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ABSTRACT 17	
 18	

 The use of large genomic datasets in phylogenetics has highlighted extensive topological 19	

variation across genes. Much of this discordance is assumed to result from biological processes. 20	

However, variation among gene trees can also be a consequence of systematic error driven by 21	

poor model fit, and the relative importance of these biological versus methodological factors in 22	

explaining gene tree variation is a major unresolved question in phylogenetics. Using 23	

mitochondrial genomes to control for biological causes of gene tree variation, we estimate the 24	

extent of gene tree discordance driven by systematic error and employ posterior prediction to 25	

highlight the role of model fit.  We find that the amount of discordance among mitochondrial 26	

gene trees is similar to the amount of discordance found in other studies that assume only 27	

biological causes of variation. This similarity suggests that the role of systematic error in 28	

generating gene tree variation is underappreciated and that critical evaluation of the fit between 29	

assumed models and the data used for inference is important for the resolution of unresolved 30	

phylogenetic questions.  31	

 32	
 33	

Keywords –gene tree discordance, phylogenomics, posterior prediction, model adequacy  34	
  35	
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Large genomic datasets are increasingly being used for phylogenetic inference because 36	

they increase statistical power and reduce stochastic error, which can lead to greater phylogenetic 37	

resolution (Rokas et al. 2003; Gee 2003; Rokas and Carroll 2005). The use of these large datasets 38	

has highlighted the extensive topological variation that can be found across genes. For example, 39	

phylogenomic analysis of 1,070 genes from 23 yeast genomes resulted in 1,070 distinct gene 40	

trees (Salichos and Rokas 2013). This discordance is frequently viewed as the outcome of one of 41	

several biological sources of gene variation: incomplete coalescence, horizontal gene transfer, 42	

and gene duplication/loss events in the evolutionary history of genes (reviewed by Maddison 43	

1997; Nakhleh et al. 2013). Explicit modeling of these processes, when possible, can 44	

accommodate this variation during the inference of a species tree (Edwards 2009; Degnan and 45	

Rosenberg 2009; Boussau et al. 2013, Mirarab et al. 2014; Szöllosi et al. 2015, Edwards et al. 46	

2016). However, variation among gene trees can also be a consequence of systematic error that 47	

arises when the model used for estimating the gene tree fits the data poorly. The relative 48	

importance of biological versus methodological factors in explaining gene tree variation is a 49	

major unresolved question in phylogenetics.   50	

When the model fails to account for important features of the data, inferences and 51	

measures of confidence can be inaccurate (Huelsenbeck and Hillis 1993; Yang et al. 1994; 52	

Swofford et al. 2001; Huelsenbeck and Rannala 2004; Lemmon and Moriarty 2004; Brown and 53	

Lemmon 2007; Brown and Thomson 2017). Because the complexity of datasets grows with size, 54	

the potential for poor model fit to bias inferences also grows. Increasing dataset size may reduce 55	

stochastic error, but it can also exacerbate systematic error and lead to high confidence in 56	

erroneous phylogenies (Phillips et al. 2004; Delsuc et al. 2005; Jeffroy et al. 2006; Philippe et al. 57	

2011; Kumar et al. 2012). Several cases are now known where different genomic datasets 58	
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support conflicting phylogenetic hypotheses with very high statistical support (e.g. Dunn et al. 59	

2008; Philippe et al. 2009; Schierwater et al. 2009; Whelan et al. 2015), sometimes implying 60	

very different scenarios for the evolution of important traits (e.g., the origin of nervous systems). 61	

The relative roles of biological variation and systematic error in causing this conflict is not yet 62	

well understood. 63	

One challenge with evaluating the contributions of systematic error to gene tree 64	

discordance is that biased inferences are difficult to detect reliably given that the true 65	

evolutionary history among most taxa is unknown. However, we can greatly reduce the 66	

confounding effects of biological processes on our ability to identify systematic error by making 67	

use of the mitochondrial genome as a model system. The entire mitochondrial genome is 68	

expected to have the same evolutionary history because it is haploid and uniparentally inherited, 69	

so recombination does not typically occur. While recombination and biparental inheritance have 70	

been documented in animal mitochondrial genomes, these occurrences appear to be rare relative 71	

to the ubiquity of such events in nuclear genomes (reviewed in White et al. 2008). Therefore, 72	

analyses using individual mitochondrial genes should result in concordant gene trees. Conflict 73	

among topologies arising from different mitochondrial genes would therefore most easily be 74	

explained by systematic error during inference of gene trees. 75	

While biased inferences are often difficult to identify directly, several approaches have 76	

been proposed to detect poor fit between models and data (e.g. Goldman 1993; Huelsenbeck et 77	

al. 2001; Bollback 2002; Nielsen 2002; Foster 2004; Rodrique et al. 2009; Ripplinger and 78	

Sullivan 2010; Brown 2014; Reid et al. 2014; Slater and Pennell 2014; Doyle et al. 2015; 79	

