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ABSTRACT 

Mechanisms regulating mammalian meiotic progression are poorly understood. Here we 

identify mouse YTHDC2 as a critical component of this regulation. A screen yielded a mutant, 

“ketu”, with male and female sterility caused by a Ythdc2 missense mutation. Mutant germ cells 

enter meiosis but proceed prematurely to aberrant metaphase and apoptosis. ketu phenocopies 

mutants lacking MEIOC, a YTHDC2 partner. YTHDC2 is cytoplasmic and a YTH domain 

solution structure reveals conservation of a hydrophobic N6-methyladenosine recognition 

pocket, consistent with roles in post-transcriptional regulation. Orthologs are present throughout 

metazoans, but are structurally diverged in nematodes and, more dramatically, in Drosophilidae, 

where Bgcn is a biochemically distinct descendant of a Ythdc2 gene duplication. We also 

uncover similarity between MEIOC and Bam, a Bgcn partner unique to schizophoran flies. We 

propose that regulation of gene expression by the YTHDC2-MEIOC complex is an evolutionarily 

ancient strategy for controlling the germline transition from mitosis to meiosis. 
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INTRODUCTION 

Sexual reproduction requires formation of gametes with half the genome complement of 

the parent organism. The specialized cell division of meiosis achieves this genome reduction by 

appending two rounds of chromosome segregation to one round of DNA replication (Page and 

Hawley, 2003). Homologous maternal and paternal chromosomes segregate in the first meiotic 5 

division, then sister centromeres separate in the second. Prior to the first division, homologous 

chromosomes pair and recombine to form temporary connections that stabilize the 

chromosomes on the metaphase I spindle (Page and Hawley, 2003; Hunter, 2007). Errors in 

these processes can cause gametogenic failure and infertility, or yield aneuploid gametes that in 

turn lead to miscarriage or birth defects in offspring (Hassold and Hunt, 2001; Sasaki et al., 10 

2010).  

In well-studied metazoan species, meiosis occurs specifically in a dedicated germ cell 

lineage after a period of limited expansion via mitotic “transit-amplifying” cell divisions (de Rooij, 

2001; Davies and Fuller, 2008). The coordination of germline stem cell divisions with entry into 

meiosis and the subsequent progression of cells through meiotic divisions are tightly regulated 15 

(e.g., Griswold, 2016), but mechanisms underlying this regulation are not fully understood, 

particularly in mammals. And, more generally, the catalog of mammalian genes required for 

germ cell development, meiosis, and gametogenesis remains incomplete. In efforts to overcome 

this lack, we carried out a phenotype-based, random chemical mutagenesis screen to identify 

novel mouse meiotic mutants. One hit was a male-sterile mutant we named rahu, for 20 

“recombination-affected with hypogonadism from under-populated testes (Jain et al., 2017). 

This mutant is defective for the function of a rodent-specific DNA methyltransferase paralog, 

DNMT3C. Here, we describe a new mutant that we named ketu. Ketu is the partner of Rahu in 

Vedic mythology.  

ketu is a missense mutation in Ythdc2 (YTH-domain containing 2), which encodes a 25 

putative RNA helicase with a YT521-B homology (YTH) RNA-binding domain (Stoilov et al., 

2002; Morohashi et al., 2011). Ythdc2ketu homozygotes are both male- and female-sterile. In the 

testis, mutant germ cells carry out an abortive attempt at meiosis: they express hallmark meiotic 

proteins and initiate recombination, but fail to fully extinguish the spermatogonial mitotic division 

program, proceed prematurely to an aberrant metaphase-like state, and undergo apoptosis. 30 

This phenotype is similar to mutants lacking MEIOC, a meiosis-specific protein that was recently 

shown to be a binding partner of YTHDC2 and that has been proposed to regulate male and 

female meiosis by controlling the stability of various mRNAs (Abby et al., 2016; Soh et al., 

2017). Our results thus reveal an essential role for YTHDC2 in the germlines of male and 
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female mice and show that YTHDC2 is an indispensable functional partner of MEIOC. 

Furthermore, phylogenetic studies demonstrate that the YTHDC2-MEIOC complex is an 

evolutionarily ancient factor, present in the last common ancestor (LCA) of Metazoa. 

Nevertheless, despite high conservation in most metazoans, we uncover unexpectedly complex 

evolutionary patterns for YTHDC2 and MEIOC family members in specific lineages, particularly 5 

nematodes and the Schizophora section of flies, which includes Drosophila melanogaster. 

 

 

RESULTS 

Isolation of the novel meiotic mutant ketu from a forward genetic screen 10 

To discover new meiotic genes, we carried out a phenotype-based, random 

mutagenesis screen in mice (Jain et al., 2017). Mutagenesis was performed by treatment of 

male mice of the C57BL/6J strain (B6 hereafter) with the alkylating agent N-ethyl-N-nitrosourea 

(ENU). ENU introduces de novo mutations in the germline, predominantly single base 

substitutions (Hitotsumachi et al., 1985; Caspary and Anderson, 2006; Probst and Justice, 15 

2010). To uncover recessive mutations causing defects in male meiosis, we followed a three-

generation breeding scheme including outcrossing with females of the FVB/NJ strain (FVB 

hereafter) (Caspary and Anderson, 2006; Caspary, 2010; Jain et al., 2017) (Figure 1A).  

Third-generation (G3) male offspring were screened for meiotic defects by 

immunostaining squash preparations of testis cells for SYCP3, a component of chromosome 20 

axes (Lammers et al., 1994; Zickler and Kleckner, 2015), and for γH2AX, a phosphorylated form 

of the histone variant H2AX that is generated in response to meiotic DNA double-strand breaks 

(Mahadevaiah et al., 2001) (Figure 1B). In normal meiosis, SYCP3-positive axial elements 

begin to form during the leptotene stage of meiotic prophase I; these elongate and begin to align 

with homologous chromosome axes to form the tripartite synaptonemal complex in the zygotene 25 

stage; the synaptonemal complex connects homologous chromosomes along their lengths in 

the pachytene stage; and then the synaptonemal complex begins to disassemble during the 

diplotene stage (Figure 1B). Double-strand break formation occurs principally during leptonema 

and zygonema, yielding strong γH2AX staining across nuclei, but this staining diminishes as 

recombination proceeds (Figure 1B). Recombination-independent γH2AX also appears in the 30 

sex body, a heterochromatic domain that encompasses the X and Y chromosomes and that is 

particularly evident in pachytene and diplotene cells (Figure 1B). 
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In an F1 founder line we named ketu, 5 of 26 G3 males screened (Figure 1C) contained 

SYCP3-positive spermatocytes displaying extreme meiotic defects, with no cells resembling 

normal meiotic prophase I stages (Figure 1B,D). For quantification, we divided mutant 

spermatocytes into classes on the basis of SYCP3 patterns (Figure 1B). Type I cells displayed 

few or none of the normal dots or lines of SYCP3 staining typical of early stages of axial 5 

element formation in leptonema; this was the most abundant class, accounting for 74 to 88% of 

cells (Figure 1D). Type II cells displayed prominent dots or short lines of SYCP3; these 

accounted for 12 to 25% of cells (Figure 1D). Type III cells had numerous longer lines of 

SYCP3, consistent with more advanced axial element formation; these were rare in the younger 

animals screened (<0.6%) but accumulated to slightly higher levels (3%) in the older G3 animal 10 

screened (Figure 1B,D). All three cell types had prominent aggregates of SYCP3 and pan-

nuclear γH2AX staining (Figure 1B). These patterns are unlike those seen in mutants with 

typical meiotic recombination or synaptonemal complex defects, such as Spo11–/–, Dmc1–/–, or 

Sycp1–/– (Pittman et al., 1998; Yoshida et al., 1998; Baudat et al., 2000; Romanienko and 

Camerini-Otero, 2000; Barchi et al., 2005; de Vries et al., 2005), and suggests that the ketu 15 

mutation causes an earlier and more severe block to spermatogenesis. 

 

ketu maps to a missense mutation in the Ythdc2 gene 

Because mutagenesis was carried out on B6 males, ENU-induced mutations should be 

linked to B6 variants for DNA sequences that differ between the B6 and FVB strains. Moreover, 20 

all ketu-homozygous G3 males should be homozygous for at least some of the same linked B6 

variants (Caspary, 2010; Horner and Caspary, 2011). We therefore roughly mapped the ketu 

mutation by hybridizing genomic DNA from five G3 mutants to mouse SNP genotyping arrays 

and searching for genomic regions where all five mice shared homozygosity for B6 SNPs 

(Caspary, 2010; Jain et al., 2017). This yielded a 30.59-Mbp interval on chromosome 18, 25 

flanked by heterozygous SNPs rs4138020 (Chr18:22594209) and gnf18.051.412 

(Chr18:53102987) (Figure 2A). Whole-exome sequencing of DNA from mutants then revealed 

that this interval contained a single un-annotated DNA sequence variant located in the Ythdc2 

coding sequence (Figure 2B,C). 

This variant is an A to G nucleotide transition at position Chr18:44840277, resulting in a 30 

missense mutation in predicted exon 6 (Figure 2B,C). The mutation changes codon 327 (CAT, 

histidine) to CGT (arginine), altering a highly conserved residue adjacent to the DEVH box 

(described in more detail below). 
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Ythdc2 mRNA is expressed in adult testes as well as widely in other adult and 

embryonic tissues (Figure 2B,D), thus placing Ythdc2 expression at an appropriate time to 

contribute to spermatogenesis. While this work was in progress, YTHDC2 protein was reported 

to interact in vivo with the meiosis-specific MEIOC protein, which is itself required for meiosis 

(Abby et al., 2016; Soh et al., 2017). Furthermore, a CRISPR/Cas9-induced frameshift mutation 5 

in exon 2 of Ythdc2 (Figure 2B,C) failed to complement the ketu mutation (see below). We 

conclude that this ENU-induced point mutation disrupts Ythdc2 function and is the cause of the 

ketu mutant phenotype in males. 

 

Ythdc2ketu causes male and female sterility from gametogenic failure 10 

Ythdc2ketu/+ heterozygotes had normal fertility and transmitted the mutation in a 

Mendelian ratio (30.8% Ythdc2+/+, 46.6% Ythdc2ketu/+, and 22.6% Ythdc2ketu/ketu from 

heterozygote × heterozygote crosses; n = 305 mice; p = 0.28, Fisher’s exact test). No obvious 

somatic defects were observed in Ythdc2ketu/ketu mice. However, Ythdc2ketu/ketu homozygous 

males were sterile: none of the three animals tested sired progeny when bred with wild-type 15 

females. Mutant males showed a 76.4% reduction in testes-to-body-weight ratio compared to 

littermates (mean ratios were 0.14% for Ythdc2ketu/ketu and 0.58% for wild-type and heterozygous 

animals; p < 0.01, one-sided Student’s t test; Figure 3A).  

