environmental and observation error with mean 0 and variance σ2 (Dennis

et al. 2006).

The maximum number of time lags was homogenized between species: our results showed

that for AR(p), a 3rd order AR model minimized ∆AICc = AICc−AICcmin for most species

and resulted in 4 models out of 12 falling in the range [AICcmin, AICcmin + 2] and 7 more

within [AICcmin, AICcmin + 4]. Therefore, p = 3 was enough to capture the dynamics using

single-species models. Models with p = 1 resulted in similar coefficients but slightly higher

AICc values.

All abiotic variables were standardized in order to make their effects comparable. As

Si and N were highly correlated (Appendix S1: Fig. S5, S6; a strong lagged-correlation

also appeared in Fig. S7(d)) and Si seemed less limiting than N (Table 2), P and N were

the only nutrients retained in linear ARX(3) models. Two models were used to assess N
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availability: the first one used raw concentrations while the other one used a saturation

function (N ′t = 1− e−λNtot, with λ in accordance to N half-saturation constant) to lower the

impact of an increase in concentrations above a certain threshold. We also considered models

using nutrient ratios (Si/N and P/N) instead of raw concentrations. All abiotic variables

were then transformed to take into account seasonality. First, a seasonal component was

computed from a linear regression of temperature data against trigonometric functions with

an annual frequency (Appendix S1: Section S1.7). Abiotic variables were then regressed

against this seasonal component and residuals from this regression were added to the model

as abiotic variables (see Eq. 2).

Tt = aT + S1 cos(ωt) + S2 sin(ωt) + εT,t

Xv,t = av + bv(S1 cos(ωt) + S2 sin(ωt)) + ηv,t

(2)

where Tt is the temperature at time t, S1 cos(ωt)+S2 sin(ωt) is the seasonal component with

a normal noise εT,t and ηv,t is the residual component of covariable Xv,t when season has

been taken into account, av and bv being associated regression coefficients.

Model evaluation was performed in two steps. We first used physics-based variables

(salinity, irradiance and wind energy) and nutrients (nitrogen and phosphorus) together to

define a “full” model including all covariables. Three representations of nutrient variables

were considered and compared: raw concentrations, saturating functions of concentrations -

see above “Nutrient limitations” - or nutrient concentrations ratios. We considered, for each

model, versions with and without a dedicated seasonal component. This led to six different

full-model formulations. The minimum AICc for a majority of plankton groups determined

the best full model representation. The full model was then compared to its “nutrients-
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only” and “physics-only” counterparts (i.e., models with only nutrient or physical variables

as predictors, respectively), in order to choose the minimum amount of abiotic predictors for

the following MAR(1) analysis.

MAR(1) models

Multivariate autoregressive (MAR) models are multivariate extensions of AR models. In-

stead of focusing on one planktonic group at a time, these models describe the change in

abundance of all groups at the same time, conditioned by past values of both the V environ-

mental variables and the abundance of the S other planktonic groups. We used Ives et al.

(2003) formulation (Eq. 3), which explains growth between times t and t+ 1 by the abiotic

variables at time t+1 (because of the rapid growth of plankton, using variables both at t and

t+ 1 could be valid choices, see Hampton et al. (2013) for an alternative). This formulation

was chosen because it (1) led to smaller AICc and Bayesian Information Criterion (BIC)

for otherwise identical models and (2) resulted in better consistency between estimates at

Teychan and Buoy 7 sites (77% of covariate effects are qualitatively similar). It should be

noted that such choice does not impact the qualitative results in the interaction matrix (for

more discussions on the difference between Ives et al. (2003) and Hampton et al. (2013)

formulations, see Appendix S3). The MAR(1) model is described by Eq. (3)

nt+1 = Bnt + Cut+1 + et, et ∼ NS(0,Q) (3)

where nt is a S × 1 log abundance vector of planktonic genera at time t, B is a S × S

community (interaction) matrix. When using such MAR(1) model, we need to substract one

to autoregressive, intragroup coefficients in order to make them comparable to intergroup
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interaction values: no intragroup regulation leads to bii = 1 whereas a strong intragroup effect

is characterized by bii close to or below zero (see Ives et al. (2003) for details). For i 6= j, bij

describes the effect of genus j on genus i. C is a S × V environment matrix describing the

effects of variables u on planktonic growth. Therefore cij is the effect of variable j on genus i.

et is a noise vector which covers both process and observation error (Appendix S1: Section

S2.1, describes the handling of missing or incomplete observations), following a multivariate

normal distribution with a variance-covariance matrix Q. In the following, Q was chosen

diagonal. Indeed, the absence of constraints on the variance-covariance matrix could lead

to 66 additional parameters, in a system that already requires to estimate between 72 and

204 parameters. We checked what changes were induced by non-diagonal Q, and those are

minimal (see Appendix S4), thus a diagonal Q is clearly the parsimonious choice here.

We used the MARSS package (Holmes et al. 2012, 2013) to fit MAR(1) models. Before

fitting the MAR models, we had to handle missing values in plankton data. The MAR

models already had a high number of parameters to estimate, so we chose not to add more

through the estimation of missing values. They were replaced by a random value between

zero and the minimum value of the corresponding time series, for values that could not

be interpolated, following Hampton and Schindler (2006) (see Appendix S1: Section S2.1

for alternatives). MARSS models cannot deal with missing values in the covariates: all

abiotic variables thus had to be linearly interpolated (which posed no problem since abiotic

variables were sampled at higher frequencies than plankton). All time series were centered

and standardized. We used a physics-only model with a dedicated seasonal component to

represent plankton dynamics, based on previous single-species analyses.

Five interaction matrices were considered. Except for the null model which allowed no

net interactions between groups, all interaction matrices included the only documented ef-
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fect in the studied planktonic community: a possible predation between dinoflagellates and

cryptophytes (Moeller et al. 2016). Because all other interactions were unknown, we consid-

ered several contrasted scenarios for model fitting. Eq. (4) defines for example a scenario

differentiating between pennate and centric diatoms. Three other interaction matrices are

presented in Appendix S2: Section S2.3.