Duchêne et al. 2015; Barley and Thomson 2016; Gruenstaeudl et al. 2016; Duchêne et al. 2017). 80	

When fit is poor, the potential exists for inferences to be biased. However, not all instances of 81	
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poor fit will result in erroneous phylogenetic estimates. Comparison of inferred gene trees and 82	

measures of model fit across tightly linked mitochondrial genes offers a unique opportunity to 83	

understand how the outcome of model fit tests relate to gene tree variation driven by systematic 84	

error. One natural approach to conducting such tests in a Bayesian framework is known as 85	

posterior prediction, wherein samples from a posterior distribution are drawn and used to 86	

simulate many replicated 'predictive' datasets. By comparing the predictive to the empirical 87	

datasets in various ways, the extent to which the model captures salient features of the data can 88	

be studied. 89	

Here we analyze mitochondrial genomes for a large set of tetrapod species to characterize 90	

the extent of gene tree discordance and, using posterior prediction, begin to explore how model 91	

fit may contribute to this discord. We find that the amount of discordance among mitochondrial 92	

gene trees is similar to the amount of discordance found in studies of nuclear gene tree variation 93	

where such discordance is assumed to result from biological factors. We were able to detect 94	

systematic error related to discordance among the gene trees in this study using posterior 95	

predictive assessments. However, more work is needed to determine specific causes of poor 96	

model fit and how these drive systematic error. 97	

 98	

METHODS 99	

Datasets 100	

We obtained all available (as of July 31st 2014) whole tetrapod mitochondrial genome 101	

sequences from GenBank, which we organized into six datasets comprising the major lineages 102	

within the clade: Crocodilians (n=20), Turtles (n=53), Squamates (n=120), Amphibians (n=157), 103	

Birds (n=253), and Mammals (n=575). We extracted all 13 protein-coding genes from each 104	
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mitochondrial genome based on GenBank genome annotations. Multiple sequence alignments 105	

were then constructed based on translated codons for each mitochondrial protein-coding gene in 106	

each dataset using the MUSCLE algorithm implemented in Geneious v 8 (Edgar 2004; Kearse et 107	

al. 2012).  108	

Initial phylogenetic analyses 109	

 For the initial phylogenetic analysis of each of the 78 gene alignments (i.e., 6 clades x 13 110	

genes), we selected a best-fitting substitution model according to the Akaike Information 111	

Criterion (Akaike 1974) corrected for small sample size (AICc) implemented in jModelTest v 112	

2.2 (Darriba et al. 2012). Details on the specific model chosen for each gene alignment and 113	

alignment lengths are provided in Table S1. We first obtained posterior distributions of trees and 114	

other parameters for each alignment using Markov chain Monte Carlo (MCMC) as implemented 115	

in MrBayes v 3.2.5, with the selected model and default prior settings (Ronquist et al. 2012). For 116	

each analysis, we used two independent runs (each with four Metropolis-coupled chains) and 117	

saved the state of the chains every 1000 generations. The MCMC was run until the postburn-in 118	

posterior distributions for each analysis contained 10,000 converged samples. We checked for 119	

convergence of the continuous parameters using Tracer v 1.6 (Rambaut et al. 2014) and 120	

considered a run converged when traces for all parameters appeared to be sampling from a 121	

stationary distribution and had ESS values above 1000. We assessed convergence of the tree 122	

topology using the R package rWTYv 0.1 (Warren et al. 2017). Runs were considered converged 123	

when the bipartition posterior probabilities in the MCMC chain reached a stationary frequency in 124	

the cumulative plots and showed strong correlations (Pearson’s r > 0.9) across runs. 125	

Characterization of gene tree heterogeneity  126	
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 To characterize the extent of gene tree heterogeneity among the thirteen genes for a given 127	

clade, we calculated three different types of summary trees (majority-rule consensus tree, 95% 128	

consensus tree, and maximum clade credibility tree) from the posterior distribution for each gene 129	

and then calculated the number of incompatible splits among these gene tree estimates. We then 130	

calculated the number of incompatible splits between each pair of gene trees for a given clade 131	

(Doyle et al. 2015; available from https://github.com/vinsondoyle/treeProcessing). This measure 132	

is related to the more widely used Robinson-Fould (RF) distance (Robinson and Foulds 1981), 133	

but focuses on incompatibilities rather than bipartitions that are present in one tree but not the 134	

other. The practical effect of this change is that polytomies do not contribute to the distance. 135	

Because we are primarily interested in identifying strongly supported differences among gene 136	

trees, this was a useful property for our study. The distributions of pairwise tree-to-tree distances 137	

among genes were then visualized with violin plots using the R package ggplot2 v2.1.0 138	

(Wickham 2009). Since we were interested in distinguishing differences among gene trees that 139	

were strongly supported (and are more likely to be driven by systematic error) from those that 140	

had little statistical support (and may simply arise from stochastic error), we focused on 141	

discordance between 95% consensus trees (calculated using Dendropy v 4.0.3; Sukumaran and 142	