In histological sections of adult testes, seminiferous tubules from Ythdc2ketu/ketu males 

were greatly reduced in diameter and contained only Sertoli cells and early spermatogenic cells, 20 

with no post-meiotic germ cells (Figure 3B). To elucidate the timing of spermatogenic failure, 

we examined juveniles at 10 and 14 days post partum (dpp). Meiosis first begins in male mice 

during the second week after birth, with a population of germ cells proliferating mitotically and 

then entering meiosis in a semi-synchronous wave (Bellve et al., 1977; Griswold, 2016). 

In wild type at 10 dpp, testes displayed a less advanced subset of tubules containing 25 

spermatogonia and Sertoli cells (La in Figure 3C), alongside more advanced tubules containing 

germ cells with morphological characteristics of pre-leptonema and leptonema (Ma in Figure 

3C). At the same age, testis sections from Ythdc2ketu/ketu mice also had a mix of tubules at 

slightly different stages, but a few tubules (Ab in Figure 3C) contained germ cells with abnormal 

morphology in which the chromosomes were condensed and individualized (arrowheads in 30 

Figure 3C), reminiscent of metaphase rather than prophase. By 14 dpp, essentially all tubules 

in wild type had germ cells in meiotic prophase, but Ythdc2ketu/ketu mutants displayed a mix of 

tubule types: some tubules (Ab in Figure 3C) had normal looking germ cells along with cells 

with metaphase-like chromosomes, often containing cells with highly compacted, presumably 
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apoptotic nuclei as well; and some had only a single layer of cells (spermatogonia plus Sertoli 

cells) along the tubule perimeter (Ep in Figure 3C,D). The cells with metaphase-like 

chromosomes were sometimes alongside cells with a more normal pre-leptotene/leptotene 

morphology (arrowheads and arrows in Figure 3C, respectively). TUNEL staining confirmed a 

higher incidence of apoptosis at 10 dpp and 14 dpp in the Ythdc2ketu/ketu mutant compared to 5 

wild type (Figure 3D). Adult testes also contained cells with abnormally condensed metaphase-

like chromosomes, as well as nearly empty tubules (Figure 3B).  

We interpret the less populated tubules in juveniles and adults as those in which 

apoptosis has already eliminated aberrant cells. We conclude that Ythdc2ketu/ketu spermatogonia 

are able to proliferate mitotically but then transition to an aberrant state in which chromosomes 10 

condense prematurely, and are rapidly eliminated, which accounts for the hypogonadism, 

absence of postmeiotic cells in adults, and sterility. 

To verify that the Ythdc2 point mutation in the ketu line is causative for the 

spermatogenesis defect, we used CRISPR/Cas9 and a guide RNA targeted to exon 2 to 

generate an endonuclease-mediated (em1) allele containing a 5 bp deletion plus 1 bp insertion, 15 

resulting in a frameshift (Figure 2B,C). Ythdc2em1/+ heterozygotes transmitted the mutation in a 

Mendelian ratio (30.7% Ythdc2+/+, 48.5% Ythdc2em1/+, and 20.8% Ythdc2em1/em1; n = 101 mice; p 

= 0.62, Fisher’s exact test). We expected that this mutation near the 5ʹ end of the gene would 

be a null or cause severe loss of function. Indeed, Ythdc2em1/em1 homozygotes displayed 

hypogonadism and altered testis histology indistinguishable from Ythdc2ketu/ketu homozygotes, 20 

including the appearance of cells with abnormally condensed chromosomes (0.19% mean 

testes-to-body-weight ratio for Ythdc2em1/em1 and 0.57% for wild-type and heterozygous animals; 

66.8% reduction; p < 0.01, one-sided Student’s t test) (Figure 3A,E). Moreover, Ythdc2em1/em1 

males were sterile (neither of the two animals tested sired progeny when bred with wild-type 

females for 9 weeks). Ythdc2ketu/em1 compound heterozygotes were equally defective (0.20% 25 

mean testes-to-body-weight ratio for Ythdc2ketu/em1 and 0.63% for wild-type and single-

heterozygous animals; 67.5% reduction; p < 0.01, one-sided Student’s t test) (Figure 3A,F) and 

sterile (two animals tested did not sire progeny when bred with wild-type females for 9 weeks). 

Thus, ketu is allelic to Ythdc2em1.  

Ythdc2ketu/ketu females were also sterile: no pregnancies were observed from crosses of 5 30 

homozygous mutant females to wild-type males (bred for 6–19 weeks). Ovaries from 

Ythdc2ketu/ketu females were dramatically smaller compared to wild-type littermates, and no 

primary or developing follicles were visible (Figure 3G). Again, Ythdc2em1/em1 homozygotes 

displayed the same phenotype as Ythdc2ketu/ketu females (Figure 3G) and a cross between one 
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homozygous mutant female to a wild-type male yielded no pregnancies (bred for 21 weeks). 

These findings reveal an essential function for YTHDC2 in both male and female 

gametogenesis. 

 

Precocious meiotic progression in Ythdc2ketu/ketu spermatocytes 5 

YTHDC2 and MEIOC coimmunoprecipitate from testis extracts and they bind an 

overlapping set of transcripts as assessed by RNA immunoprecipitation, suggesting that the two 

proteins function together in germ cells (Abby et al., 2016; Soh et al., 2017). This hypothesis 

predicts similar phenotypes for mutants defective for either gene. In mice homozygous for a 

targeted Meioc mutation, male and female germ cells enter meiosis at the correct 10 

developmental stage (i.e., in juvenile males around 10 dpp, and in fetal ovary around embryonic 

day 14.5), but show substantial meiotic defects including rapid progression to a metaphase-like 

state with condensed univalent chromosomes and monopolar spindles (Abby et al., 2016; Soh 

et al., 2017). Our initial findings from the screen showed comparable defects in Ythdc2 mutants 

(Figure 1B,D and 3B,C,E), so we evaluated this phenotypic similarity more closely.  15 

To evaluate the molecular characteristics of cells containing prematurely condensed 

chromosomes, we stained testis sections to detect histone H3 phosphorylation on serine 10 

(pH3), which appears at high levels on metaphase chromatin, and α-tubulin, a spindle 

component. At 14 dpp, Ythdc2ketu/ketu mutants showed pH3-positive cells near the tubule 

periphery, likely mitotic spermatogonia, with discrete foci that colocalized with pericentromeric 20 

heterochromatin (DAPI-bright regions) (arrows in Figure 4A, right); this staining was also 

present in wild type, and has been reported previously (Hendzel et al., 1997; Kimmins et al., 

2007; Song et al., 2011) (Figure 4A, left). More importantly, mutants also showed bright 

staining in all cells that had abnormally condensed chromosomes (arrowheads in Figure 4A, 

right). At this age, no wild-type spermatocytes have progressed far enough to reach a strongly 25 

pH3-positive (metaphase I) stage (Figure 4A, left). In wild-type adults, spermatocytes at 

metaphase I showed the expected bipolar α-tubulin-containing spindles and well-aligned 

chromosomes at mid-spindle, with pericentromeric heterochromatin (DAPI-bright regions) 

oriented toward the poles (Figure 4B, left). In contrast, Ythdc2ketu/ketu mutants showed no 

spermatocytes with bipolar spindles; instead, spermatocytes containing a mass of condensed 30 

chromosomes had microtubules forming a single aster, consistent with the presence of 

monopolar spindles (Figure 4B, right). 

In normal spermatogenesis, cyclin A2 (CCNA2) is expressed during mitotic cell cycles in 

spermatogonia, but is downregulated upon meiotic entry and is undetectable in SYCP3-positive 
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spermatocytes (Ravnik and Wolgemuth, 1999). Meioc–/– spermatocytes fail to properly 

extinguish CCNA2 expression, suggesting that inappropriate retention of the spermatogonial 

(mitotic) cell cycle machinery contributes to precocious metaphase and other meiotic defects 

(Soh et al., 2017). When testis sections from 14-dpp wild-type animals were immunostained for 

SYCP3 and CCNA2, the expected mutually exclusive localization pattern was observed: 5 

CCNA2-positive spermatogonia were located at tubule peripheries while SYCP3-positive 

spermatocytes occupied more lumenal positions (Figure 4C, left). In testis sections from 

Ythdc2ketu/ketu animals of the same age, however, most SYCP3-positive spermatocytes also 

contained detectable levels of nuclear CCNA2.  

We conclude that Ythdc2-defective germ cells make an abortive attempt to enter meiosis 10 

but then progress precociously to a metaphase-like state and undergo apoptosis. These 

findings reveal substantial phenotypic similarities between Ythdc2 and Meioc mutants, 

supporting the hypothesis that YTHDC2 and MEIOC function together to regulate germ cell 

development around the time of meiotic entry. 

 15 

YTHDC2 localizes to the cytoplasm of prophase I spermatocytes 

To determine the temporal and spatial distribution of YTHDC2 protein in the male 

germline, we immunostained testis sections from adult wild-type and mutant animals (Figure 5 

and Figure S1). YTHDC2 staining was prominent in SYCP3-positive spermatocytes in wild 

type, whereas little to no staining was observed in spermatocytes from Ythdc2em1/em1 littermates 20 

(Figure 5A), validating antibody specificity.  

In contrast to wild-type littermates, Ythdc2ketu/ketu mutants displayed only background 

levels of YTHDC2 staining in SYCP3-positive cells (arrowheads in Figure 5B), indistinguishable 

from Ythdc2em1/em1 mutants. The Ythdc2ketu mutation may destabilize the protein, and/or 

YTHDC2 may be required (directly or indirectly) for its own expression as cells transition into 25 

meiosis. 

In wild type, no YTHDC2 staining above background was observed in spermatogonia or 

Sertoli cells (e.g., exemplified by the stage I–III tubule in Figure 5C). Strong staining first 

became detectable in pre-leptotene spermatocytes (stage VIII tubule, Figure 5C), remained 

strong from leptonema through diplonema, then returned to background levels in postmeiotic 30 

cells (round spermatids) (Figure 5C). YTHDC2 appeared exclusively cytoplasmic throughout 

prophase I, with no detectable nuclear signal above background. Indistinguishable patterns 

were seen with an independent anti-YTHDC2 antibody (Figure S1), further confirming 
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specificity. Our observations agree with and extend prior reports of cytoplasmic YTHDC2 

staining in meiotic prophase I spermatocytes (Abby et al., 2016; Soh et al., 2017). 