B =



AST︷︸︸︷
b1,1

NIT︷︸︸︷
b1,2

PSE︷︸︸︷
b1,3

SKE︷︸︸︷
0

CHA︷︸︸︷
0

GUI︷︸︸︷
0

LEP︷︸︸︷
0

RHI︷︸︸︷
0

GYM︷︸︸︷
0

PRP︷︸︸︷
0

CRY︷︸︸︷
0

EUG︷︸︸︷
0

b2,1 b2,2 b2,3 0 0 0 0 0 0 0 0 0

b3,1 b3,2 b3,3 0 0 0 0 0 0 0 0 0

0 0 0 b4,4 b4,5 b4,6 b4,7 b4,8 0 0 0 0

0 0 0 b5,4 b5,5 b5,6 b5,7 b5,8 0 0 0 0

0 0 0 b6,4 b6,5 b6,6 b6,7 b6,8 0 0 0 0

0 0 0 b7,4 b7,5 b7,6 b7,7 b7,8 0 0 0 0

0 0 0 b8,4 b8,5 b8,6 b8,7 b8,8 0 0 0 0

0 0 0 0 0 0 0 0 b9,9 b9,10 b9,11 0

0 0 0 0 0 0 0 0 b10,9 b10,10 b10,11 0

0 0 0 0 0 0 0 0 b11,9 b11,10 b11,11 0

0 0 0 0 0 0 0 0 0 0 0 b12,12



AST

NIT

PSE


Pennate diatom

SKE

CHA

GUI

LEP

RHI



Centric diatom

GYM

PRP

Dinoflagellate

CRY

EUG

(4)

In our first scenario, “the full model”, the interactions were totally unconstrained. The

second and third scenarios only took into account intra-phylum competition or facilitation
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(i.e., within diatoms or dinoflagellates). The third scenario added a further difference between

pennate and centric diatoms (eq. 4). Finally, the fourth model only took into account

inter-phylum interactions, which ecologically represents a scenario where, within a phylum,

organisms are too close to each other to compete. For each scenario and model fit, 95%

confidence intervals (CIs) were calculated for all parameters by boostrapping and only CIs

that did not cross zero were considered significant. AICc was used to select models, and

this model selection was compared to results obtained by BIC and cross-validation. Cross-

validation was performed on Teychan site by applying each model to the first 10 years (1987-

1996) of the Teychan time series, removing the effect of cryptophytes and euglenophytes

which were not counted until 1996. This was not the case for Buoy 7 for which we used the

whole time series (starting in 2003) in the estimation process.

We chose not to construct models including both observation and process error, because

the magnitude and variability of observation errors were unknown, and it has been showed

clearly under such conditions that introducing an unconstrained observation process in a

state-space model can result in a loss of identifiability of parameters (Knape 2008; Auger-

Méthé et al. 2016). Appendix S1: Section S2.1 details different types of observation errors

and their handling. Parameters were estimated by default via maximum-likelihood using

an expectation-maximisation algorithm (see Appendix S2: Section S2.2 for more details on

MARSS tuning parameters used in our estimations). The optimization process relied on

two convergence tests: the absolute change in log likelihood from one iteration to another

and its slope vs. the iteration number had to be below 0.001 to accept convergence. We

thoroughly tested our model selection approach using 10 simulated datasets resembling our

empirical dataset, for 3 contrasted ecological scenarios: (1) effects of environment only, (2)

effects of interactions only, and (3) both environment and interactions (see Appendix S2:
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Section S2.1). The results on simulated data showed that AICc selected the appropriate

model in each scenario, thus there was no need for more complex model selection using

AICb or refined procedures as did Ives et al. (2003) (results are provided in Appendix S2:

Section S2.1).

Non-linear dynamics: bivariate phase-dependent (TAR) models

Complex nonlinear dynamics (sensu May 1974; Turchin 2003) may not be completely cap-

tured by linear models, even in the logarithmic scale (Stenseth et al. 1998a, 2004). The log-

linear MAR(1) framework indeed essentially assumes power-law functional forms. Modeling

accurately differential responses to environmental variations like the storage effect (Chesson

and Huntly 1997) or relative nonlinearity of functional forms warrant models with a finer

temporal structure. Fortunately, threshold autoregressive (TAR) models (Stenseth et al.

1998b, 2004) can account for different temporal regimes by introducing different phases sep-

arated by threshold values - they are piecewise log-linear. TAR models have been successfully

applied to diverse ecological studies (Stenseth et al. 1998a,b, 2004). They can be described

by Eq. 5, where in our case two phases are defined:

nt+1 = a +


B(1)nt + U(1)ut + ε

(1)
t if x ≤ θ

B(2)nt + U(2)ut + ε
(2)
t if x > θ

(5)

where nt is the log abundance at time t. The parameters B(1/2), U(1/2) and ε
(1/2)
t have

the same meaning as in the usual MAR model but can have different values in different

phases. The phase is defined by x which can be both an intrinsic state variable (population

abundance or dynamics in Stenseth et al. 1998a; Barraquand et al. 2014) or an extrinsic
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variable (Stenseth et al. 2015) which is compared to a threshold θ. We describe below how

the definition of phases and thresholds map to ecological mechanisms like the storage effect

and relative nonlinearity of competition.

In order to keep the analyses tractable and the number of parameters reasonable, given

the length of the time series, we focused on the two main genera in Arcachon Bay: AST

and CHA. According to our findings using log-linear MAR models (see above), they are not

supposed to interact, being pennate and centric diatoms respectively. We tested their inter-

actions using the phase-based models to make sure that the absence of reported interaction

was not due to hidden nonlinearities.