Holder 2010) for the rest of the analyses in this study. 143	

We also visually assessed gene tree heterogeneity by looking for non-overlapping sets of 144	

topologies among the thirteen genes in a low-dimensional projection of tree space created with 145	

non-linear dimensionality reduction (NLDR) using Treescaper v 1.0.0 (Huang et al. 2016; 146	

Wilgenbusch et al. 2017). Two-dimensional projections were created for each clade based on 147	

pairwise RF tree-to-tree distances of 3,250 trees taken from the posterior distributions of all 148	
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genes (250 trees per gene) using the curvilinear component analysis (CCA) and stochastic 149	

gradient decent (SGD) optimization recommended in Wilgenbusch et al. (2017).  150	

Model performance assessment 151	

We assessed the absolute fit of the selected models to their respective gene alignments by 152	

performing posterior predictive assessments with both data- and inference-based test statistics. 153	

Data-based test statistics measure some characteristic of the data itself (e.g., the frequency 154	

distribution of site patterns in the alignment or variation in base composition across taxa; 155	

Goldman 1993, Huelsenbeck et al. 2001) and inference-based test statistics measure some 156	

characteristic of the resulting inference (e.g., width of the posterior distribution of trees; Brown 157	

2014). A list of the test-statistics used in this study and brief descriptions of what they measure 158	

are provided in Table 1.  159	

For the data-based assessments, posterior predictive simulation of datasets for each gene 160	

was performed using PuMA v0.909 (Brown and ElDabaje 2009) and SeqGen v1.3.2 (Rambaut 161	

and Grassly 1997) with 1000 parameter values and trees drawn uniformly from postburn-in 162	

MCMC samples. The data-based test statistics require that missing data be excluded from the 163	

alignments, so we removed missing data from sequences prior to simulation using PAUP* 164	

v4.0b10 (Swofford 2003).  Using each set of 1,000 posterior predictive datasets and the 165	

corresponding empirical dataset, we conducted two data-based assessments of model 166	

performance to characterize the ability of the model to replicate features of the empirical dataset. 167	

The multinomial likelihood test statistic (Goldman 1993; Bollback 2002; Table 1) was calculated 168	

using PuMA (Brown and ElDabaje 2009) and the χ2 statistic (Table 1) was calculated using the 169	

P4 python phylogenetics package (Foster 2004). 170	
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For the inference-based assessments, we repeated the posterior predictive simulation of 171	

datasets for each gene alignment including missing data, with 100 parameter values and trees 172	

drawn uniformly from post-burnin MCMC samples. Only 100 posterior predictive datasets were 173	

used for these tests due to the much higher computational demands involved in the inference-174	

based assessments. For each posterior predictive dataset, we obtained a posterior distribution of 175	

trees and other parameters using MrBayes v 3.2.5 (Ronquist et al. 2012) with the model and 176	

priors assumed during analysis of the empirical data. To assess convergence, we chose five 177	

replicates at random from each gene and performed the same convergence analysis used in the 178	

initial phylogenetic analyses. When all five replicates met the convergence criteria described 179	

above, the remaining 95 predictive phylogenetic analyses were considered to have converged if 180	

the average standard deviation of split frequencies also fell below 0.01. All inference-based test 181	

statistics that were proposed in Brown (2014) were calculated in this study (Table 1) using AMP 182	

(Brown 2014, available from https://www.github.com/jembrown/amp) on a random sample of 183	

10,000 topologies from the post-burnin posterior distribution generated for a given posterior 184	

predictive dataset. After test statistic values were calculated, we quantified the position of the 185	

empirical value relative to the posterior predictive distribution for each test using effect sizes 186	

(Doyle et al., 2015). Effect sizes for each test statistic were calculated as the absolute value of the 187	

difference between the empirical and the median posterior predictive value divided by the 188	

standard deviation of the posterior predictive distribution. These effect sizes are hereafter 189	

referred to as posterior predictive effect sizes (PPES).  190	

Correlation among measures of model performance 191	

For each dataset, we ranked genes according to the model performance results and then 192	

tested for correlations among the rankings. This allowed us to assess whether the test statistics 193	
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generally agreed on model performance for each gene. To do so, we calculated the rank for each 194	

gene for each test statistic based on PPES and then calculated pairwise Spearman’s rank 195	

correlation coefficients between test statistics using the R package ‘stats’ v3.2.2 (R Core Team 196	

2015). For all pairwise combinations, we then selected one of the pair of test statistics at random 197	

and randomly shuffled its ranking of genes, recalculating the correlation coefficient. We repeated 198	

this procedure 1,000 times in order to create a null distribution of correlation coefficients and 199	

assess the significance of the observed correlation. Correlations among test statistics were 200	

considered significant if less than 5% of the coefficients from the randomized rankings were 201	

greater than or equal to the correlation coefficient from the observed rankings. 202	