 

Structure and domain architecture of YTHDC2 

The predicted Ythdc2 transcript encodes a putative RNA helicase of 1445 amino acids 5 

and 161 kDa (presented schematically in Figure 6A). Protein domains and amino acid 

sequence motifs characteristic of superfamily 2 DExH-box helicases are conserved in mouse 

YTHDC2 and its homologs throughout Eumetazoa (Figure 6A,B). More specifically, YTHDC2 is 

predicted to have the helicase core modules (DEXDc and HELICc domains, including matches 

to helicase conserved sequence motifs) and two C-terminal extensions (the helicase-associated 10 

2 (HA2) and oligonucleotide binding (OB) domains) that are characteristic of the DEAH/RNA 

helicase A (RHA) helicase family (Figure 6A,B, Table S1) (Fairman-Williams et al., 2010). It is 

important to note, however, that although YTHDC2 has been shown to have RNA-stimulated 

ATPase activity (Morohashi et al., 2011) and is sometimes referred to as an RNA helicase 

(e.g.,Tanabe et al., 2016; Soh et al., 2017), direct demonstration of helicase activity has not yet 15 

been reported. 

The ketu mutation (H327R) alters the amino acid located four residues N-terminal of the 

DEVH sequence (Figure 6B). The biochemical effect of this mutation remains to be determined, 

but we note that the affected histidine is invariant across likely YTHDC2 orthologs (Figure 6B). 

On the basis of sequence alignments, human and mouse YTHDC2 cluster most closely 20 

with DEAH-box proteins DHX30, DHX9, and TDRD9 (Figure 6C), but YTHDC2 is decorated 

with several auxiliary domains not found in these other proteins, namely, an N-terminal R3H 

domain, an ankyrin repeat domain (ARD) inserted between the two helicase core domains and 

containing a pair of ankyrin repeats, and a C-terminal YTH domain (Figure 6A and S2A). R3H 

domains are implicated in nucleic acid binding and protein oligomerization (He et al., 2013; He 25 

and Yan, 2014). The ARD may be involved in protein-protein interactions (Li et al., 2006).  

Most characterized YTH domains bind specifically to RNA containing N6-

methyladenosine (m6A) (Dominissini et al., 2012; Schwartz et al., 2013; Wang et al., 2014; Xu et 

al., 2015). A crystal structure of the YTH domain of human YTHDC1 bound to 5ʹ-GG(m6A)CU 

revealed that the methyl group in m6A is accommodated in a pocket composed of three 30 

aromatic/hydrophobic residues (Xu et al., 2014). These residues are present in the YTH 

domains of human and mouse YTHDC2 (triangles in Figure 6D). To evaluate this conservation 

in more detail, we examined an NMR structure of the YTH domain of human YTHDC2 (Figure 

6E). The YTHDC2 YTH domain adopts an open α/β fold with a core composed of six β strands 
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surrounded by four alpha helices. This solution structure matched closely with the crystal 

structure of RNA-bound YTHDC1 (Cα r.m.s.d. = 2.27 Å) and, importantly, the conserved m6A-

binding residues aligned well (Figure 6F). Consistent with this structural conservation, the 

human YTHDC2 YTH domain was reported to bind m6A-modified RNAs, albeit with substantially 

weaker affinity than YTH domains from other proteins (Xu et al., 2015). 5 

The YTH domain of the Schizosaccharomyces pombe Mmi1 protein is an exception to 

the more widely found m6A-binding specificity. Rather than binding m6A, the Mmi1 YTH domain 

binds a specific RNA sequence called a “determinant of selective removal” (DSR: 5ʹ-UNAAA/C) 

found in transcripts of meiotic and other genes (Harigaya et al., 2006; Yamashita et al., 2012; 

Chatterjee et al., 2016). Crystal structures of the S. pombe Mmi1 YTH domain alone and bound 10 

to RNA with a DSR motif implicated an RNA interaction site distinct from the protein surface by 

which other YTH domain proteins bind m6A-modified RNA (Chatterjee et al., 2016; Wang et al., 

2016). Although the human YTHDC2 structure superimposes well on that of Mmi1 (Figure 

S2B), several key residues involved in DSR binding are not conserved in mouse and human 

YTHDC2 (red boxes in Figure 6D). Specifically, RNA binding was shown to be compromised by 15 

mutation of Mmi1 Tyr-466, the side-chain hydroxyl of which forms a hydrogen bond with the N1 

atom of DSR nucleobase A4 (Wang et al., 2016). This position is a proline in both human and 

mouse YTHDC2 (Figure 6D and S2B). We infer that it is unlikely that the YTH domain of 

YTHDC2 utilizes the DSR interaction surface to bind RNA. 

 20 

Evolutionary path of ancestral Ythdc2 and its divergent paralog, Drosophila bgcn 

YTHDC2 homologs were found in metazoan species in a limited analysis of conservation 

(Soh et al., 2017). The closest homolog in Drosophila melanogaster is Bgcn (benign gonial cell 

neoplasm), which regulates germ cell differentiation via translational control of target mRNAs (Li 

et al., 2009b; Kim et al., 2010; Insco et al., 2012; Chen et al., 2014). Bgcn was thus proposed to 25 

be the fruit fly ortholog of YTHDC2 (Soh et al., 2017). However, Bgcn lacks YTH and R3H 

domains (Figure 7A) and is missing motifs critical for ATP binding and hydrolysis (Ohlstein et 

al., 2000) (Figure 7B). These differences led us to hypothesize either that the YTHDC2 family is 

highly plastic evolutionarily, or that YTHDC2 and Bgcn are not orthologs. To distinguish 

between these possibilities, we characterized the YTHDC2 phylogenetic distribution. 30 

Likely YTHDC2 orthologs were readily found throughout the Eumetazoa subkingdom by 

BLAST and domain architecture searches (Figure 7C, S3 and Table S2). The complete 

YTHDC2 domain architecture (R3H, helicase core domains with intact helicase motifs I and II 

and ARD insertion, HA2, OB, and YTH domains) was the most common form (Figure 6B, 7C, 
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S4). Orthologs of this type were present in Cnidaria, the deepest branching eumetazoans 

examined (Hydra vulgaris and the starlet sea anemone Nematostella vectensis) (Figures 6B, 

7C, S3, S4), indicating that full-length YTHDC2 was present in the LCA of the Eumetazoa.  

Homologs with the full domain architecture, except for the YTH domain, were observed 

in green plants, exemplified by Arabidopsis thaliana NIH (nuclear DEIH-box helicase) (Isono et 5 

al., 1999), and choanoflagellates, e.g., Salpingoeca rosetta (Genbank accession 

XP_004993066). No homologs with this domain architecture were found in other eukaryotic 

lineages, including fungi (see Methods). The function of the plant homologs has not been 

reported to our knowledge, but their existence suggests an even more ancient evolutionary 

origin for this protein family.  10 

Most metazoan YTHDC2 orthologs are highly conserved; for example, the mouse and H. 

vulgaris proteins are 44.6% identical. Nonetheless, there were exceptions to this conservation, 

including apparent sporadic loss of the YTH domain in some species [e.g., platypus and 

Japanese gekko among vertebrates; and Annelida (e.g., the leech Helobdella robusta) and 

Echinodermata (the purple sea urchin Strongylocentratus purpuratus) among invertebrates] 15 

(Figures 7C and S3). Assuming these losses are not errors in genome assembly or annotation, 

these findings suggest that the mode of YTHDC2 binding to RNA can be evolutionarily plastic. 

Even more diversity was observed in the superphylum Ecdysozoa, which includes 

nematodes and arthropods (Figures 7C,D and S3). Most of these species retain the full 

architecture with the YTH domain, e.g., the horseshoe crab Limulus polyphemus; the common 20 

house spider Parasteatoda tepidariorum; the deer tick Ixodes scapularis; and most insect 

lineages. However, the YTH domain was apparently lost in at least one crustacean (Daphnia 

magna) and more widely in nematodes and in dipteran and hymenopteran insects. We 

examined these latter exceptions in more detail. 

 25 

Nematodes. All of the identified YTHDC2 homologs in the phylum Nematoda have a 

form distinct from other lineages: they retain the R3H, DExH RNA helicase (including intact 

helicase motifs I and II), HA2, and OB domains, but they lack a detectable YTH domain. More 

uniquely, they have a sequence between the DEXDc and HELICc helicase core domains that 

aligns poorly with the equivalent region (including the ARD) in other family members, and that is 30 

more divergent between nematode species than between most other species (Figures 6B, 

7A,D, S4 and S5). For example, the mouse and zebra finch (Taeniopygia guttata) proteins are 

82.3% identical across this region, whereas the Caenorhabditis elegans and Caenorhabditis 

briggsae proteins share only 49.7% identity (Figure S5B). If the ARD of YTHDC2 mediates 
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protein-protein interactions, the diverged structure of this region suggests that the protein-

binding partners have also diverged substantially in nematodes.  

 

Insects. Most insect lineages have YTHDC2 orthologs with the full architecture including 

the YTH domain and intact helicase motifs I and II (Figures 6B, 7C,D, S3, and S4). Examples 5 

include Coleoptera (e.g., the red flour beetle Triboleum castaneum), Lepidoptera (e.g., the silk 

moth Bombyx mori), and Hemiptera (true bugs, e.g., the bed bug Cimex lectularius). We 

conclude that the ancestral metazoan form was present in the LCA of insects.  

However, likely orthologs in Hymenoptera (e.g., bees, wasps, ants) and Diptera (e.g., 

flies, mosquitoes) uniformly lack the YTH domain, suggesting this domain was lost in the LCA of 10 

these two clades. In all Hymenoptera and some Diptera examined (mosquitoes), this YTH-less 

form was the only close homolog of YTHDC2 (Figure 7D).  

Remarkably, an even more diverged homolog was found specifically in members of the 

Schizophora section of true flies (Figure 7D). Every species that we examined in this clade has 

a YTHDC2 homolog annotated as an ortholog of D. melanogaster Bgcn (Figure 7E, Table S2). 15 

Each has the ARD diagnostic of the YTHDC2 family but, like Bgcn, lacks R3H and YTH 

domains and has Bgcn-like sequence alterations in helicase motifs I and II that are expected to 

preclude ATP binding and hydrolysis (Ohlstein et al., 2000) (Figure 7A,B, and S4). In addition, 

most schizophoran flies also have a second YTHDC2 homolog that lacks the YTH domain but 

that, unlike Bgcn, has intact R3H and helicase motifs I and II (e.g., the house fly Musca 20 

domestica and the tephritid fruit flies Rhagoletis zephyria, Ceratitus capetata, and Bactrocera 

species; Figure 7B,D,E, and S4). None of the Drosophila genomes examined had this more 

YTHDC2-like version (Figure 7D,E). 