The first phase-based models, with phase defined through population densities (x is

defined by AST and CHA abundance in Eq. 5), model possibly complex functional forms

of the interactions between AST and CHA. Competition and response to environmental

variables have then separate coefficients for high and low densities of the two plankton

groups. This corresponds well to “relative nonlinearity of competition” (see e.g. Fox 2013

for model equations). The second, environment-based phase models (x and θ are defined

by clusters of environmental conditions in Eq. 5) allow for coefficients to differ depending

on environmental conditions. The latter models are particularly relevant to see if a so-

called “storage effect” could happen, in which the effect of abiotic variables on population

growth covary with the values of the environmental variables themselves (Chesson 2000).

For alternative, non-parametric ways to search for storage effects, see Ellner et al. 2016.

Density-based phases - nonlinear competition

We defined cumulated irradiance as the main environmental driver, based on MAR(1) model

results. Litchman et al. (2004) also showed that light conditions could impact competition
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for resources between plankton groups (results when using temperature as the main en-

vironmental effect can be found in Appendix S5: Section S1.2). Two log-linear MAR(1)

models were fitted to the data, on both sides of the threshold: the first one corresponded

to non-bloom conditions while the second one represented the dynamics during a bloom.

The log-abundance threshold θ for regime switch was set to 11, which implies that blooming

conditions represented about 25% of both AST and CHA time series.

Environment-based phases - storage effect

Defining a environmental-based TAR model when the environmental conditions are multi-

dimensional requires two main choices: the choice of a unifying variable that can summarize

external conditions of the system (i.e., the phase) and the definition or estimation of a

threshold for such a variable. The number of different phases, and therefore thresholds, is

itself debatable. We chose to use 2-phase hierarchical clustering based on Ward’s method

(see Appendix S5: Section S1.1 for details). Two phases allowed to differentiate between

low chlorophyll and salinity and high chlorophyll and salinity conditions, while making re-

sults comparable to both previous sections and other works in the literature (D’Alelio et al.

2015). Using this clustering method to define a phase for both Teychan and Buoy 7 datasets,

a different MAR model was fitted to each phase. As before, AICc was then used to compare

between diagonal and full interaction matrices.
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Results

Environmental drivers of population dynamics

Here, we describe the correlation patterns of environmental drivers and plankton groups in

the frequency domain, that helped us, together with ecological knowledge, to select the key

environmental drivers used later in ARX(p) and MAR(1) models (Fig. 2).

Spectral correlation analyses

Salinity was related to both freshwater inflow and precipitation, and having all three variables

in our final models would not be desirable given their high correlation. As salinity cycles were

more often correlated with plankton dynamics (Appendix S1: Fig. S18), and this variable

also makes biological sense for the plankton niche (see Discussion), we retained only salinity.

Irradiance and temperature were also correlated, which was of course logical given a higher

irradiance locally heats up the water temperature. Both could have been considered, but we

chose to use irradiance as the leading variable summarizing solar energy. Furthermore, on

purely statistical grounds, CRY, the only group with differential responses to irradiance and

temperature, were more sensitive to irradiance cycles (Appendix S1: Fig. S18(c)). Salinity,

irradiance and wind energy were therefore the drivers in our physics-based models. We

note that nutrients, especially N and Si, were also dependent upon freshwater inflow, which

explained their high correlation (Appendix S1: Fig. S7).

Most plankton genera showed a strong seasonal response, except for CRY, GUI at Buoy

7 and SKE. The CRY group differed from other algae in its phenology by exhibiting much

weaker (if any) periodicity. GUI and SKE may have a stronger long-term (supra-annual)
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component than other planktonic species (Supplementary S6: Fig. S2(c) and Fig. S2(j)).

Finally, shorter cycles (6 months) could be noticed for AST, GUI and NIT; these cycles

indicate two blooms per year.

Nutrient limitations

In a coastal lagoon with continental inputs such as AB, the odds that concentrations in

nutrients would be high enough for plankton responses to saturate with regards to nutrient

concentration are high. However, using half-saturation values from the literature, we could

not show nutrients to be saturating for all genera at both sites (Table 2). Si seemed to be less

limiting than N for Arcachon Bay (despite its general ecological importance for diatoms).

The high correlation between Si and N, that was more limiting, led us to select N rather than

Si as an environmental driver. P seemed to be lacking in comparison with other nutrients,

and was therefore considered potentially limiting as well.

Table 2: Proportion of observations (%) at Teychan and Buoy 7 for which nutrient
concentrations were above twice the half-saturation parameters found in the literature for
different planktonic phyla (see the text for values and references). Dino. = Dinoflagellates.

Phosphorus Nitrogen Silicon
Diatoms Dino. Cryptophytes Euglenophytes Diatoms Dino. Cryptophytes Euglenophytes Diatoms

Teychan 0 0 0 0 60 17 61 50 96
Buoy 7 0 0 0 0 37 0.6 38 26 57

Single-species autoregressive models

When taking all abiotic variables into account, the best model - in the sense of lowest AICc -

for most planktonic groups used raw values of nutrient concentrations, as opposed to saturat-

ing functions of concentrations or nutrient ratios. This “absolute concentrations” model was
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consistent across genera: 7 genera out of 12 were within ±2 of the lowest AICc value across

all possible model types (including seasonality or not, ratios of nutrient concentrations, sat-

urating functions of nutrient concentrations, or absolute values of nutrient concentrations).

The best model also included an explicit seasonal component (Table 3).

To decipher which of the abovementioned factors were most important to plankton dy-

namics, models with subsets of the environmental data were considered. Four models were

evaluated (see Methods for details): the full model (physical drivers + nutrients), a model

with physical variables only, a model with nutrients only (Fig. 3). The physics-only model

was best - including irradiance, salinity, and wind energy - followed by the full model and

finally the nutrient-only model. For the two abundant and widely blooming genera (AST,

CHA), the full and physics-only models were nearly equivalent in terms of ∆ AICc but clearly

better than the nutrient-only model.

Table 3: AICc for models explaining plankton dynamics in Arcachon Bay using physical
variables (irradiance, wind energy, salinity) and nutrients (nitrogen and phosphorus), with

and without a dedicated season variable. Nitrogen values are either used directly, or
clipped with a saturating function. Nutrients were also input as ratios of P/N and Si/N.