The Relationship Between Model Fit and Gene Tree Variation 203	

 As a rough measure of accuracy in the gene tree estimates, we were interested in 204	

quantifying how different the gene trees for each clade were from widely accepted estimates of 205	

phylogeny from the literature, as well as how this might relate to measures of model 206	

performance. To do so, we selected a 'reference tree' from the literature for each clade that we 207	

could use as the current best estimate for that clade (Crocodilians: Oaks et al. 2011; Turtles: 208	

Thomson and Shaffer 2009; Squamates: Wiens et al. 2012; Amphibians: Pyron et al. 2011; 209	

Birds: Prum et al. 2015; Mammals: Meredith et al. 2011). Each reference tree was selected based 210	

on the availability of its posterior distributions/summary trees for analysis and similarity in taxa 211	

to those used in this study. Because we are primarily interested in strongly supported differences, 212	

we calculated the number of incompatibilities between the 95% consensus tree for each gene to 213	

the reference tree, trimming taxa as necessary so that taxon sampling matched between the two 214	

trees. We then carried out linear regression between the tree distance and the PPES for each gene 215	

and model performance test.  216	
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 217	

RESULTS 218	

Agreement among gene trees from initial phylogenetic analyses 219	

 Extensive gene tree heterogeneity was present across all datasets (Fig 1). Across all 220	

datasets and consensus methods, the number of incompatibilities between genes was much 221	

greater than 0, with the exception of the Crocodilian dataset, where most genes had identical 222	

95% consensus gene trees. The amount of disagreement varied across the types of summary tree 223	

in a way that would be expected. Maximum clade credibility trees are the most highly resolved 224	

of the summary trees, but can contain many weakly supported nodes. Thus, stochastic error in 225	

the tree estimate will increase tree-to-tree distances relative to other types of summary trees. 226	

Conversely, the 95% consensus contains fewer nodes, although all have strong support, leading 227	

to comparatively smaller tree-to-tree distances. In this latter case, the tree-to-tree distance is 228	

more likely to highlight differences that can only be explained by systematic error. Among the 229	

95% consensus trees, tree-to-tree distances were also substantially greater than zero, indicating 230	

the presence of strongly supported yet conflicting topologies among genes. In the Crocodilian 231	

dataset containing 20 species, the majority of gene trees were well resolved and largely 232	

congruent. The conflicts among the Crocodilian gene trees occurred only among species-level 233	

relationships at the tips of the phylogenies. Gene trees for the larger datasets were less well 234	

resolved, and conflicts among gene trees in the resolution of deeper relationships were more 235	

frequent.  236	

We find similar patterns of gene tree heterogeneity in our low-dimensional projections of 237	

tree space across genes for each dataset (Fig 2). In all datasets except Crocodilians, we observe 238	

thirteen distinct clusters of trees sampled from the posterior distributions of different genes. 239	
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Some of these clusters are clearly separated from other clusters (e.g. the cluster representing 240	

ND5 gene trees in the Turtle dataset), suggesting strong incongruence with other sets of gene 241	

trees. 242	

 This unanticipated level of gene tree heterogeneity across tightly linked mitochondrial 243	

genes is qualitatively similar to that found in other studies of nuclear gene tree heterogeneity 244	

(Table 2). Some of these studies (e.g. Salichos and Rokas 2013) state the observed heterogeneity 245	

could have been caused by either biological or methodological sources, and that it is nearly 246	

impossible to determine their relative contributions. Other studies (e.g. Song et al. 2012; Zhong 247	

et al. 2013; Pease et al. 2016) attribute the heterogeneity to biological factors, mainly incomplete 248	

lineage sorting, and either rule out or do not consider systematic bias as a contributing factor. 249	

Most of the above-mentioned studies characterized the extent of gene tree heterogeneity by 250	

calculating pairwise Robinson-Foulds distances among majority rule consensus trees of each 251	

locus in their dataset. We also find high levels of gene tree discordance in our mitochondrial 252	

datasets when we use similar methods for characterizing gene tree heterogeneity (Table 2), 253	

indicating that systematic bias can cause similarly extensive amounts of gene tree variation that 254	

are typically attributed to biological sources of variation. 255	

 256	
 257	

Model Performance Assessments 258	
 259	

 The posterior predictive effect sizes resulting from the 12 model performance tests varied 260	

across genes and datasets, ranging from 0 to 1.12x1012 (Table 3, S2-S7). This wide range is 261	

heavily influenced by entropy, one of the inference-based test statistics, which exhibited little to 262	

no variance between posterior predictive simulations, such that small differences between the 263	

empirical and median of the posterior predictive distributions lead to extremely large PPES 264	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2017. ; https://doi.org/10.1101/171413doi: bioRxiv preprint 

https://doi.org/10.1101/171413
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

values for some genes in all but the Crocodilians dataset. This behavior of the test statistic stems 265	

from sensitivity to dataset size and the complexity of sampling very large tree spaces, where the 266	

coarseness of MCMC sampling makes it improbable to sample any individual topology more 267	