A straightforward interpretation is that the YTH domain was lost before the LCA of 

Hymenoptera and Diptera, then a gene duplication before the LCA of Schizophora was followed 25 

by substantial sequence diversification, creating the Bgcn subfamily. Most schizophoran species 

have both YTHDC2-like and Bgcn-like paralogs, but Drosophilidae retain only the Bgcn version. 

Thus, although Bgcn is the closest YTHDC2 homolog in D. melanogaster, Bgcn is a paralog of 

YTHDC2, not its ortholog.  

Supporting this interpretation, a phylogram based on multiple sequence alignments 30 

placed one version from each of the non-Drosophila schizophoran species closer to YTHDC2 

orthologs from other species, including mouse, and placed the other copy closer to D. 

melanogaster Bgcn (Figure 7E). However, Bgcn paralogs from Drosophila and non-Drosophila 

species formed two distinct clusters, and the more YTHDC2-like schizophoran paralogs formed 
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a cluster separated from other YTHDC2 members, including other insect proteins lacking a YTH 

domain (fuchsia branches in Figure 7E). Relative to YTHDC2 from non-schizophoran species, 

there is greater diversity between Bgcn family members within Schizophora and even within 

Drosophila (Figure 7E). Rapid evolution of Bgcn in Drosophila was noted previously, with 

evidence of positive selection in D. melanogaster and D. simulans (Civetta et al., 2006; Bauer 5 

DuMont et al., 2007) but not D. ananassae (Choi and Aquadro, 2014). Our findings extend this 

diversity to other schizophoran flies and place the evolutionary dynamics of Bgcn (and 

schizophoran YTHDC2) in striking contrast to the conservation of the ancestral YTHDC2 form in 

most other metazoan lineages.  

 10 

Drosophila bag of marbles encodes a highly diverged homolog of MEIOC 

Like YTHDC2, MEIOC is highly conserved, with likely orthologs throughout most 

lineages in Eumetazoa, including Cnidaria (Abby et al., 2016; Soh et al., 2017) (Figure 8A). The 

MEIOC C-terminus contains a domain with a putative coiled-coil motif (DUF4582 (domain of 

unknown function); pfam15189); this domain is necessary and sufficient for interaction with 15 

YTHDC2 (Abby et al., 2016). In Eumetazoa, DUF4582 appears to be unique to MEIOC 

orthologs and is the protein’s most highly conserved feature.  

In D. melanogaster, the product of the bag of marbles (bam) gene is a functional 

collaborator and direct binding partner of Bgcn (Gonczy et al., 1997; Lavoie et al., 1999; 

Ohlstein et al., 2000; Li et al., 2009b; Shen et al., 2009; Kim et al., 2010; Insco et al., 2012; 20 

Chen et al., 2014). By analogy with YTHDC2-MEIOC, it was thus proposed that Bam may be a 

functional analog of MEIOC (Soh et al., 2017). However, no sequence similarity between 

MEIOC and Bam has been detected. Moreover, the rapid diversification of Bgcn and in 

particular its biochemical divergence from the ancestral YTHDC2 form raised the possibility that 

Bgcn has acquired novel interaction partners, i.e., that Bam and MEIOC are not evolutionarily 25 

related. To address these issues, we examined the sequence and phylogenies of Bam and 

MEIOC. 

BLAST searches using mouse or human MEIOC as queries against available dipteran 

genomes identified no clear homologs (expected (E) value threshold < 20), even though 

homologs containing DUF4582 were easily found in other insect lineages (E < 10-35), including 30 

Hymenoptera (e.g., the bumblebee Bombus terrestris) (Figure 8A, Table S2). Conversely, 

searches using D. melanogaster Bam as the query identified homologs in schizophoran flies (E 

< 10-3; Figure 8A, Table S2), establishing that Bam orthologs are coincident with the presence 
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of Bgcn-like proteins. However, these searches failed to find Bam homologs in any other 

species, including non-schizophoran Diptera. 

Nonetheless, evidence of remote sequence similarity was observed when MEIOC 

orthologs from widely divergent species were compared directly with schizophoran Bam 

orthologs by multiple sequence alignment using COBALT (constrained basic alignment tool 5 

(Papadopoulos and Agarwala, 2007)) (Figure 8B,C) or PROMALS3D ((Pei and Grishin, 2014); 

data not shown). Bam orthologs are shorter, lacking an N-terminal extension present in MEIOC 

(Figure 8B). Short patches of sequence similarity with Bam were distributed across the central, 

nondescript region of MEIOC, but the region with greatest similarity spanned much of the 

DUF4582 domain (Figure 8B). Supporting the significance of this similarity, the C-terminus of 10 

Bam, including part of the conserved region, mediates the direct interaction with Bgcn (Li et al., 

2009b), as DUF4582 does for MEIOC-YTHDC2 (Abby et al., 2016). Interestingly, however, the 

COILS prediction algorithm (Lupas et al., 1991) did not detect putative coiled-coil motifs in Bam, 

unlike MEIOC (data not shown). We conclude that D. melanogaster Bam is evolutionarily 

derived from MEIOC and has a functionally homologous version of the DUF4582 domain, albeit 15 

diverged enough that it is not readily recognized as such. 

A neighbor-joining tree based on multiple sequence alignments divided schizophoran 

Bam-like proteins into two clusters representing, respectively, Drosophila and non-Drosophila 

species (Figure 8A). Furthermore, Bam-like proteins showed substantially more sequence 

diversity than MEIOC-like proteins, and there also was more diversity within Drosophila species 20 

than within the other schizophoran flies (Figure 8A). Thus, conservation patterns are correlated 

between MEIOC/Bam and YTHDC2/Bgcn: YTHDC2 and MEIOC are much more highly 

conserved than are Bgcn and Bam, and Bgcn and Bam display even greater sequence diversity 

among Drosophila than in other clades in Schizophora.  

 25 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

DISCUSSION 

This study establishes an essential function for Ythdc2 in the germlines of male and 

female mice, specifically at the stage when stem cells transition from mitotic to meiotic divisions. 

Ythdc2 mutant spermatogonia are able to initiate at least part of the meiotic developmental 

program, making synaptonemal complex precursors and initiating recombination, but most cells 5 

then rapidly progress to a premature metaphase-like state and die by apoptosis. Ythdc2 and 

Meioc mutants have highly similar meiotic phenotypes, supporting the hypothesis that these 

proteins function together to regulate germ cell differentiation in the mouse gonad (Abby et al., 

2016; Soh et al., 2017). During the course of this work, we isolated a novel point-mutated allele 

of Ythdc2 (ketu) that harbors a non-synonymous mutation of a conserved residue, illustrating 10 

the power of phenotype-based forward-genetic approaches for dissecting mammalian 

reproductive processes. 

The YTHDC2 domain architecture, with its RNA interaction modules and putative RNA 

helicase domains, leads to the obvious hypothesis that YTHDC2 regulates gene expression 

posttranscriptionally via direct interaction with specific RNA targets. Specifically how this 15 

regulation is accomplished remains unclear, however. Two distinct models have been proposed 

in which the YTHDC2-MEIOC complex controls mRNA stability, either stabilizing the transcripts 

of meiotic genes (Abby et al., 2016) or destabilizing the transcripts of mitotic cell cycle genes 

(Soh et al., 2017). Conversely, it has been speculated that YTHDC2 promotes mRNA 

translation, based on indirect data concerning the effects of shRNA knockdown of YTHDC2 20 

expression in human colon cancer cell lines (Tanabe et al., 2016). We propose a further 

alternative that YTHDC2-MEIOC is a translational suppressor, based on analogy with Bgcn-

Bam, which has well documented translational suppression functions in D. melanogaster germ 

cells (Li et al., 2009b; Shen et al., 2009; Kim et al., 2010; Insco et al., 2012; Li et al., 2013; Chen 

et al., 2014). The cytoplasmic localization of the YTHDC2-MEIOC complex (this study and 25 

(Abby et al., 2016; Soh et al., 2017)) is consistent with all of these possibilities.  

RNA co-immunoprecipitation data suggest that YTHDC2 interacts with specific RNA 

targets in vivo (Abby et al., 2016; Soh et al., 2017), but the detailed list of putative targets has 

differed between studies and the molecular determinants of binding specificity remain unknown. 

Our structural analyses support the conclusion that the YTH domain mediates direct interaction 30 

with m6A-containing RNA substrates, also suggested by direct binding studies in vitro (Xu et al., 

2015). RNA-stimulated ATPase activity has been reported for purified YTHDC2 (Morohashi et 

al., 2011), but helicase activity has not yet been demonstrated, and what the ATPase function 

might be remains unclear. Additionally, the biochemical role of MEIOC within the complex is 
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unknown. Non-exclusive possibilities include modulating YTHDC2 RNA binding specificity, 

facilitating interactions with other protein partners, and/or modifying ATPase/helicase activities 

of YTHDC2. 

Notwithstanding the intimate connection of YTHDC2 to MEIOC in the germline, it is likely 

that YTHDC2 has additional, independent functions, because it is expressed much more widely 5 

than the highly germline-specific MEIOC. Supporting this hypothesis, YTHDC2 has been 

implicated in hepatitis C virus replication and cell proliferation in cultured, transformed human 

cells not known to express MEIOC (Morohashi et al., 2011; Tanabe et al., 2014; Tanabe et al., 

2016). Although we have not observed obvious somatic phenotypes in Ythdc2ketu/ketu or 

Ythdc2em1/em1 homozygotes, or in Ythdc2ketu/em1 compound heterozygotes, we cannot rule out 10 

cellular defects that do not yield gross pathology.  