AICc values within 2 units of the minimum AICc are shown in bold letters for each group.
Composition of planktonic groups is described in Table 1

No season Season No season Season No season Season
No saturation No saturation Saturation Saturation Ratio Ratio

AST 1430 1431 1426 1427 1431 1432
CHA 1708 1703 1717 1706 1720 1710
CRY 1187 1185 1186 1185 1185 1184
EUG 1005 1003 1002 1002 996 995
GUI 1268 1272 1269 1273 1271 1272
GYM 1269 1260 1269 1260 1266 1264
LEP 1115 1109 1113 1111 1113 1112
NIT 1564 1545 1557 1546 1561 1546
PRP 1128 1129 1129 1130 1121 1121
PSE 1571 1566 1569 1569 1569 1569
RHI 894 893 894 894 893 893
SKE 804 811 806 806 808 810
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Figure 3: Difference between the AICc of a full model, and the AICc of physics-only
(salinity, irradiance, wind) and nutrients-only (nitrogen and phosphorus) models. All
models use raw nutrient values and an explicit seasonal component. When ∆AICc is

negative, the model performs better than the full model to describes the dynamics of each
planktonic groups. Physics-only ∆AICc cannot be seen for GYM and LEP as they are 0.

∆AICc for nutrients-only models were above 40 for CHA. Composition of planktonic
groups on the x-axis is described in Table 1.

Even though the physics-only model did not account for all the variability in population

growth rates (R2 ranged between 0.12 and 0.27) and density-dependence was, in general,

more influential to explain the overall dynamics than any other environmental factors, some

environmental effects such as those of salinity and wind appeared consistent and common to

all planktonic groups (Fig. 4). Seasonality had a strong impact on growth rates - the sign of

which depends on the life history of the different genera. Residuals from cumulated irradiance

had a positive effect, except for AST which is known to be less sensitive to irradiance at

Arcachon’s latitude (early bloomer), and for PSE and RHI, whose growth rates were driven

mostly by variations in wind energy and salinity. Except for a negligible effect on CRY and

NIT, wind energy had strong negative impacts on population growth (Fig. 4).

The physics-only model was therefore used for MAR analyses in the following.
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Figure 4: Mean values and standard errors of coefficients from linear models of plankton
growth rates against irradiance, wind energy, salinity and a dedicated season component.

Composition of planktonic groups on the x-axis is described in Table 1.
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MAR(1) models

Model selection with AICc revealed that both the null model (no interaction) and the matrix

enabling interactions within centric and pennate diatoms on the one hand, and dinoflagellates

on the other hand (eq. 4), were the best models to describe data at Teychan and Buoy 7 sites

(Table 4). This was also confirmed by a more detailed analysis of interactions between the

main pennate diatom AST and the main centric diatom CHA (see below). B and C matrices

are presented for Teychan and Buoy 7 in Fig. 5 for the model differentiating pennate and

centric diatoms. Results based on other interaction matrices can be found in Appendix S2:

Section S2.4. In order to make interaction coefficients comparable, the identity matrix was

Table 4: Comparison of model selection criteria for different interaction matrices at
Teychan and Buoy 7 sites (see eq. (4) and Appendix S2: Tables S5, S6, S7 for matrix

definition)

Null Unconstrained Pennate vs. Centric Diat vs. Dino Inter-phylum
Teychan AICc 11970 12039 11964 11971 12025
Teychan BIC 12271 12882 12398 12533 12631
Teychan R2

pred 0.52 0.55 0.50 0.50 0.54
Buoy 7 AICc 8924 8980 8889 8920 8972
Buoy 7 BIC 9196 9736 9280 9422 9517

subtracted to all estimates of B (see Material and methods: MAR(1) models). Model fit

was checked by examination of residuals (Appendix S2: section S2.5) and comparisons of

simulated data to real data (Fig. 6).

We found generally that intragroup interactions were at least twice higher than intergroup

interactions (often 4 times higher). The interaction matrix structure was found to be similar

between sites. Among diatoms, the strongest intragroup regulation was observed for CHA,

one of the most abundant genus in AB. AST, the most abundant genus, had an average
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Figure 5: Model coefficients for both variates and covariates (salinity, irradiance, wind
energy and season) at Teychan (black) and Buoy 7 (blue), using an interaction matrix with

no interaction between pennate and centric diatoms. Significance of coefficients was
determined by bootstrapping and P<0.05 and is marked by asterisks (*). The figure should

be read as element i having effect eji on plankton group j. The identity matrix was
subtracted to the interaction matrix in order to make effects on growth rates comparable.

Composition of planktonic groups is described in Table 1.

intragroup interaction coefficient when compared to other planktonic groups. Intergroup

coefficients were mostly low and positive when significantly different from zero (Fig. 5).

11 intragroup coefficients were positive at both Teychan and Buoy 7 sites, while only 5

of them were negative and consistent between sites. However, low positive and negative
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coefficient values might be artefacts, as the model with diagonal B was equally supported

(Table 4).Covariates played similar roles here than in single-genus models: salinity and wind

energy had mostly negative effects while cumulated irradiance had positive effects for the

majority of planktonic genera. Our simulations of three scenarios (Appendix S2: Section

S2.1) followed by MAR model estimation revealed that while sign and rank of covariate

effects were correctly estimated in all scenarios (there could be a slight underestimation

bias, c. 10%).

Bivariate phase-dependent (TAR) models

In this section, we report the results of piecewise autoregressive log-linear (TAR) models,

with the phases defined either through the species densities or the general environmental

conditions for Teychan (Table 5). Similar results for Buoy 7 can be found in Appendix S5:

SectionS1.2.

