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ABSTRACT

Mechanisms regulating mammalian meiotic progression are poorly understood. Here we
identify mouse YTHDC?2 as a critical component of this regulation. A screen yielded a mutant,
“ketu”, with male and female sterility caused by a Ythdc2 missense mutation. Mutant germ cells
enter meiosis but proceed prematurely to aberrant metaphase and apoptosis. ketu phenocopies
mutants lacking MEIOC, a YTHDC2 partner. YTHDC2 is cytoplasmic and a YTH domain
solution structure reveals conservation of a hydrophobic N°-methyladenosine recognition
pocket, consistent with roles in post-transcriptional regulation. Orthologs are present throughout
metazoans, but are structurally diverged in nematodes and, more dramatically, in Drosophilidae,
where Bgcn is a biochemically distinct descendant of a Ythdc2 gene duplication. We also
uncover similarity between MEIOC and Bam, a Bgcn partner unique to schizophoran flies. We
propose that regulation of gene expression by the YTHDC2-MEIOC complex is an evolutionarily

ancient strategy for controlling the germline transition from mitosis to meiosis.
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INTRODUCTION

Sexual reproduction requires formation of gametes with half the genome complement of
the parent organism. The specialized cell division of meiosis achieves this genome reduction by
appending two rounds of chromosome segregation to one round of DNA replication (Page and
Hawley, 2003). Homologous maternal and paternal chromosomes segregate in the first meiotic
division, then sister centromeres separate in the second. Prior to the first division, homologous
chromosomes pair and recombine to form temporary connections that stabilize the
chromosomes on the metaphase | spindle (Page and Hawley, 2003; Hunter, 2007). Errors in
these processes can cause gametogenic failure and infertility, or yield aneuploid gametes that in
turn lead to miscarriage or birth defects in offspring (Hassold and Hunt, 2001; Sasaki et al.,
2010).

In well-studied metazoan species, meiosis occurs specifically in a dedicated germ cell
lineage after a period of limited expansion via mitotic “transit-amplifying” cell divisions (de Rooij,
2001; Davies and Fuller, 2008). The coordination of germline stem cell divisions with entry into
meiosis and the subsequent progression of cells through meiotic divisions are tightly regulated
(e.g., Griswold, 2016), but mechanisms underlying this regulation are not fully understood,
particularly in mammals. And, more generally, the catalog of mammalian genes required for
germ cell development, meiosis, and gametogenesis remains incomplete. In efforts to overcome
this lack, we carried out a phenotype-based, random chemical mutagenesis screen to identify
novel mouse meiotic mutants. One hit was a male-sterile mutant we named rahu, for
‘recombination-affected with hypogonadism from under-populated testes (Jain et al., 2017).
This mutant is defective for the function of a rodent-specific DNA methyltransferase paralog,
DNMT3C. Here, we describe a new mutant that we named ketu. Ketu is the partner of Rahu in
Vedic mythology.

ketu is a missense mutation in Ythdc2 (YTH-domain containing 2), which encodes a
putative RNA helicase with a YT521-B homology (YTH) RNA-binding domain (Stoilov et al.,
2002; Morohashi et al., 2011). Ythdc2*e" homozygotes are both male- and female-sterile. In the
testis, mutant germ cells carry out an abortive attempt at meiosis: they express hallmark meiotic
proteins and initiate recombination, but fail to fully extinguish the spermatogonial mitotic division
program, proceed prematurely to an aberrant metaphase-like state, and undergo apoptosis.
This phenotype is similar to mutants lacking MEIOC, a meiosis-specific protein that was recently
shown to be a binding partner of YTHDC2 and that has been proposed to regulate male and
female meiosis by controlling the stability of various mMRNAs (Abby et al., 2016; Soh et al.,

2017). Our results thus reveal an essential role for YTHDC2 in the germlines of male and
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female mice and show that YTHDC2 is an indispensable functional partner of MEIOC.
Furthermore, phylogenetic studies demonstrate that the YTHDC2-MEIOC complex is an
evolutionarily ancient factor, present in the last common ancestor (LCA) of Metazoa.
Nevertheless, despite high conservation in most metazoans, we uncover unexpectedly complex
evolutionary patterns for YTHDC2 and MEIOC family members in specific lineages, particularly

nematodes and the Schizophora section of flies, which includes Drosophila melanogaster.

RESULTS

Isolation of the novel meiotic mutant ketu from a forward genetic screen

To discover new meiotic genes, we carried out a phenotype-based, random
mutagenesis screen in mice (Jain et al., 2017). Mutagenesis was performed by treatment of
male mice of the C57BL/6J strain (B6 hereafter) with the alkylating agent N-ethyl-N-nitrosourea
(ENU). ENU introduces de novo mutations in the germline, predominantly single base
substitutions (Hitotsumachi et al., 1985; Caspary and Anderson, 2006; Probst and Justice,
2010). To uncover recessive mutations causing defects in male meiosis, we followed a three-
generation breeding scheme including outcrossing with females of the FVB/NJ strain (FVB
hereafter) (Caspary and Anderson, 2006; Caspary, 2010; Jain et al., 2017) (Figure 1A).