We demonstrate here that the YTHDC2 sequence is well conserved across most 

metazoan lineages, including the deeply branching Cnidaria. Hence, we conclude that the full-

length YTHDC2 is the ancestral form, already present in the LCA of Metazoa. A related protein 

(possibly lacking the YTH domain) was likely present even earlier, before the LCA of green 15 

plants and metazoans. However, we also uncovered substantial structural diversity in the 

nematode, hymenopteran, and dipteran lineages within Ecdysozoa, and particularly in 

schizophoran flies. In the simplest cases (Hymenoptera and non-schizophoran Diptera), the 

structural variation consists principally of loss of the YTH domain. The YTH domain thus 

appears to be an evolutionarily and biochemically modular contributor to YTHDC2 function. 20 

The nematode variant also lacks a YTH domain, but in addition, the region equivalent to 

the ARD is highly divergent relative to the ancestral sequence and even between different 

nematode species. It remains to be determined whether this diversification reflects positive 

selection for changing sequence (source unknown) or neutral selection (e.g., if the nematode 

protein has lost an interaction partner, relaxing constraint on the ARD sequence). The function 25 

of this protein in nematodes also remains unknown. The C. elegans ortholog of YTHDC2 is 

F52B5.3 (Table S2), and the MEIOC ortholog is Y39A1A.9 (Abby et al., 2016). Both proteins 

are poorly characterized and, to our knowledge, no phenotypes caused by mutation or RNAi 

have been observed (http://www.wormbase.org/). 

More striking still, the dipteran YTH-less YTHDC2 family member in the LCA of the 30 

Schizophora appears to have been duplicated to form the Bgcn family, which also lost the R3H 

domain and accumulated the previously described alterations in ATPase motifs that preclude 

ATP binding and hydrolysis (Ohlstein et al., 2000). Our studies also revealed for the first time 

that the Bgcn partner Bam is a divergent homolog of MEIOC unique to Schizophora. Because 
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we have been unable to identify Bam/MEIOC homologs in non-schizophoran Diptera, it is 

currently unclear if bam arose from a Meioc gene duplication (analogous to the evolutionary 

trajectory of bgcn) or if it is simply a highly diverged Meioc ortholog. Given the presence of only 

Bam in non-Drosophila Schizophora, it would be interesting to know whether the YTHDC2 

ortholog in these species can interact with Bam. 5 

Previous researchers documented that both Bam and Bgcn are rapidly diversifying in 

Drosophila species (Civetta et al., 2006; Bauer DuMont et al., 2007; Choi and Aquadro, 2014). 

Our findings extend this property to schizophoran flies more generally and provide further 

context by showing that both Bgcn-like and, when present, YTHDC2-like proteins have 

experienced much greater sequence diversification within Schizophora than elsewhere, and that 10 

this is mirrored by more rapid sequence changes in Bam compared with the ancestral MEIOC in 

other lineages. The coincident occurrence — at or before the LCA of Schizophora — of the 

Ythdc2/bgcn gene duplication, the YTHDC2, Bgcn, and Bam diversification, and the Bgcn 

structural and biochemical changes makes it tempting to speculate that these were coordinate 

changes driven by a common set of selective pressures. 15 

If so, what was (is) the source of these pressures? It was speculated that the 

diversification of Bam and Bgcn may be tied to infection with the alpha-proteobacteria 

Wolbachia (Bauer DuMont et al., 2007). Wolbachia is an endosymbiont in many species of 

insects and other arthropods that is transmitted from parent to offspring and manipulates host 

reproductive processes (Engelstadter and Hurst, 2009; Pietri et al., 2016). Interestingly, 20 

Wolbachia also infects a number of nematode species (Ferri et al., 2011), suggesting a possible 

link to the rapid diversification of YTHDC2 orthologs in that clade as well. However, direct 

evidence in any species for a link between Bgcn/Bam and Wolbachia remains elusive. 

Moreover, many arthropod species across diverse taxa are infected with Wolbachia 

(Engelstadter and Hurst, 2009; Pietri et al., 2016), but we find that the majority of these taxa 25 

have more evolutionarily stable YTHDC2 and MEIOC sequences. Thus, if Bgcn and Bam 

diversification can be attributed to host genomic conflicts with Wolbachia, it may reflect a mode 

of interaction between Wolbachia and the germline that is unique to schizophoran flies (and 

possibly nematodes). 

The complex evolutionary relationships we document here raise the possibility that 30 

mammalian YTHDC2 and fly Bgcn have substantially different functions and mechanisms of 

action, especially given the striking biochemical changes private to the Bgcn subfamily. 

Moreover, the phenotypic outcomes in mutants differ, for example bam and bgcn mutant germ 

cells do not enter meiosis (McKearin and Spradling, 1990; Gonczy et al., 1997), whereas Meioc 
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and Ythdc2 mutants do. Nonetheless, our findings, along with the recent characterization of 

Meioc mutants (Abby et al., 2016; Soh et al., 2017), also establish intriguing parallels with bgcn 

and bam; in both mouse and fruit fly these genes play critical roles in the switch from transit 

amplifying mitotic cell cycles into meiosis, in both male and female germlines. On the basis of 

this similarity, and because members of both the YTHDC2/Bgcn and MEIOC/Bam families 5 

appear to be nearly ubiquitous in metazoans, we propose that the YTHDC2-MEIOC complex 

has an evolutionarily ancient and conserved function as a regulator of germ cell fate and 

differentiation. 

 

 10 
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MATERIALS AND METHODS 

Generation of ketu mutants and endonuclease-targeted Ythdc2 mutations 

All experiments conformed to regulatory standards and were approved by the Memorial 

Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee. Wild-

type B6 and FVB mice were purchased from The Jackson Laboratory (Bar Harbor, Maine). 5 

Details of the ENU mutagenesis and breeding for screening purposes are provided elsewhere 

(Jain et al., 2017) (Figure 1A) and were similar to previously described methods (Caspary, 

2010; Probst and Justice, 2010). 

To screen for meiotic defects, spermatocyte squash preparation and immunostaining for 

SYCP3 and γH2AX (described below) were carried out using testes from pubertal G3 males that 10 

were ≥15 days post partum (dpp) or from adult G3 males (Figure 1B). At these ages, 

spermatocytes in the relevant stages of meiotic prophase I are abundant in normal mice (Bellve 

et al., 1977). Testes were dissected, frozen in liquid nitrogen, and stored at -80° until samples 

from ~24 G3 males had been collected, then immunocytology was carried out side by side for 

all animals from a given line. One testis per mouse was used for cytology and the second was 15 

reserved for DNA extraction.  

Genotyping of ketu animals was done by PCR amplification using ketu F and ketu R 

primers (oligonucleotide primer sequences are provided in Table S3), followed by digestion of 

the amplified product with BstXI (NEB, Ipswich, Massachusetts). Wild-type mice contain a BstXI 

restriction site that is mutated by the ketu mutation (A to G). 20 

CRISPR/Cas9-mediated genome editing was done by the MSKCC Mouse Genetics 

Core Facility to generate em alleles. A guide RNA (target sequence 5′-

AATAAAGGCTCTTTCCGTAC) was designed to target predicted exon 2 of Ythdc2 (NCBI Gene 

ID: 240255 and Ensembl Gene ID: ENSMUSG00000034653) and used for editing as described 

(Romanienko et al., 2016). Using the T7 promoter in the pU6T7 plasmid, the gRNA was 25 

synthesized by in vitro transcription and polyadenylated, then 100 ng/µl of gRNA and 50 ng/µl of 

Cas9 mRNA were co-injected into the pronuclei of CBA × B6 F2 hybrid zygotes using 

conventional techniques (Hogan and Lacy, 1994). Founder mice were tested for the presence of 

mutated alleles by PCR amplification of exon 2 using Ythdc2 F1 and Ythdc2 R1primers, 

followed by T7 endonuclease I (NEB) digestion. 30 

To determine the specific mutations in T7-positive Ythdc2em founder mice, the targeted 

region was amplified by PCR of tail-tip DNA (Ythdc2 F1 and Ythdc2 R1 primers) and sequenced 

on the Illumina MiSeq platform (Illumina Inc, San Diego, California) at the MSKCC Integrated 

Genomics Operation. Reads were aligned to mouse genome assembly GRCm37/mm9 and 
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variants were identified using Genome Analysis Toolkit version 2.8-1-g932cd3a (McKenna et 

al., 2010; DePristo et al., 2011; Van der Auwera et al., 2013). Variants with a minimum variant 

frequency of 0.01 were annotated using VarScan v2.3.7 software (Koboldt et al., 2012). 

Ythdc2em founder males mosaic for frame-shift mutations were bred with B6 mice and potential 

heterozygote carriers were genotyped by PCR amplification of the targeted region (Ythdc2 F2 5 

and Ythdc2 R2 primers), followed by Sanger sequencing (Ythdc2 Seq1 primer) and analysis 

with CRISP-ID (Dehairs et al., 2016). A single founder male carrying the em1 mutation was 

used to establish the Ythdc2em1 line, after two backcrosses to B6 mice. Ythdc2em1 heterozygote 

carriers were then interbred to generate homozygotes, or crossed to ketu mice to generate 

compound heterozygotes carrying both the ketu allele and a Ythdc2em1 allele. Genotyping of 10 

Ythdc2em1 animals was done by PCR amplification using Ythdc2 F3 and Ythdc2 R3 primers, 

followed by digestion of the amplified product with RsaI (NEB). The 5-bp deletion in Ythdc2em1 

(Figure 1D) removes an RsaI site that is present in wild-type mice. 

 

Genetic mapping and exome sequencing 15 

Genome assembly coordinates are from GRCm38/mm10 unless indicated otherwise. 

ketu was coarsely mapped by genome-wide microarray SNP genotyping (Illumina Mouse 

Medium Density Linkage Panel) using genomic DNA from testes or tail biopsies as described 

(Jain et al., 2017). Five G3 mutant mice obtained from the initial screen cross (a, b, c, d, e in 

Figure 1C), as well as the F1 founder, one B6 and one FVB control mice were genotyped. 20 

Microarray analysis was performed at the Genetic Analysis Facility, The Centre for Applied 

Genomics, The Hospital for Sick Children, Toronto, ON, Canada. For bioinformatics analysis, 

777 SNPs were selected based on the following criteria: allelic variation in B6 and FVB, 

heterozygosity in F1 founder, and autosomal location. 

We performed whole-exome sequencing on the same five mutant G3 mice analyzed by 25 

microarray SNP genotyping and DNA was prepared as for microarray analysis. Whole-exome 

sequencing was performed at the MSKCC Integrated Genomics Operation. A unique barcode 

was incorporated into the DNA library prepared from each mouse, followed by library 

amplification with 4 PCR cycles. Libraries were then quantified and pooled at equal 

concentrations into a single sample for exome capture. Exome capture was performed using 30 

SureSelectXT kit (Agilent Technologies, Santa Clara, California) and SureSelect Mouse All 

Exon baits (Agilent Technologies). Libraries were amplified post-capture with 6 PCR cycles and 

sequenced to generate approximately 80 million 100-bp paired-end reads. Read alignment, 

variant calling and variant annotation were done as described (Jain et al., 2017), with the 
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following two modifications. Reads with three or more mismatches and reads without a pair 

were discarded using SAMtools version 0.1.19 (Li et al., 2009a). Variants were filtered to only 

include those that 1) had a minimum sequencing depth of five reads, 2) were called as 

homozygous, and 3) were not known archived SNPs. 