The intergroup coefficients are at least two times lower than the intragroup density-

dependence (and usually an order of magnitude lower) and statistically non-significant. This

was true in both bloom (high densities, or favorable environment) and non-bloom (low

densities, or unfavorable environment) conditions at both sites. We therefore conclude that

there are very few or no interactions between AST and CHA, even when considering more

complex nonlinear models.
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Figure 6: Smoothed states obtained with the Kalman filter used in MARSS package (black
line) compared to observations (red dots) for Teychan site, using an interaction matrix
with no interaction between pennate and centric diatoms. Composition of planktonic

groups is described in Table 1.
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Table 5: Density- and environment-based TAR model coefficients for a linear model
relating growth to log abundance of planktonic groups for Asterionellopsis (AST) and

Chaetoceros (CHA) at Teychan, according to Eq. 5, with cumulated irradiance as the main
environmental driver. Significant coefficients at the 5% threshold are indicated by *.

Model Phase Coefficients
a AST CHA Irradiance (× 10−5)

Density- Bloom AST 6.38* -0.60* 0.05 -2.98
based CHA 3.86 0.04 -0.53* 4.22*

No bloom AST 6.40* -0.52* -0.06 -2.72*
CHA 4.54* -0.02 -0.56* 5.53*

Environment- Bloom AST 6.47* -0.53* -0.05 -2.94*
based CHA 3.21* 0.01 -0.47* 5.75*

No bloom AST 5.48* -0.48* -0.01 -2.81
CHA 5.33* 0.01 -0.65* 4.50*
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Discussion

Using time series data from both biotic and abiotic components of the ecosystem, we have

applied univariate and multivariate autoregressive models to pinpoint the factors driving the

joint dynamics of a plankton community in a coastal ecosystem. This plankton community

was dominated by several genera of pennate and centric diatoms as well as dinoflagellates

(grouped at the genus level for most). Because most of these groups overlap in their resource

requirements (Reynolds 2006), we expected some degree of competition but relatively differ-

ent, potentially nonlinear responses to environmental variables. This would have suggested

a mechanism of coexistence through temporal variation of the environment (Chesson 2000),

despite some degree of competition between genera. Our results painted in contrast a rather

different picture, with no or very weak competition.

Some MAR studies have constrained the signs of the interactions between groups, as-

suming competitive interactions at the same trophic level (e.g., Ives et al. 2003; Huber and

Gaedke 2006; Hampton et al. 2008). We chose not to do so, as it was not clear to us that the

resulting net effects of all possible interactions (including those mediated by hidden players

such as predators or parasites) are necessarily negative (see also Stone and Roberts 1991).

In contrast, we relied on using model selection criteria to contrast the likelihoods of vari-

ous scenarios (including no interactions between groups, interactions between closely related

groups only, interactions between all the plankton groups).

We did not find intergroup competition between diatoms or dinoflagellates. Although

one of our best models included interactions between genera (including competition within

pennate and centric diatom groups), interaction coefficients that were significantly different

from zero and consistent for both sites were usually positive. As the null model without
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interactions was also selected, we conclude that the odds of no, or weak, interactions between

groups are high. Hence, the most likely explanation for our results is that plankton groups

currently do not compete to a great extent, even when some groups concurrently reach

densities high enough to be considered blooming.

The responses to environmental variables were relatively similar among taxa, but there

were some phenological differences. The most abundant group in AB, AST (see Table 1)

was a good example of such differences as it almost always bloomed first and necessitated

lower irradiance than all other groups. In AB, this group consists almost entirely of Aster-

ionellopsis glacialis, a species adapted to cold environments (Kaczmarska et al. 2014). The

effects of nutrients were not selected in autoregressive models, even though we considered

absolute concentrations, saturating functions of these concentrations, and ratios of nutrient

concentrations. There was, however, a possible impact of nitrogen but it was neither high

enough nor consistent enough across groups to be considered a key driver, compared to other

abiotic factors like irradiance or wind.

Our models relied on the assumption of log-linearity in population growth rates (PGRs),

which amounts to assume a multiplicative, power-law equation for the untransformed den-

sities. Both PGR-log(density) curves (Appendix S2: Fig. S1) and examination of residuals

(Appendix S2: Section S2.5) did not reject this hypothesis. Because examination of resid-

uals of time series models can sometimes be ambiguous with noisy data, to be sure that

alternative modeling choices could not alter our results, we fitted supplementary nonlinear

competition models on the two main genera corresponding to pennate and centric diatoms

(AST and CHA respectively; see Methods and Appendix S5 for the models definitions).

These included Ricker-based Lotka-Volterra (LV) competition (Ives et al. 1999b) (Appendix

S5: Section S2) and two phase-dependent models (i.e., piecewise, Stenseth et al. 1998a; Bar-
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raquand et al. 2014; Stenseth et al. 2015). The phase-dependent models mimicked relative

nonlinearity of competition, by allowing phase to depend on density values, and the stor-

age effect mechanism (Chesson 2000), by allowing the phase to depend on environmental

conditions (see Appendix S5 for the definition of environmental conditions). The Ricker-LV

model fitted the data to some extent but did not produce realistic dynamics (Appendix S5:

Section S1.2) compared to MAR(1) models. The phase-dependent models produced very

similar results to the basic MAR(1) log-linear model: no significant interactions were found

in any phase. Hence, these models with increased nonlinearity did not bring any additional

information. We are therefore very confident that (1) the log-linear assumption is appropri-

ate for our data and (2) there is an absence of interactions between the two most abundant

genera (AST and CHA), so that our MAR(1) model including phylogenetic information in

the interaction matrix (with weak interactions within pennate and centric diatom groups, as

well as dinoflagellates) is quite robust.

We now discuss the likely reasons behind this absence of intergroup competition, as well

as the effects of physical environmental drivers on phytoplankton population dynamics.

Phytoplankton responses to environmental variation There is a strong influence of

the season on phytoplankton growth processes. We have taken into account this variation

through an explicit seasonality variable to avoid collinear regressors in our models. Sea-

sonality is explicitely considered in about half of the MAR studies focusing on planktonic

communities (Ives et al. 1999a; Klug and Cottingham 2001; Beisner et al. 2003; Hampton

et al. 2006; Hampton and Schindler 2006; Hampton et al. 2008; Griffiths et al. 2015; Gsell

et al. 2016). It is usually assessed by categorical or continuous variables such as the month,

week or day number, sometimes taking into account non-linearities through squared val-
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ues (Ives et al. 1999a; Hampton and Schindler 2006; Griffiths et al. 2015). More complex

analyses have used spline functions to describe the seasonal signal in each covariate (Feng

et al. 2014); our choice of a trigonometric function allowed to be more parsimonious. The

season variable aggregates, of course, the effect of several other variables that have seasonal

variation. Therefore, all the other variables, that are deseasonalized, have to be interpreted

as deviations from the overall seasonal pattern.