than once. In conventional phylogenetic analyses, where node probabilities are of primary 268	

interest, this issue is solved simply by summing up how frequently different bipartitions are 269	

sampled, rather than whole topologies. However, it becomes problematic when focusing on the 270	

frequencies of unique topologies, as we do here with the entropy test statistic. While large PPES 271	

for entropy might be meaningful for smaller datasets, it is not clear that they represent extremely 272	

poor fit between the model and the data for many of the large trees sampled here, where almost 273	

every topology sampled in the posterior is unique.	 274	

When entropy was excluded, data-based test statistics appeared to reject model fit among 275	

genes more strongly than inference-based test statistics across all six datasets, with larger PPES 276	

on average (Table 4). This result makes sense, since poor model fit must manifest itself at the 277	

level of the data in order for inferences to be affected, but not all model deficiencies noticeable in 278	

the data will affect inference. PPES ranged from 0.002 to 110.78, indicating a large range of 279	

model fit to the empirical data. The range of PPES for inference-based test statistics was smaller 280	

than for data-based test statistics and this range varied across datasets (Table 4). For 281	

Crocodilians, PPES across inference-based test statistics were typically small, ranging from 0 to 282	

3.16 (Table 4 and S2), suggesting that the selected models appear to fit the Crocodilian gene 283	

alignments better than for the other datasets, although this may be due to differences in power of 284	

the test statistics to detect poor model performance across datasets of different sizes. For Turtles, 285	

PPES ranged from 0 to 14.25 (Table 4 and Table S3), indicating a mixture of model fit. Similar 286	
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patterns of a mixture of model fit across genes were also found for the larger datasets of 287	

Squamates, Amphibians, Birds, and Mammals (Table 4, S4-7). 288	

 289	

Correlation Among Measures of Model Performance 290	

 Across all datasets, gene rankings were significantly correlated among the quantile-based 291	

test statistics that compare the support and similarity of trees across the empirical and predicted 292	

posterior distributions (Fig 3). Within the Crocodilian and Squamate datasets, the gene rankings 293	

for the mean and variance of tree length were significantly correlated with each other. Within the 294	

Crocodilian dataset, gene rankings based on entropy were correlated with gene rankings among 295	

the quantile-based test statistics. We observed a few other correlations, although these were 296	

largely weak and idiosyncratic among datasets (Fig 3). 297	

 298	

The Relationship Between Model Fit and Gene Tree Variation 299	

 The amount of strongly supported conflict between gene trees and reference trees varied 300	

across datasets and was low overall for Crocodilians and Birds and somewhat higher in the other 301	

clades (Table 5). There was no simple overall relationship between tree distance and PPES (Fig 302	

4, Table S8). Although genes did vary in their PPES, increasing PPES did not necessarily 303	

correspond to decreasing congruence between gene trees and reference trees across all datasets. 304	

However, we did observe some significant positive correlations between PPES and incongruence 305	

with the reference tree (e.g. for the 999-1,000th and 9999-10,000th quantile-based test statistic in 306	

the Turtle dataset; Figure 4). We also observed some significant negative correlations in the 307	

same test statistics for the Crocodilian and Bird datasets. The negative relationships in these 308	

datasets may have to do with the combined effects of (1) a lack of strong disagreement among 309	
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the gene trees and the reference tree (Table 5) and (2) an interaction between the power of a test 310	

statistic to detect poor model performance with the power of a gene to precisely estimate the 311	

phylogeny (i.e., the shortest genes often have the smallest PPES as well as the fewest 312	

incompatibilities with the reference tree due to lack of information rather than poor fit of the 313	

model).  314	

 While the relationship between poor model fit and topological conflict between the gene 315	

trees and reference tree appears to be complex, we do find several cases where these methods 316	

clearly identified systematic bias or other issues in the data. While inspecting PPES results, we 317	

noted two cases where a single gene was a large outlier for one or more model performance tests 318	

relative to all genes (Fig 5). In both cases the PPES outlier was correctly signaling an issue in the 319	

analysis. Specifically, phylogenetic analysis of cytochrome-B (CYTB) in the Squamate dataset 320	

inadvertently included a misaligned region that affected four sequences. This misalignment 321	

increased the tree length mean and variance PPES for this gene, which were consequently much 322	

larger than these values for all other genes in the dataset (Fig 5A). The error also drove a 323	

spurious phylogenetic result that united a worm lizard with several blindsnakes as a (clearly 324	

erroneous) clade. Once we corrected the misalignment, the tree length mean and variance PPES 325	

for CYTB were drastically reduced and the position of these taxa in the gene tree returned to 326	

their more commonly accepted positions.  327	

 The quantile-based test statistics that measure the spread of the distribution of trees 328	

within the posterior distribution also detected clear systematic error in the inference of the Turtle 329	