 5 

ENCODE data analysis 

ENCODE long-RNA sequencing data (release 3) with the following GEO accession 

numbers were used: testis GSM900193, cortex GSM1000563, frontal lobe GSM1000562, 

cerebellum GSM1000567, ovary GSM900183, lung GSM900196, large intestine GSM900189, 

adrena gland GSM900188, colon GSM900198, stomach GSM900185, duodenum GSM900187, 10 

small intestine GSM900186, heart GSM900199, kidney GSM900194, liver GSM900195, 

mammary gland GSM900184, spleen GSM900197, thymus GSM900192, whole brain E14.5 

GSM1000572, limb E14.5 GSM1000568, liver E14.5 GSM1000571. We acknowledge the 

ENCODE Consortium (Consortium, 2012) and the ENCODE production laboratory of Thomas 

Gingeras (Cold Spring Harbor Laboratory) for generating the datasets. 15 

 

Histology 

Histological analysis was conducted as described (Jain et al., 2017). Testes from adult 

or juvenile mice were fixed overnight in 4% paraformaldehyde (PFA) at 4°, or in Bouin’s fixative 

for 4 to 5 hr at room temperature. Bouin’s-fixed testes were washed in water for 1 hr at room 20 

temperature, followed by five 1-hr washes in 70% ethanol at 4°. Wild-type and mutant ovaries 

were fixed in 4% PFA, overnight at 4° and for 1 hr at room temperature, respectively. PFA-fixed 

tissues were washed twice for 5 min in water at room temperature. Fixed tissues were stored in 

70% ethanol for up to 5 days prior to embedding, embedded in paraffin, and sectioned (5 µm). 

Periodic acid Schiff (PAS) staining, immunohistochemical TUNEL assay, and 25 

immunofluorescent staining were performed by the MSKCC Molecular Cytology Core Facility 

using the Autostainer XL (Leica Microsystems, Wetzlar, Germany) automated stainer for PAS 

with hematoxylin counterstain, and using the Discovery XT processor (Ventana Medical 

Systems, Oro Valley, Arizona) for TUNEL and immunofluorescent staining. For 

immunofluorescent staining, slides were incubated with primary antibody for 5 hr, followed by 60 30 

min incubation with biotinylated goat anti-rabbit, horse anti-goat, or horse anti-mouse antibodies 

(1:200, Vector Labs, Burlingame, California). Streptavidin-HRP D (part of DABMap kit, Ventana 

Medical Systems) was used for detection, followed by incubation with Tyramide Alexa Fluor 488 

or 594 (Invitrogen, Carlsbad, California). PAS-stained and TUNEL slides were digitized using 
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Pannoramic Flash 250 (3DHistech, Budapest, Hungary) with 20× objective. Images were 

produced and analyzed using the Pannoramic Viewer software (3DHistech). Higher 

magnification images of PAS-stained slides were produced using Axio Observer Z2 microscope 

(Carl Zeiss, Oberkochen, Germany) with 63× oil-immersion objective. Immunofluorescence 

images were produced using a TCS SP5 II confocal microscope (Leica Microsystems) with 5 

40×/1.25 NA or 63×/1.4 NA oil-immersion objective. 

 

Cytology 

Spermatocyte squashes were prepared as described (Page et al., 1998), with 

modifications as indicated in (Jain et al., 2017) and slides were stored at -80°. Slides were 10 

thawed in 1× PBS for 5 min with gentle agitation and immunofluorescent staining was performed 

as described (Dowdle et al., 2013) using primary and appropriate Alexa Fluor secondary 

antibodies (1:100; Invitrogen). Primary antibody staining was done overnight at 4° and 

secondary antibody staining was done for 30 min at room temperature. All antibodies were 

diluted in blocking buffer. Stained slides were rinsed in water and mounted with coverslips using 15 

mounting medium (Vectashield, Vector Labs) containing 4′,6-diamidino-2-phenylindole (DAPI). 

Slides were stored at 4° for up to 5 days, and were imaged on a Marianas Workstation 

(Intelligent Imaging Innovations (Denver, Colorado); Zeiss Axio Observer inverted epifluorescent 

microscope with a complementary metal-oxide semiconductor camera) using a 63× oil-

immersion objective. 20 

 

Antibodies 

Primary antibodies and dilutions used for cytology are as follows: mouse anti-SYCP3 

(SCP-3 (D-1), 2 µg/ml, Santa Cruz (Dallas, Texas), sc-74569), rabbit anti-γH2AX (p-Histone 

H2A.X (ser 139), 0.13 µg/ml, Santa Cruz, sc-101696). Those used for histology are as follows: 25 

mouse anti-SYCP3 (SCP-3 (D-1), 1 µg/ml, Santa Cruz, sc-74569), goat anti-YTHDC2 (YTHDC2 

(G-19), 5 µg/ml, Santa Cruz, sc-249370), rabbit anti-YTHDC2 (YTHDC2, 1 µg/ml, Bethyl 

Laboratories (Montgomery, Texas), A303-025A), rabbit anti-CCNA2 (anti-Cyclin A2 (Y193), 2.5 

µg/ml, Abcam (Cambridge, Massachusetts), ab32386), mouse anti-α-Tubulin (anti-α-Tubulin, 

2.5 µg/ml, Millipore (Billerica, Massachusetts), MABT205), rabbit anti-pH3 (anti-phospho-30 

Histone H3 (Ser10), 1 µg/ml, Upstate (Millipore) , 06-570). 
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Phylogenetic analysis 

Mouse YTHDC2 was used as a query in searches using BLASTP (version 2.6.1 

(Altschul et al., 1997)) and CDART (conserved domain architecture retrieval tool (Geer et al., 

2002)) using NCBI servers. Searches were performed iteratively, with new searches seeded 

with hits from initial searches. When multiple accessions were present in the same species, we 5 

chose the longest isoform available. Searches were further repeated in targeted mode (i.e., 

restricting the taxon ID in BLASTP) to examine specific lineages in more detail (e.g., Nematoda, 

Schizophora, Insecta, Crustacea). MegAlign Pro (DNASTAR Inc., Madison, Wisconsin) version 

14.1.0 (118) was used to generate multiple sequence alignments with Clustal Omega (Sievers 

et al., 2011) or MUSCLE (Edgar, 2004) using default settings; to calculate alignment distances 10 

using the scoredist function (Sonnhammer and Hollich, 2005); and to output neighbor-joining 

trees using the BioNJ algorithm (Gascuel, 1997). COBALT (Papadopoulos and Agarwala, 2007) 

alignments were carried out on the NCBI server 

(https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi). NCBI taxonomic cladograms were 

constructed using the PhyloT web tool (http://phylot.biobyte.de/). Trees were visualized using 15 

the interactive tree of life (ITOL) server (http://itol.embl.de/) (Letunic and Bork, 2016) or FigTree 

version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree). 

From targeted BLASTP searches of the following taxa, no clear matches to the YTHDC2 

architecture were observed: Amoebozoa, Fornicata, Euglenozoa, Alveolata, Apusozoa, 

Cryptophyta, Haptophyceae, Heterolobosea, Parabasalia, Rhizaria, Rhodophyta, 20 

Stramenopiles. In these lineages, the closest homologs found were RNA helicase-like proteins 

more similar in architecture to the DHX30 family, without R3H and YTH domains and lacking the 

ARD insertion between the helicase core domains.  

We also did not find clear matches to the YTHDC2 architecture in fungi. The closest 

Saccharomyces cerevisiae homolog (YLR419W) lacks the diagnostic ARD insertion between 25 

the helicase core domains, has N-terminal UBA (ubiquitin-associated) and RWD domains rather 

than an R3H domain, and lacks a YTH domain. YLR419W thus more closely resembles human 

DHX57 (Figure S2A), which is indeed the top hit when YLR419W is used as the query in a 

BLASTP search against the human genome (GenBank accession AAH65278.1; 29% identity, E 

value 2 × 10-110). 30 

 

Protein analysis 

Domain annotations were obtained from SMART (Letunic et al., 2015) and pfam database 

(Finn et al., 2016) searches. Atomic coordinates of NMR and crystal structures of YTH domains 
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were retrieved from the following Protein Data Bank (PDB) entries: 2YU6 (human YTHDC2 apo 

structure), 4R3I (RNA-bound human YTHDC1), 5DNO (RNA-bound S. pombe Mmi1), and 5H8A 

(S. pombe Mmi1 apo structure). Alignments of three-dimensional structures were performed 

using the cealign command (Vertrees, 2007) and the figures prepared using PyMol 

(Schrodinger, 2015). Protein accession numbers are listed in Tables S1 and S2. 5 

 

Data availability 

Reagents and mouse strains are available upon request. 
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FIGURE LEGENDS 

Figure 1. Mice from the ENU-induced mutant line ketu have meiotic defects.  

(A) Breeding scheme. Mutagenized males (B6) were crossed to females of a different strain 

(FVB) to produce founder (F1) males that were potential mutation carriers. Each F1 male was 

then crossed to wild-type FVB females. If an F1 male was a mutation carrier, half of his 

daughters (second generation, G2) should also be carriers, so the G2 daughters were crossed 

back to their F1 sire to generate third-generation (G3) offspring that were potentially 

homozygous. For a line carrying a single autosomal recessive mutation of interest, one eighth of 

G3 males were expected to be homozygous. Un-filled shapes represent animals that are wild-

type for a mutation of interest, half-filled shapes are heterozygous carriers, and filled shapes are 

homozygotes. (B) Representative images of squashed spermatocyte preparations 

immunostained for SYCP3 and γH2AX. Mutant spermatocytes were classified as Types I, II, or 

III on the basis of SYCP3 patterns. Scale bar represents 20 µm. (C) Screen results for the ketu 

line. The F1 male was harem-bred to six G2 females, yielding 26 G3 males that displayed either 

a wild-type or ketu (mice a, b, c, d, e) phenotype. (D) Distribution of SYCP3-staining patterns in 

four G3 ketu mutants (a, b, c, d) and their phenotypically wild-type littermates (a′, b′, c′). Wild-

type spermatocytes were classified as either early prophase-like (leptonema or zygonema) or 

late prophase-like (pachynema or diplonema). Spermatocytes from mutant mice were 

categorized as described in panel B. The number of SYCP3-positive spermatocytes counted 

from each animal is indicated and raw data are provided in Figure 1D−Source Data 1. 