With these limitations in mind, it is remarkable that both wind energy and salinity

had mostly negative effects, meaning that more wind or more salinity than expected at a

particular time of the year has detrimental effects on planktonic population growth. Why

wind has a consistently negative effect is not entirely clear. Wind has different effects at

different spatial scales. At very large spatial scales (>100 km2), wind can have disruptive

effects on oceanic currents and change the stratification outside coastal areas. In turn, a

change in large-scale currents can create favorable conditions for blooms, including in the Bay

of Biscay where AB is located (Dı́az et al. 2013). At slightly smaller scales (m2 to km2), wind

is generally expected to create large-scale turbulence, which is then cascaded to small-scale

eddies and dissipated as heat at the micrometer scale. Despite the development of multiple

modeling studies (Huisman et al. 1999a; Guasto et al. 2012; Nguyen and Fauci 2014), field

observations and experiments in the laboratory are not conclusive on the effect of small-scale

turbulence (providing mixing and heat), generated by larger-scale phenomena (Peters and

Marrasé 2000). Positive effects of microscale turbulence on planktonic growth include lowered

sinking rate for diatoms (Reynolds 2006) enhanced by increased aggregation and improved

nutrient assimilation (Margalef 1978; Thornton 2002). However, other studies have shown

that an increase in flow velocity result in decreased growth rates and increased mortality of

phytoplankton (Li et al. 2013; Garrison and Tang 2014), especially for dinoflagellates (Peters
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and Marrasé 2000; Llaveria et al. 2009). Moreover, an increase in turbulence may lead to

resuspension of sediments and therefore more turbid waters and lower light availability. The

buffering of incoming solar energy could explain the observed negative effect of wind energy

on plankton growth (Gervais et al. 1997; Glé et al. 2007).

Salinity is another dominant factor in other coastal areas, that can prove at times even

more influential than nutrient loads (Irwin et al. 2012; Gasiūnaitė et al. 2005). Scheef et al.

(2013) called for the use of salinity as a discriminating factor for estuarine environments

in MAR analyses. Some diatoms have indeed lower growth rates when salinity increases

(Balzano et al. 2011), which could explain our mostly negative effects on plankton growth. An

alternative hypothesis is that salinity is inversely related to freshwater inflow and therefore

nutrient loads. As we found few direct effects of nutrients, it seems more logical to assume

that salinity might have a negative effect for other reasons than its inverse relationship to

nutrient load. Salinity is therefore most likely to influence phytoplankton growth directly

through physiological adaptations (e.g., tolerance range due to osmotic processes, Kirst 1990)

or indirectly through concentration effects other than nutrients (e.g., a higher freshwater

inflow can dilute chemicals harmful to algae).

No (or weak) interspecific competition The absence of competition in our system

was surprising, because we expected to find results similar to Descamps-Julien and Gonzalez

(2005), i.e., a coexistence in spite of marked competition, mediated by differential responses

to environmental variation. We note that our detailed comparison of nonlinear community

models for AST versus CHA is not unlike their comparison of Fragilaria (pennate diatom)

vs Cyclotella (centric diatom), except ours was based on field-based rather than based on

experimental data. Although the absence of present competition between groups could be
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expected because niche differentiation has occurred in the past in many communities, it is

not quite obvious what these niches may be here.

All our plankton groups coexist in a bay where spatial variation at large (e.g., meter to

kilometer scale) is low, the resource (nutrient) requirements are mostly met and the responses

to these resources are both weak and similar. Our observational setting contrasts widely with

the classic experiments of Titman (1976); Tilman et al. (1982) that showed competition for

resources in a context with well-defined niches related to nutrients. It is possible that under

the differing circumstances considered here, entirely new drivers, e.g., predators or parasites

take over the regulation of phytoplankton growth. We discuss this possibility further below.

Among the few intergroup interactions that were consistent across sites, we observed

more positive than negative interactions. This can be due to hidden players that generate

positive interactions (see below). Although we reckon that there is a possibility for positive

interactions to emerge if the seasonal variable does not fully correct for shared seasonal

trends, positive interactions can also be genuine ecological phenomena (de Ruiter and Gaedke

2017). A number of plankton MAR studies have explicitely forbidden positive interactions

between phytoplankton groups from their models (e.g., Ives et al. 2003; Huber and Gaedke

2006; Hampton et al. 2008), which in turn suggests that positive interactions could be more

common than what previous multivariate time series analyses concluded.

What about neutral dynamics? Neutral dynamics sensu Hubbell (2001), i.e., ecological

drift in a zero-sum game, is likely not a main force here because of the fluctuations in numbers

across 6 orders of magnitude, as we mentioned in our introduction. However, there are other

models of neutral community dynamics that may apply to our system, such as the one

proposed by Loreau and de Mazancourt (2013). It is a variant of the discrete-time Lotka-
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Volterra model (Ives et al. 1999b) with demographic and environmental stochasticity. In the

neutral case, the species compete together by an equal amount, yet vary synchronously under

the influence of the environment. Stabilizing niche differences are progressively introduced

through a parameter α that weights the importance of interspecific/intergoup interactions.

Our results may be relevant in two ways for such theoretical community dynamics studies.