ND5 gene tree. The ND5 PPES for the 99-100th, 999-1000th, and 9999-10000th quantiles were 330	

at least twice as large as any other gene (Fig 5B). The gene tree for ND5 supports a 331	

fundamentally different backbone of family-level relationships among turtles and contains a 332	
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large number of topological conflicts with the reference tree in comparison to the rest of the gene 333	

trees in the Turtle dataset (Table 5). Because the backbone relationships of turtles are well 334	

established (Thomson and Shaffer 2010; Barley et al. 2010; Crawford et al. 2015, Shaffer et al. 335	

2017), we are confident that the ND5 gene tree is being influenced by systematic error. 336	

Supporting this, there was a significant positive correlation between the number of 337	

incompatibilities and model performance based on the quantile-based test statistics for this 338	

dataset (Fig 4, Table S8). 339	

 340	

DISCUSSION 341	

 Our analysis highlights several issues that should influence methodological choices for 342	

researchers moving forward. Most significantly, we find that the amount of gene tree variation in 343	

empirical data can be large, irrespective of whether biological sources of gene tree variation (i.e 344	

incomplete lineage sorting) are expected to play a significant role. The gene tree heterogeneity 345	

observed in this study is qualitatively similar to other studies that attribute the variation solely to 346	

biological processes. This similarity suggests that the observation of variation among gene trees 347	

in empirical data should not necessarily be ascribed to biological sources by default and 348	

researchers should take care to check for more prosaic explanations of gene tree variation in their 349	

data (i.e. poor model fit driving systematic error) before applying a hierarchical model of gene 350	

tree variation (and assuming it can adequately account for this variation). 'Species tree' 351	

approaches to analyzing multilocus alignments typically assume that the only source of 352	

discordance is biological (i.e. coalescent stochasticity). Other factors, such as discordance caused 353	

by poor model fit at the DNA sequence level, can contribute to gene tree heterogeneity and 354	

mislead these approaches (e.g. see Scornavacca et al. 2017 for an example where incomplete 355	
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lineage sorting is only a minor cause of observed phylogenetic discordance in placental 356	

mammals). With increasing application of genomic data and the strong statistical power it 357	

provides for phylogenetic inference, it is important that researchers take into account both 358	

methodological and biological sources of gene tree conflict in the effort to produce accurate, 359	

highly supported trees.  360	

 The combination of pervasive gene tree variation coupled with the substantial evidence 361	

for systematic error suggests that, even in genomes that have been characterized and analyzed 362	

extensively (such as the mitochondrial genome), phylogenetic analyses still have the potential to 363	

be substantially mislead. In larger datasets, such as those that sample hundreds or thousands of 364	

less well characterized loci from the nuclear genome, this potential grows further. The utility of 365	

the mitochondrion for this study is that we have a strong a priori expectation that gene trees will 366	

be concordant in the absence of poor model fit. This expectation does not hold for larger nuclear 367	

datasets, so detecting these issues is consequently both more difficult and more critical. We 368	

attempted to use variation in model fit to sort genes into those that are more or less reliable, but 369	

found that this relationship was too complex relative to the small number of genes in the 370	

mitochondrial genome to allow for such coarse characterization. Nevertheless, this approach 371	

does appear to be fruitful when more loci are available (Doyle et al. 2015). 372	

 Model fit tests employing posterior predictive simulation, and related approaches, have 373	

the potential to fill an important gap in phylogenetic methodology by assessing a model’s fit to a 374	

given dataset. Model fit testing in a posterior predictive framework allows a great deal of 375	

flexibility to focus on different aspects of a model and their influence on inferences. In this 376	

study, we conducted a suite of model performance tests to explore possible sources of systematic 377	

error that may be driving extensive gene tree variation. Across several datasets, we were able to 378	
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detect the presence of systematic error with some of the test statistics, particularly the upper 379	

quantile-based test statistics. However, the relationship between model performance and tree-to-380	

tree distances appears to be more complex than a simple linear correlation.  381	

This complex relationship may stem from poor performance across all genes, leading to 382	

consistent or very subtlety different levels of error across gene trees and difficulty in detecting a 383	

relationship with gene tree congruence.	Alternatively, poor model performance in some genes 384	

may result in many subtle errors in estimated support for relationships in the posterior 385	

distribution that lead to large PPES values from the predictive datasets, but not result in any one 386	

part of the tree strongly conflicting with the reference (e.g. discordance among nodes deeper in 387	

the tree that cause larger tree-to-tree distances). It is also possible that the true mitochondrial 388	

history in some of these datasets, especially those that have undergone rapid radiation, may be 389	

different than the true species history.  390	

The specific causes of poor model fit, and their role in producing systematic error, were 391	

difficult to determine with the model performance tests used here. The implementation of more 392	

site-specific and branch-specific test statistics in the posterior predictive framework could help 393	

pinpoint the specific causes of poor model fit and the regions of the tree that are most directly 394	

affected. Our difficulty with determining the sources of systematic error in this study may also 395	

stem from issues with the power of these tests to detect poor performance, as they might 396	

represent conservative measures of poor model performance (Bollback 2005, Ripplinger and 397	