 

Figure 2. ketu mice harbor a point mutation in Ythdc2.  

(A) SNP genotypes of five G3 ketu mutants (a, b, c, d, e; from Figure 1C) obtained using the 

Illumina Medium Density Linkage Panel. The single 30.59-Mbp region of B6 SNP homozygosity 

that is shared between mutants is highlighted in pink. (B) Top: Schematic of Ythdc2 (as 

predicted by Ensembl release 89) showing the locations of the ENU-induced lesion and the 

gRNA used for CRISPR/Cas9-targeting. Bottom: The density of ENCODE long RNA-

sequencing reads (release 3) from adult testis within a window spanning from 3,500 bp 

upstream to 200 bp downstream of Ythdc2. The vertical viewing range is 0–50; read densities 

exceeding this range are overlined in pink. (C) The ketu and CRISPR/Cas9-induced (em1) 

alleles of Ythdc2. (D) Ythdc2 and Meioc expression level estimate (mean reads per kilobase per 

million mapped reads (RPKM) values provided by ENCODE (Figure 2D−Source Data 1)) in 

adult and embryonic tissues.  
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Figure 3. ketu and em1 alleles of Ythdc2 lead to gametogenic failure and fail to 

complement each other.  

(A) The ratios of testes weight to body weight for 6- to 34-week-old mice (Figure 3A−Source 

Data 1). (B) PAS-stained sections of Bouin’s-fixed testes from an 8-month-old Ythdc2ketu/ketu 

male and a wild-type littermate. (C) PFA-fixed, PAS-stained testis sections. In wild type, 

examples are indicated of a less advanced (“La”) tubule harboring cells with spermatogonia-like 

morphology and Sertoli cells, and more advanced (“Ma”) tubules harboring cells with 

morphological characteristics of pre-leptonema and meiotic prophase stages. In the mutant, 

examples are indicated of abnormal (“Ab”) tubules containing cells with condensed and 

individualized chromosomes (arrowheads), and an emptier-looking (“Ep”) tubule harboring cells 

with spermatogonia-like morphology and Sertoli cells. (D) TUNEL-stained testis sections. Black 

arrowheads point to TUNEL-positive cells (stained dark brown). (E and F) PFA-fixed, PAS-

stained testis sections from an 8-week-old Ythdc2em1/em1 male, a 7-week-old Ythdc2ketu/em1 male, 

and their wild-type littermates. (G) PFA-fixed, PAS-stained ovary sections from a 6-week-old 

Ythdc2ketu/ketu female and a wild-type littermate, and a 9-week-old Ythdc2em1/em1 female and a 

heterozygous littermate. In the higher magnification views of panels B, C, E, and F, arrowheads 

indicate cells with condensed and individualized chromosomes, arrows indicate cells with 

morphological characteristics of pre-leptonema and leptonema, and S and Spg indicate Sertoli 

cells and cells with morphological characteristics of spermatogonia, respectively. In panels B, C, 

E, and F, the scale bars represent 50 µm and 20 µm in the lower and higher magnification 

images, respectively. In panels D and G, the scale bars represent 50 µm and 300 µm, 

respectively.  

 

Figure 4. Ythdc2ketu/ketu spermatocytes show precocious meiotic progression.  

(A) Anti-pH3 immunofluorescence on testis sections from 14-dpp Ythdc2ketu/ketu and wild-type 

littermates. Arrows indicate cells with spermatogonia-like morphology and arrowheads point to 

cells with abnormally condensed chromosomes. (B) Anti-α-tubulin immunofluorescence on 

testis sections from 2-month-old Ythdc2ketu/ketu and wild-type littermates. (C) CCNA2 and SYCP3 

immunofluorescence on testis sections from 14-dpp Ythdc2ketu/ketu and wild-type littermates. 

Arrows point to cells with spermatogonia-like morphology and arrowheads indicate SYCP3-

positive spermatocytes. In panels A and B, the scale bars represent 5 µm. In panel C, the scale 

bars represents 50 µm and 15 µm in the lower (left) and higher (right) magnification images, 

respectively. 
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Figure 5. YTHDC2 localization in wild-type and mutant testes.  

(A and B) YTHDC2 and SYCP3 immunofluorescence on testis sections from 2-month-old 

Ythdc2em1/em1, Ythdc2ketu/ketu, and their wild-type littermates. Arrowheads indicate SYCP3-positive 

spermatocytes. Scale bars represent 100 µm. (C) YTHDC2 and SYCP3 immunofluorescence on 

testis sections from an adult B6 male. Approximate seminiferous epithelial cycle stages (based 

on SYCP3 and DAPI staining patterns) are provided. S, Sertoli cell; Spg, spermatogonia; L, 

leptotene spermatocyte; Z, zygotene spermatocyte; P, pachytene spermatocyte; D, diplotene 

spermatocyte; RS, round spermatid, ES, elongating spermatid. Scale bar represents 15 µm. 

 

Figure 6. YTHDC2 domain architecture and structure of its YTH domain.  

(A) Schematic of mouse YTHDC2 domain structure (not to scale). Sequence motifs 

characteristic of superfamily 2 DExH-box helicases (I, Ia, II, III, IV, V, VI) within the helicase core 

domain are indicated, along with sequence logos from Clustal Omega alignments of 157 

superfamily 2 DExH-box helicases. The height of each stack of residues reflects the degree of 

conservation, and the height of each amino acid symbol within each stack is proportional to the 

frequency of a residue at that position. Amino acids are colored according to their physico-

chemical properties (hydrophilic (blue), neutral (green), and hydrophobic (black)). (B) Clustal 

Omega alignments of sequences around helicase motifs I and II from YTHDC2 proteins of the 

indicated species. The position of the ketu mutation is indicated. The residues are shaded 

based on the percentage that agree with the consensus. Sequence logos were generated from 

Clustal Omega alignments of YTHDC2 homologs from 201 species and are colored as in panel 

A. (C) Cladogram of Clustal Omega protein sequence alignments of mouse and human 

YTHDC2 paralogs. The tree was rooted using vaccinia virus NPH-II sequence and D. 

melanogaster Bgcn is included for comparison. DHX29 is an RNA helicase that promotes 

translation initiation on mRNAs with structured 5ʹ untranslated regions (Pisareva et al., 2008). 

DHX57 is an uncharacterized protein of unknown function. DHX36 has G-quadruplex unwinding 

activity for DNA and RNA and is involved in antiviral responses to dsRNA (Vaughn et al., 2005; 

Yoo et al., 2014). DHX9 (also known as RNA helicase A and DNA helicase II) has both DNA 

and RNA helicase activities and multiple cellular functions, including in genome stability and 

viral and cellular RNA metabolism (Friedemann et al., 2005; Lin et al., 2012). DHX30 is a poorly 

characterized protein required for cell viability in the developing mouse embryo (Zheng et al., 

2015). And TDRD9 forms a complex with MIWI2 involved in piRNA-directed transposon 

silencing in the male germline (Shoji et al., 2009; Wenda et al., 2017). (D) Clustal Omega 

alignment of YTH domain sequences. Inverted triangles in auburn indicate residues that make 
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up the hydrophobic pocket that binds m6A. Residues boxed in auburn are required for Mmi1 

interaction with RNA (Wang et al., 2016). (E) NMR structure of the YTH domain from human 

YTHDC2 (PDB ID: 2YU6). (F) Structure of the m6A binding pocket is conserved in YTHDC2. 

The solution structure of YTH domain from human YTHDC2 (green) is shown superimposed on 

the crystal structure of the RNA-bound YTH domain from human YTHDC1 (pink; PDB ID: 4R3I) 

(Xu et al., 2014). The m6A nucleotide and the hydrophobic amino acid residues lining the 

binding pocket are shown at a higher magnification on the right. Protein accession numbers for 

sequence logos in panel A are in Table S1; all other protein accession numbers are in Table 

S2. 

 

Figure 7. Distribution of YTHDC2 variants in Metazoa.  

(A) Schematic of domain architectures (not to scale) of metazoan YTHDC2 orthologs and 

paralogs. (B) Clustal Omega alignment of sequences around helicase motifs I and II for 

YTHDC2-like and Bgcn-like proteins from schizophoran flies. Mouse YTHDC2 is shown for 

comparison. Bgcn proteins have amino acid changes that are incompatible with ATPase activity 

(Ohlstein et al., 2000). (C) Phylogenetic distribution of YTHDC2 in Metazoa. The tree is an 

unrooted cladogram of NCBI taxonomy for a non-exhaustive collection of 234 species in which 

at least one close YTHDC2 homolog was identified. Tree leaves are color coded according to 

YTHDC2 domain architecture. The same tree topology is reproduced in Figure S3 with 

complete species names. (D) Distribution of YTHDC2 variants in Ecdysozoa. The rooted 

cladogram shows NCBI taxonomy for the ecdysozoan portion of the metazoan tree in panel C. 

Background shading and color-coding of tree leaves is the same as in panel C. (E) Phylogram 

for sequence alignments of complete YTHDC2 and Bgcn orthologs from the indicated species. 

Note that protein sequence distances are similar within the YTHDC2 and Bgcn subfamily trees, 

but species in the YTHDC2 tree span much greater evolutionary distances. Sequences were 

aligned with Clustal Omega and the unrooted neighbor-joining tree was constructed from 

distances calculated using the scoredist function (Sonnhammer and Hollich, 2005). Tree leaves 

are color coded by YTHDC2 protein domain architecture as in panel C. Protein accession 

numbers are in Table S2. 

 

Figure 8. Bam shares distant sequence similarity with MEIOC.  

(A) Phylograms based on sequence alignments of MEIOC or Bam orthologs. Sequences were 

aligned with Clustal Omega and the unrooted neighbor-joining trees were constructed from 

distances calculated using the scoredist function. Note that the two trees have the same scale, 
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but the MEIOC proteins are from species separated by much greater evolutionary distances. (B, 

C) Remote sequence similarity between MEIOC and Bam, concentrated across the conserved 

DUF4582 domain of MEIOC. Sequences were aligned using COBALT (Papadopoulos and 

Agarwala, 2007). Panel B shows a schematic of the full alignment, with thin gray lines indicating 

gaps and thick gray lines indicating amino acid sequence. Species are in the same order as 

panel C, which shows a zoomed-in view of the region of greatest contiguous sequence 

similarity. Residues aligned across all proteins with no gaps are colored in blue or red according 

to relative entropy, with red indicating more highly conserved (entropy threshold = 2 bits) 

(https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi). Boundaries of DUF4582 are indicated 

relative to their annotation in the mouse protein. Protein accession numbers are in Table S2. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure S1. YTHDC2 staining with an independent anti-YTHDC2 antibody 

in wild-type and mutant testes.  