Third-generation (G3) male offspring were screened for meiotic defects by
immunostaining squash preparations of testis cells for SYCP3, a component of chromosome
axes (Lammers et al., 1994, Zickler and Kleckner, 2015), and for yH2AX, a phosphorylated form
of the histone variant H2AX that is generated in response to meiotic DNA double-strand breaks
(Mahadevaiah et al., 2001) (Figure 1B). In normal meiosis, SYCP3-positive axial elements
begin to form during the leptotene stage of meiotic prophase [; these elongate and begin to align
with homologous chromosome axes to form the tripartite synaptonemal complex in the zygotene
stage; the synaptonemal complex connects homologous chromosomes along their lengths in
the pachytene stage; and then the synaptonemal complex begins to disassemble during the
diplotene stage (Figure 1B). Double-strand break formation occurs principally during leptonema
and zygonema, yielding strong yH2AX staining across nuclei, but this staining diminishes as
recombination proceeds (Figure 1B). Recombination-independent yH2AX also appears in the
sex body, a heterochromatic domain that encompasses the X and Y chromosomes and that is

particularly evident in pachytene and diplotene cells (Figure 1B).
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In an F1 founder line we named ketu, 5 of 26 G3 males screened (Figure 1C) contained
SYCP3-positive spermatocytes displaying extreme meiotic defects, with no cells resembling
normal meiotic prophase | stages (Figure 1B,D). For quantification, we divided mutant
spermatocytes into classes on the basis of SYCP3 patterns (Figure 1B). Type | cells displayed
few or none of the normal dots or lines of SYCP3 staining typical of early stages of axial
element formation in leptonema; this was the most abundant class, accounting for 74 to 88% of
cells (Figure 1D). Type Il cells displayed prominent dots or short lines of SYCP3; these
accounted for 12 to 25% of cells (Figure 1D). Type lll cells had numerous longer lines of
SYCP3, consistent with more advanced axial element formation; these were rare in the younger
animals screened (<0.6%) but accumulated to slightly higher levels (3%) in the older G3 animal
screened (Figure 1B,D). All three cell types had prominent aggregates of SYCP3 and pan-
nuclear yH2AX staining (Figure 1B). These patterns are unlike those seen in mutants with
typical meiotic recombination or synaptonemal complex defects, such as Spo11™~, Dmc1™", or
Sycp1™”~ (Pittman et al., 1998; Yoshida et al., 1998; Baudat et al., 2000; Romanienko and
Camerini-Otero, 2000; Barchi et al., 2005; de Vries et al., 2005), and suggests that the ketu

mutation causes an earlier and more severe block to spermatogenesis.

ketu maps to a missense mutation in the Ythdc2 gene

Because mutagenesis was carried out on B6 males, ENU-induced mutations should be
linked to B6 variants for DNA sequences that differ between the B6 and FVB strains. Moreover,
all ketu-homozygous G3 males should be homozygous for at least some of the same linked B6
variants (Caspary, 2010; Horner and Caspary, 2011). We therefore roughly mapped the ketu
mutation by hybridizing genomic DNA from five G3 mutants to mouse SNP genotyping arrays
and searching for genomic regions where all five mice shared homozygosity for B6 SNPs
(Caspary, 2010; Jain et al., 2017). This yielded a 30.59-Mbp interval on chromosome 18,
flanked by heterozygous SNPs rs4138020 (Chr18:22594209) and gnf18.051.412
(Chr18:53102987) (Figure 2A). Whole-exome sequencing of DNA from mutants then revealed
that this interval contained a single un-annotated DNA sequence variant located in the Ythdc2
coding sequence (Figure 2B,C).

This variant is an A to G nucleotide transition at position Chr18:44840277, resulting in a
missense mutation in predicted exon 6 (Figure 2B,C). The mutation changes codon 327 (CAT,
histidine) to CGT (arginine), altering a highly conserved residue adjacent to the DEVH box

(described in more detail below).
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Ythdc2 mRNA is expressed in adult testes as well as widely in other adult and
embryonic tissues (Figure 2B,D), thus placing Ythdc2 expression at an appropriate time to
contribute to spermatogenesis. While this work was in progress, YTHDC2 protein was reported
to interact in vivo with the meiosis-specific MEIOC protein, which is itself required for meiosis
(Abby et al., 2016; Soh et al., 2017). Furthermore, a CRISPR/Cas9-induced frameshift mutation
in exon 2 of Ythdc2 (Figure 2B,C) failed to complement the ketu mutation (see below). We
conclude that this ENU-induced point mutation disrupts Ythdc2 function and is the cause of the

ketu mutant phenotype in males.