Sullivan 2010, Brown 2014). The power of posterior predictive tests to detect poor model 398	

performance in a gene and the power of the gene to precisely estimate the phylogeny are 399	

probably correlated. Precise characterization of this relationship will require simulation studies 400	

beyond the scope of this paper. 401	
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 402	

CONCLUSIONS 403	

 Gene tree heterogeneity in multilocus studies is often assumed to stem from biological 404	

processes, such as incomplete lineage sorting or horizontal transfer, and several methods have 405	

been developed to model these types of variation. We demonstrate that systematic error can be as 406	

significant a source of variation among gene trees as biological sources, although it is not 407	

currently standard practice to check for this. The posterior predictive framework for model 408	

performance assessment has the potential to fill this important gap in current phylogenetic 409	

methodology and provides researchers with a great deal of flexibility in testing different aspects 410	

of model fit. With increasing application of genomic data and the strong statistical power it 411	

provides for phylogenetic inference, it is important that researchers better take into account the 412	

methodological sources of gene tree conflict alongside the biological in the effort to produce 413	

accurate, highly supported trees.  414	
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 599	

 600	

Figure 1. The total number of pairwise incompatibilities among all gene trees for the six datasets. 601	

Distances are shown between maximum clade credibility (MCC) trees, majority-rule consensus 602	

trees (MRC) and 95% consensus (95C) trees. The circle represents the mean number of 603	

incompatibilities and the black bars around it represent one standard deviation around the mean. 604	

The width of the violin plot indicates the density of gene trees with a particular tree-to-tree 605	

distance to another gene tree in the dataset. There is extensive variation in topology among gene 606	

trees in each clade and across summary tree types, with the exception of some 95% consensus 607	

gene trees in the Crocodilian, Turtles, and Squamates datasets.   608	

 609	

Figure 2. Two-dimensional NLDR representations of treespace for thirteen mitochondrial genes  610	

based on RF distances between trees. Each point represents a tree taken from the  611	

posterior distribution of a given gene. 612	

 613	

Figure 3. Heatmap of the Spearman’s rank correlation coefficient between gene rankings among 614	

model performance tests based on posterior predictive effect sizes. Model performance tests 615	

include multinomial likelihood (ML), composition heterogeneity (X2), tree length mean (TLM), 616	

tree length variance (TLV), statistical entropy (E), interquartile range (IQR), first quartile (First), 617	

median, third quartile (Third), 99th percentile (Q99), 999th-1000 quantile (Q999), 9999-10000th 618	

quantile (Q9999) of tree to tree distances in posterior distributions. Stars indicate correlations 619	

that are significant at a significance threshold of 0.05 (*), 0.01 (**), and 0.001(***).  620	

 621	
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Figure 4. Relationship between PPES and the number of incompatibilities between 95% 622	

consensus gene tree and reference tree based on linear regression. Correlations with significantly 623	

positive or negative slopes are represented by (+*) and (-*) respectively. The values of the slope 624	

and 95% confidence intervals are provided in Supplementary Table 11.  625	

 626	

Figure 5. The PPES for each gene from a subset of model performance tests that highlight issues 627	

in the analysis. A) In the Squamate dataset, the PPES (before the misalignment was corrected) 628	

associated with the tree length mean and variance test for the CYTB alignment are much larger 629	

than for the other genes. B) In the Turtle dataset, the PPES associated with the quantile-based 630	

model performance tests of the ND5 alignment are twice as large as the PPES for ND3, the gene 631	

with the next largest PPES. Model performance tests shown here are the multinomial likelihood 632	

(ML), tree length mean (TLM), tree length variance (TLV), 99th percentile (Q99), 999th-1,000 633	

quantile (Q999), 9999-10,000th quantile (Q9999) of tree-to-tree distances in posterior 634	

distributions.  635	

 636	

 637	

 638	

 639	

 640	
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Fig 3.  663	
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Fig 4.  666	
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Fig 5. 668	
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Table 1. Descriptions of the model performance test statistics employed in this study. The type of 684	

test statistic refers to whether they are values based on the data themselves or the resulting 685	

inferences.  686	

Test Statistics Type Description Source 
Multinomial 
likelihood Data 

Related to the frequency of site patterns in an 
alignment  

(Goldman 1993; 
Bollback 2002) 

X2 Data Captures variation in nucleotide frequencies  

(Huelsenbeck et 
al. 2001; Foster 
2004) 

Tree length 
mean  Inference The mean of marginal distributions of tree length  (Brown 2014) 
Tree length  
variance Inference The variance of marginal distributions of tree length  (Brown 2014) 

Entropy Inference 
The unevenness of support in the posterior distribution 
of trees  (Brown 2014) 

Quantile-based 
test statistics Inference 

The overall similarity in the posterior distributions of 
trees based on the dispersion of trees in the posterior. 
Can be assessed at different positions along the 
distribution (see below).   (Brown 2014) 