YTHDC2 and SYCP3 immunofluorescence on testis sections from 2-month-old Ythdc2ketu/ketu 

and wild-type littermates. Figure labels are as in Figure 5. Scale bars represent 100 µm (A) or 

20 µm (B). In this figure, the anti-YTHDC2 antibody from Santa Cruz Biotechnology was used 

(Abby et al., 2016). In Figure 5, the anti-YTHDC2 antibody from Bethyl Laboratories was used 

(Soh et al., 2017). 

 

Supplementary Figure S2. Domain architecture of YTHDC2 and related DExH-box 

helicases.  

(A) Schematics of domains in YTHDC2 and related DExH-box helicases (not to scale). Domain 

annotations were obtained from SMART (Letunic et al., 2015) and pfam database (Finn et al., 

2016) searches, except TDRD9, for which domains were as previously defined (Handler et al., 

2011). DHX9/RHA contains two copies of a double-stranded RNA binding domain (dsRBD) (Fu 

and Yuan, 2013). DHX57 has a ubiquitin-associated (UBA) domain and an RWD domain whose 

functions have yet to be demonstrated. TDRD9 has an RNA recognition motif (RRM) typically 

involved in interacting with nucleic acids, and a Tudor domain that binds dimethylated arginine 

(Handler et al., 2011). (B) Superposition of YTH domain structures of human YTHDC2 and S. 

pombe Mmi1 in either the apo state (left, PDB ID: 5H8A) or RNA-bound state (right, PDB ID: 

5DNO). A closer view of the interaction of S. pombe Mmi1 Tyr-466 with the DSR nucleobase A4 

is also shown. 

 

Supplementary Figure S3. Phylogenetic distribution of YTHDC2 in Metazoa.  

The same tree topology is reproduced in Figure 7C. 

 

Supplementary Figure S4. Full length alignment of YTHDC2 orthologs and paralogs. 

Clustal Omega was used to align YTHDC2 or Bgcn sequences from the indicated species. 

Domains and helicase core motifs are indicated, defined according to the annotation for the 

mouse protein. Accession numbers are in Table S2. 

 

Supplementary Figure S5. The YTHDC2 ortholog in nematodes has a distinct and highly 

diverse sequence in the location equivalent to the ARD insertion in other species.  
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Phylogram (A) and pairwise sequence identity matrix (B) for multiple sequence alignments of 

the regions between the DEXDc and HELICc domains of the YTHDC2 orthologs from the 

indicated nematode species (green shaded portion of tree), with mammalian and avian 

examples for comparison (coral shading). Because of the substantial divergence between these 

protein segments, sequences were aligned using MUSCLE and the VTML200 substitution 

matrix. The neighbor-joining tree was constructed with the vertebrate orthologs as the outgroup. 

Distances were calculated using the scoredist function. Accession numbers are in Table S2. 

 

 

LIST OF SUPPLEMENTARY TABLES 

Supplementary Table S1. Protein accession numbers for Figure 6A.  

Supplementary Table S2. Protein accession numbers for Figures 6B–D, 7 and 8.  

Supplementary Table S3. Genotyping primers. 

Figure 1D−Source Data 1. Number of SYCP3-staining cells. 

Figure 2D−Source Data 1. Ythdc2 and Meioc RPKM values. 

Figure 3A−Source Data 1. Testes and body weights. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

A

S
Y

C
P

3

ketu

leptonema zygonema pachynema diplonema

wild type

Early prophase Late prophase Type I Type II

B

ENU

F1

G2

G3

female
male

B6 FVB

FVB

Type III

18.5
81.5

2 G2 females 32.5
2 G2 females 25.5

3 wild type and 1 ketu (a) G3 males

7 wild type and 1 ketu (e) G3 males
7 wild type and 2 ketu (c,d) G3 males

2 G2 females 4 wild type and 1 ketu (b) G3 males
F1

G3 age at 
screening (dpp)Sire Dam Offspring

D

Percent of SYCP3 staining cells

Type I
Late prophase
Early prophase

w
ild

 ty
pe

ke
tu

n=
990

1075

961

526

618

834

480

0 50 100

d
c
b
a
c'
b'
a'

Type III
Type II

C

S
Y

C
P

3/γH
2A

X

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

B
Exon 2

gRNA
Exon 6 *

Ythdc2 (Ensembl transcript ENSMUST00000037763)

gRNA
CRISPR/Cas9-induced mutationwild type

ketu

ACATTGTCAACTGTGACCCATGTTATTGTG

A  G

Chr18:44840258 - 44840287

ACATTGTCAACTGTGACCCATGTTATTGTG

wild type

em1

GACCAGTACGGAAAGAGCCTTTATTCACCG
Chr18:44830174 - 44830203

ENU mutation

ENU-induced mutation

Te
st

is
 s

ig
na

l 

Plus Strand 

Minus Strand 
ENCODE Long RNA-sequencing Reads 

Chr18:44983900-45049571 (NCBI37/mm9) 

15 Range

C

0.5

1.0

M
ea

n 
R

P
K

M

D
mapped region (30.59 Mbp)

homozygous B6 SNP

homozygous FVB SNP
heterozygous B6/FVB A

GACCA             - - - - - GAAAGAGCCTTTATTCACCG

NCBI Gene ID: 240255; Ensembl Gene ID: ENSMUSG00000034653

0.0

E14
.5 

W
ho

le 
bra

in

Cere
be

llu
m

Fron
tal

 lo
be

E14
.5 

Lim
b

Cort
ex

E14
.5 

Liv
er

Te
sti

s
Hea

rt

Thy
mus

Lu
ng

La
rge

 in
tes

tin
e

Mam
mary

 G
lan

d

Sple
en

Kidn
ey

Colo
n

Ova
ry

Liv
er

Small
 In

tes
tin

e

Stom
ac

h

Adre
na

l G
lan

d

Duo
de

nu
m

Ythdc2 Meioc
2.61

A
19
Chr

18
17
16
15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

a b c d e
ketu

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


La

Figure 3

A

ad
ul

t

Ythdc2ketu/ketuYthdc2+/+B

10
 d

pp
14

 d
pp

Ythdc2ketu/ketuYthdc2+/+
C

ad
ul

t

Ythdc2em1/em1Ythdc2+/+E

ad
ul

t

Ythdc2ketu/em1Ythdc2+/+F

ad
ul

t

Ythdc2ketu/ketuYthdc2+/+

ad
ul

t

G

0.0

0.5

1.0
Te

st
es

/b
od

y 
w

ei
gh

t (
%

)

ketu em1 ketu/em1

heterozygote
wild type

homozygote

10
 d

pp
14

 d
pp

D
Ab

Ab

Ep

Spg

S

Ythdc2em1/+ Ythdc2em1/em1

Spg

S

Spg

S

Ma

Ma

Ma

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4

A B

α-tubulin
α-tubulin/D

A
P

I

Ythdc2ketu/ketuYthdc2+/+

pH
3

pH
3/D

A
P

I

C

Ythdc2ketu/ketuYthdc2+/+

Ythdc2ketu/ketuYthdc2+/+
C

C
N

A2
SYC

P3
S

Y
C

P
3/C

C
N

A
2/D

A
P

I

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5

A Ythdc2+/+ Ythdc2em1/em1 Ythdc2+/+ Ythdc2ketu/ketu

P

Es

Spg

P

Rs
S

L

P

D

P

Es

Spg

P

Rs
S

L

P

D

P

Es

PL

P

Rs
S

L

P

D

Spg

C

Z

PL

PL

Z

Z

B

YTH
D

C
2

SYC
P3

Y
TH

D
C

2/S
Y

C
P

3/D
A

P
I

YTH
D

C
2

SYC
P3

Y
TH

D
C

2/S
Y

C
P

3/D
A

P
I

Ythdc2+/+

Stage X-XIStage IXStage VIIIStage I-III 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6

A

R3H
ARD

HA2 OB YTHM. musculus

I
GETGSGKT

II
DEVH

III
SAA

IV
LIFLPGY

V
TNIAETSITV

VI
QRKGRAGR

HELICcDEXDc

Ia
QPRRLAA

1445 aa

Helicase core

B

D

E F

H. sapiens YTHDC1

L1365
L439

W1360
W428

W1310
W377

m6A

C

Motif I Motif II
ketu

M. musculus
H. sapiens

T. guttata
D. rerio

H. vulgaris
P. tepidariorum

C. elegans
B. mori

M. musculus
H. sapiens

T. guttata
D. rerio

H. vulgaris
P. tepidariorum

C. elegans
B. mori

M. musculus YTHDC2
H. sapiens YTHDC2

 H. sapiens YTHDC1
H. sapiens YTHDF1
H. sapiens YTHDF2
H. sapiens YTHDF3

S. pombe Mmi1

M. musculus YTHDC2
H. sapiens YTHDC2

 H. sapiens YTHDC1
H. sapiens YTHDF1
H. sapiens YTHDF2
H. sapiens YTHDF3

S. pombe Mmi1

H. sapiens YTHDC2

YTHDC2

228
213
210
203
201
185
201
184

242
227
224
217
215
199
215
198

323
308
305
298
296
280
295
279

340
325
322
315
313
297
312
296

1290
1275
336
370
391
397
331

1366
1351
418
455
476
482
412

1365
1350
417
454
475
481
411

1442
1427
501
532
553
559
485

H
. sapiens D

H
X

9

M
. m

us
cu

lu
s 

D
H

X
30

H. sapiens DHX36
H

. sapiens D
H

X
57

M
. m

us
cu

lu
s 

D
H

X
29

D. melanogaster Bgcn

H. s
ap

ien
s D

HX30

M. musculus YTHDC2

M
. m

usculus D
H

X57

H. s
ap

ien
s D

HX29

H. sapiens TDRD9

M. musculus DHX36

H. sapiens YTHDC2

vaccinia virus NPH-II

M
. m

usculus D
H

X9

M. musculus TDRD9

H. sapiens YTHDC2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2017. ; https://doi.org/10.1101/171827doi: bioRxiv preprint 

https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7
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Supplementary Figure S1
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Supplementary Figure S2
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