First, in our study, not only species vary in partial synchrony under a joint environment,

but intragroup interactions also dwarf intergroup interactions (i.e., α close to zero in the sec-

ond model of Loreau and de Mazancourt 2013). In this case, the Loreau and de Mazancourt

(2013) model is not neutral anymore and it contains stabilizing mechanisms for coexistence

(sensu Chesson 2000). In our case, the reasons for such stabilizing niche differences are yet

to be discovered. Whether other studies using long time series, in plankton or other sim-

ilar systems find results close to ours, or manage to get near-neutral dynamics, would be

of general interest. If coexistence occurs through stabilizing niche differences, we note that

observing intergroup interactions that are very small may be in fact logical: the criteria for

coexistence in theoretical Lotka-Volterra communities require intergroup competition to be

much lower than intraspecific competition in large communities (Barabás et al. 2016).

Mutshinda et al. (2016) recently reported on ecological equivalence - neutrality - between

groups using like us a long-term phytoplankton dataset (the L4 dataset in the English Chan-

nel). Ecological drift was modeled by assuming that the proportion of the functional group

biomass attributed to each species was on average the same proportion realized in the pre-

vious week. Though we command the extensive hierarchical modeling of Mutshinda et al.

(2016), it is not entirely clear to us to which neutrality concept this proportion modeling

refers to, and we therefore prefer to interpret our results by comparison to the framework of

Loreau and de Mazancourt (2013), where the assumptions on competition are clearly defined
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and the model structure match the models that we fitted. Better understanding the rela-

tionship between “neutrality” sensu Loreau and de Mazancourt (2013) and Mutshinda et al.

(2016) might help understand if the L4 phytoplankton community is ‘neutral’ within phyla

(diatoms vs dinoflagellates, see Mutshinda et al. 2016 for details) in the sense of Loreau and

de Mazancourt (2013) as well. If this was the case, the L4 phytoplankton community would

have widely different community dynamics than AB where stabilizing mechanisms dominate.

Our second insight is that we found a clear log-linearity of the relationship between

population growth rates and population densities (Appendix S2: Fig. S1 and Appendix S2:

Section S2.5), i.e.

ri,t = ln(Ni,t+1)− ln(Ni,t) ∝
S∑
j=1

bij ln(Nj,t) (6)

This is the MAR formulation with Gompertz density-dependence, rather than Ricker density-

dependence (used for discrete-time equivalents to the Lotka-Volterra model) as in Loreau

and de Mazancourt (2013)

ri,t = ln(Ni,t+1)− ln(Ni,t) ∝
S∑
j=1

b′ijNj,t (7)

where b′ij = −rmα/K ′ when i 6= j using Loreau and de Mazancourt (2013)’s notations.

We therefore suggest to theoreticians and empiricists alike to use, when investigating neu-

tral or potentially Lotka-Volterra dynamics in highly variable communities, the Gompertz

formulation in addition to the Ricker formulation (Ives et al. 1999b).

Comparison to biotic drivers in similar ecosystems, and taxonomic issues We

found no interaction between diatoms and our mixotrophic/heterotrophic dinoflagellates, as

did for example Gsell et al. 2016. Such interactions between classes are highly variable in
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other studies: Scheef et al. (2012) only found a positive effect of dinoflagellates on diatoms

while Griffiths et al. (2015) estimated a negative effect of autotrophic and mixotrophic di-

noflagellates on diatoms in their coastal site and a positive effect of diatoms on heterotrophic

dinoflagellates in their offshore site (c. 40km away). In addition, in our study, cryptophytes

do not affect and are not affected by other plankton groups at both sites, which surprised

us; we expected this abundant group with known interactions to other group to exhibit

some significant interactions. In another plankton study, Klug et al. (2000) found a negative

effect of cryptophytes on dinoflagellates in one location and no effect in another site (Klug

and Cottingham 2001). Basic ecological information suggest that dinoflagellates can have

a negative effects on cryptophytes population dynamics (through predation, Moeller et al.

2016), but these seem to be quite difficult to recover.

The above summary of previous plankton MAR studies suggest that patterns of interac-

tions between broad plankton groups at the class or phylum level (diatoms / dinoflagellates

/ cryptophytes ...) are highly inconsistent between places and periods of study. These id-

iosyncratic results might be due - among other factors - to the aggregation of heterogenous

genera and species with different traits and dynamics. For this reason, Griffiths et al. (2015)

suggested that improving taxonomic resolution, as we did, would help to estimate more

precisely competitive or predatory interactions between plankton groups. However, we did

not estimate stronger interactions despite having quite long time series, which suggests that

interspecific competition at least may in fact not exist in many (phyto)plankton datasets.

Are there other datasets corroborating our findings? Our inference of interactions using

MAR models on field data, at a fine taxonomic scale, can to our knowledge only be compared

to the detailed freshwater study of Huber and Gaedke (2006). Distinguishing 4 diatom

species, 2 cryptophyte groups and 1 dinoflagellate species, they could infer a negative effect
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of a dinoflagellate on one species of diatom. However, a different species of the same diatom

genus was not affected by the dinoflagellate. Species-specific interactions could also be found

between diatoms and cryptophytes. One of our main results was the absence of interactions

between pennate and centric diatoms. Interspecific interactions within diatoms were only

found between one centric species and one pennate species in Huber and Gaedke (2006),

but were not a common pattern; thus their results tend to concur with ours. Although we

reckon that our aggregation to the genus level - still more precise than most similar MAR

studies - could remove some of the temporal variability at the species level (see also Vasseur

and Gaedke 2007).

New techniques to structure interaction matrices applied to metabarcoding data may

hold promise to infer interactions at the species level (Ovaskainen et al. 2017) in the future,

although currently metabarcoding presents its unique set of challenges, such as data compo-

sitionality (Cao et al. 2017). In any case, we recommend that future studies use simulations

mimicking study design as we (Appendix S2: Section S2.1) and Ovaskainen et al. (2017) did

- simulations are essential to check that statistical models are able to infer interactions for a

given observational study design in a range of scenarios.

Hidden (biotic) drivers Effects of phytoplankton natural enemies can be quite important

(Klug et al. 2000; Ives et al. 2003; Huber and Gaedke 2006; Gsell et al. 2016) but were

unknown for AB. There is only one study on the effect of viruses in AB, which shows no

viral control of plankton but a high potential for viral lysis during blooms (Ory et al. 2010).