Inter-quartile 
Range Inference The interquartile range of tree-to-tree distances  (Brown 2014) 
First quartile Inference The first quartile of tree-to-tree distances  (Brown 2014) 
Median Inference The median of tree-to-tree distances  (Brown 2014) 
Third quartile Inference The third quartile tree-to-tree distances   (Brown 2014) 
99th percentile Inference The 99th percentile of tree-to-tree distances  (Brown 2014) 
999th  quantile Inference The 999-1,000th quantile of tree-to-tree distances  (Brown 2014) 
9,999th quantile Inference The 9999-10,000th quantile of tree-to-tree distances  (Brown 2014) 
 687	

 688	
 689	
 690	
 691	
 692	
 693	
 694	
 695	
 696	
 697	
 698	
 699	
 700	
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Table 2. Gene tree variation found in this study compared to several other studies that focused on 701	

gene tree heterogeneity using multiple nuclear loci. 702	

Dataset Taxa Genes 
Distinct 
Trees 

Percent of possible 
trees found Source 

Crocodilians 20 13 12 92 This study 
Turtles 53 13 13 100 This study 

Squamates 120 13 13 100 This study 
Amphibians 157 13 13 100 This study 

Birds 253 13 13 100 This study 
Mammals 575 13 13 100 This study 

Yeast 23 1070 1070 100 Salichos and Rokas 2013 
Vertebrates 18 1086 299 28 Salichos and Rokas 2013 
Metazoans 21 225 224 99.5 Salichos and Rokas 2013 

Eutherian Mammals 37 447 440 98.3 Song et al. 2012 
Land Plants 32 184 182 98.9 Zhong et al. 2013 
Tomatoes 29 2745 2743 99.9 Pease et al. 2016 

 703	
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Table 3. The distribution of posterior predictive effect sizes (PPES) for each of the 12 model 714	

performance test statistics used in this study (Table 1) summarized across all six datasets.  715	

Test Statistic Mean  St. Dev. Median  Min Max 
Multinomial likelihood 1.65 1.64 1.42  0.002 11.4 

X2 19.61 23.48 11.7  0.04 110.68 
Tree length mean 1.91 1.85 1.35  0.026 8.21 

Tree length variance 5.45 6.52 3.45  0.33 32.76 
Entropy 6.61x1010 2.48x1011 0.96  0 1.12x1012 

Interquartile range 4.82 3.41 4.31  0 16.24 
1st  quartile 4.77 3.02 4.9  0 11.73 

Median 4.95 3.16 5.19  0 12.28 
3rd quartile 5.19 3.09 5.37  0 12.65 

99th  quantile 5.58 3.29 5.93  0 13.44 
999th quantile 5.73 3.36 6.12  0 13.82 
9999th quantile 5.79 3.35 6.27  0 13.89 

 716	

 717	

 718	

 719	

 720	

 721	
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 723	
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Table 4. The distribution of posterior predictive effect sizes (PPES) for each dataset across 11 of 728	

the 12 test statistics. Entropy was removed from the pool of test statistics summarized in this 729	

table because of the extreme outlier PPES of this test statistic across the majority of the datasets 730	

(see text). The PPES for entropy test statistic are provided in Supplementary Tables 4-9.  731	

 
Data-based test statistics  Inference-based test statistics 

Dataset Mean St. Dev. Median Min Max  Mean St. Dev. Median Min Max 
Crocs 4.15 4.57 1.58 0.16 13.92  1.05 0.78 1.03 0 3.16 
Turtles 3.48 4.02 1.78 0.04 15.08  2.21 2.04 1.97 0 14.25 

Squamates 12.29 14.77 3.05 0.002 49.1  6.15 3.04 6.14 0.21 28.54 
Amphibians 27.82 36.06 5.58 0.09 110.68  5.99 2.37 5.67 1.47 18.08 

Birds 5.29 6.17 1.86 0.09 21.46  5.19 2.37 5.47 0.07 10.81 
Mammals 10.77 13.39 8.63 0.13 45.89  8.63 3.99 9.62 0.87 16.24 

 732	
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Table 5. The percentage of bipartitions agreed upon by gene trees and reference trees for each 749	

clade. The number of taxa in each dataset after trimming is provided in parentheses. The 750	

percentage of bipartitions agreed upon was calculated the number of compatible nodes divided 751	

by the total number of nodes in the tree. 752	

Gene Crocs (20) Turtles (49) Squamates (35) Amphibians (28) Birds (33) Mammals (104) 

ATP6 95 88 77 96 97 88 
ATP8 95 98 94 96 97 99 
COX1 95 98 83 86 100 93 
COX2 85 98 94 86 94 94 
COX3 95 92 89 93 97 91 
CYTB 90 92 97 100 100 83 
ND1 95 98 94 100 97 87 
ND2 90 100 80 89 97 90 
ND3 95 96 97 96 97 96 
ND4 90 90 94 96 100 89 

ND4L 95 84 100 96 100 98 
ND5 90 67 86 89 97 74 

ND6 95 96 97 93 100 90 
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