Zooplankton is another potential compartment whose populations show a strong spatial and

temporal heterogeneity both in biomasses and species diversity from oceanic waters to coastal

waters, which could explain some of the differences in coefficient estimates between our two
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study sites (Castel and Courties 1982; Tortajada et al. 2012). Predators can even contribute

to apparent facilitation between species, therefore explaining the positive interactions found

in our study (Abrams et al. 1998; Barraquand et al. 2015; de Ruiter and Gaedke 2017).

However, in a well-mixed environment, sharing predators can also be like sharing resources,

and the species that resist better predation can end up excluding the others, depending on

predator numerical responses (Holt 1977; Abrams et al. 1998). Thus natural enemies do not

necessarily have diversity-enhancing effects that explain the coexistence observed here. We

mentioned parasitism, predation and competition with other algae as potential factors that

should be taken into account (Huber and Gaedke 2006), but other variables may emerge as

potential drivers of plankton dynamics, from toxic compounds to hydrodynamic features.

Comparison to abiotic drivers in similar ecosystems In Arcachon Bay, Glé et al.

(2007) focused on the drivers of the winter bloom with a 5-year data set and showed the

importance of irradiance for planktonic blooms without being able to conclude on the role

of the nutrient cycle throughout the year based on their observations. A high-frequency,

detailed sampling program was then launched for two years but its conclusions are difficult

to generalize, due to the occurrence of a heat wave in the study period (Glé et al. 2008).

With a longer time series (1993-2010), David et al. (2012) classified planktonic groups with

a functional approach and indicated that climate indices (NAO and AMO) were more infor-

mative than nutrients when observing planktonic diversity patterns along the French coast.

Likewise, our study showed no dominant effect of nutrients in AB, which is similar to what

Griffiths et al. (2015) found for diatoms and cryptophytes in the Baltic sea. A potential

competition for nutrients between phytoplankton, seagrass and macro-algae was suggested

for AB based on mechanistic modeling (Plus et al. 2015), but as we did not find nutrient
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limitation in our analyses, this hypothesis currently seems unlikely. In contrast to small-scale

experiments, analyses of phytoplankton time series based on long-term observational data

rarely show a consistent effect of nutrients on diatoms (no effect in Klug and Cottingham

2001; Hampton and Schindler 2006, contrasted effects in the three time periods considered by

Gsell et al. 2016). These inconsistent nutrient effects may occur because effects of nutrients

on phytoplankton growth interact with other important drivers of phytoplankton community

dynamics in the field (as opposed to the more controlled environments in which experiments

are usually performed).

Towards a more mechanistic study of phytoplankton community dynamics In

land plants, coexistence can be high-dimensional and depend on a great variety of traits,

which are themselves not directly related to abiotic resources such as nitrogen or phosphorus

(Kraft et al. 2015). This is also quite likely to happen for phytoplankton. The phytoplankton

groups that we studied, diatoms in particular, often live in colonies of differing shapes and

sizes: these factors are likely to impact community dynamics and coexistence. The colonial

nature and shapes of diatoms are known to interact with patterns of very-small scale turbu-

lence (Margalef 1978; Reynolds 2006), and microscale hydrodynamics does affect plankton

growth and coexistence (Huisman et al. 1999b). Much in the same way that small-scale

spatial structure can be pivotal to plant coexistence (e.g., through vertical shading, Onoda

et al. 2014), the interplay between microscale hydrodynamics and phytoplankton structure

(cell shape, cell size, coloniality) is likely to be important for phytoplankton coexistence.

Current models have started to investigate the joint effects of cell size and turbulence on

persistence (Portalier et al. 2016), but much remains to be done with respect to cell shape

and coloniality (see Nguyen and Fauci 2014 for a hydrodynamics study).
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This study highlighted that stabilizing niche differences, that make intragroup compe-

tition much stronger than intergroup competition, are likely at work in our coastal phyto-

plankton community. This contrasts widely with other types of models invoking temporal

fluctuations in the environment (Descamps-Julien and Gonzalez 2005; Li and Chesson 2016)

that counteract effects of competition for resources. However, this rejection of “paradox

of the plankton models” does not imply that all interactions between species are unimpor-

tant to species coexistence. Other features of phytoplankton life histories may need to be

explored to better comprehend the full effect of interactions on plankton interlinked popula-

tion dynamics, e.g., sexual reproduction in phytoplankton ensures a rather rich demography

(D’Alelio et al. 2010). Having several life-stages increases the possibility for interactions

to affect community dynamics without these interactions being detectable using aggregated

biomass or counts at the species or genus level (Oken and Essington 2015) - one of the

limitations of count-based studies like ours.

To sum up, both demography and microscale hydrodynamics, together with natural

enemies, might be needed to understand coexistence in phytoplankton. Although the sessile

nature of land plants and the stability of forests contrasts with the extremely motile, dynamic

nature of the marine environment, some suggestions for further work may be transferrable

from plant to plankton ecology. A likely driver of stabilizing niche differences in tropical

forests are Janzen-Connell effects where greater interspecific than intraspecific competition

occurs at the seed and seedling stage, through combined effects of spatial structure of the

seed rain and natural enemies (Bagchi et al., 2014; Comita et al., 2014). Although the specific

mechanisms at work will undoubtedly be different in phytoplankton, the idea that microscale

spatial structure, stage structure and natural enemies may all interact to create stabilizing

niche differences holds promise. A more demographic, small-scale perspective may help us
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to move beyond simple “paradox of the plankton” models and better explain the puzzling

phytoplanktonic diversity.
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itytė, I. Purina, A. Razinkovas, S. Sagert, H. Schubert, and N. Wasmund. 2005. Season-

ality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication.

Estuarine, Coastal and Shelf Science 65:239–252.

Gervais, F., D. Opitz, and H. Behrendt, 1997. Influence of small-scale turbulence and large-

scale mixing on phytoplankton primary production. Pages 95–105 in Shallow Lakes’ 95.

Springer.
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