Ythdc2**" causes male and female sterility from gametogenic failure

Ythdc2**"* heterozygotes had normal fertility and transmitted the mutation in a
Mendelian ratio (30.8% Ythdc2"*, 46.6% Ythdc2**"”, and 22.6% Ythdc2*"*" from
heterozygote x heterozygote crosses; n = 305 mice; p = 0.28, Fisher’s exact test). No obvious
somatic defects were observed in Ythdc2*"**" mice. However, Ythdc2""“**" homozygous
males were sterile: none of the three animals tested sired progeny when bred with wild-type
females. Mutant males showed a 76.4% reduction in testes-to-body-weight ratio compared to
littermates (mean ratios were 0.14% for Ythdc2****" and 0.58% for wild-type and heterozygous
animals; p < 0.01, one-sided Student’s t test; Figure 3A).

In histological sections of adult testes, seminiferous tubules from Ythdc2*"*¢" males
were greatly reduced in diameter and contained only Sertoli cells and early spermatogenic cells,
with no post-meiotic germ cells (Figure 3B). To elucidate the timing of spermatogenic failure,
we examined juveniles at 10 and 14 days post partum (dpp). Meiosis first begins in male mice
during the second week after birth, with a population of germ cells proliferating mitotically and
then entering meiosis in a semi-synchronous wave (Bellve et al., 1977; Griswold, 2016).

In wild type at 10 dpp, testes displayed a less advanced subset of tubules containing
spermatogonia and Sertoli cells (La in Figure 3C), alongside more advanced tubules containing
germ cells with morphological characteristics of pre-leptonema and leptonema (Ma in Figure
3C). At the same age, testis sections from Ythdc2*"**" mice also had a mix of tubules at
slightly different stages, but a few tubules (Ab in Figure 3C) contained germ cells with abnormal
morphology in which the chromosomes were condensed and individualized (arrowheads in
Figure 3C), reminiscent of metaphase rather than prophase. By 14 dpp, essentially all tubules

in wild type had germ cells in meiotic prophase, but Ythdc2*e"/*et

mutants displayed a mix of
tubule types: some tubules (Ab in Figure 3C) had normal looking germ cells along with cells

with metaphase-like chromosomes, often containing cells with highly compacted, presumably
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apoptotic nuclei as well; and some had only a single layer of cells (spermatogonia plus Sertoli
cells) along the tubule perimeter (Ep in Figure 3C,D). The cells with metaphase-like
chromosomes were sometimes alongside cells with a more normal pre-leptotene/leptotene
morphology (arrowheads and arrows in Figure 3C, respectively). TUNEL staining confirmed a
higher incidence of apoptosis at 10 dpp and 14 dpp in the Ythdc2 ™ " mutant compared to
wild type (Figure 3D). Adult testes also contained cells with abnormally condensed metaphase-
like chromosomes, as well as nearly empty tubules (Figure 3B).

We interpret the less populated tubules in juveniles and adults as those in which
apoptosis has already eliminated aberrant cells. We conclude that Ythdc2**"*¢" spermatogonia
are able to proliferate mitotically but then transition to an aberrant state in which chromosomes
condense prematurely, and are rapidly eliminated, which accounts for the hypogonadism,
absence of postmeiotic cells in adults, and sterility.

To verify that the Ythdc2 point mutation in the ketu line is causative for the
spermatogenesis defect, we used CRISPR/Cas9 and a guide RNA targeted to exon 2 to
generate an endonuclease-mediated (em7) allele containing a 5 bp deletion plus 1 bp insertion,
resulting in a frameshift (Figure 2B,C). Ythdc2°""* heterozygotes transmitted the mutation in a
Mendelian ratio (30.7% Ythdc2™*, 48.5% Ythdc2°""*, and 20.8% Ythdc2°™"*™'; n = 101 mice; p
= 0.62, Fisher’s exact test). We expected that this mutation near the 5’ end of the gene would
be a null or cause severe loss of function. Indeed, Ythdc2°™"”*™" homozygotes displayed
hypogonadism and altered testis histology indistinguishable from Ythdc2*"**" homozygotes,
including the appearance of cells with abnormally condensed chromosomes (0.19% mean
testes-to-body-weight ratio for Ythdc2°™"*™" and 0.57% for wild-type and heterozygous animals;
66.8% reduction; p < 0.01, one-sided Student’s t test) (Figure 3A,E). Moreover, Ythdc2°™"e™’
males were sterile (neither of the two animals tested sired progeny when bred with wild-type
females for 9 weeks). Ythdc2*"*™ compound heterozygotes were equally defective (0.20%
mean testes-to-body-weight ratio for Ythdc2*"*™ and 0.63% for wild-type and single-
heterozygous animals; 67.5% reduction; p < 0.01, one-sided Student’s t test) (Figure 3A,F) and
sterile (two animals tested did not sire progeny when bred with wild-type females for 9 weeks).
Thus, ketu is allelic to Ythdc2°™".

Ythdc2*"*" females were also sterile: no pregnancies were observed from crosses of 5
homozygous mutant females to wild-type males (bred for 6-19 weeks). Ovaries from
Ythdc2""**" females were dramatically smaller compared to wild-type littermates, and no
primary or developing follicles were visible (Figure 3G). Again, Ythdc2°™"*™ homozygotes

displayed the same phenotype as Ythdc2*"“**" females (Figure 3G) and a cross between one
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homozygous mutant female to a wild-type male yielded no pregnancies (bred for 21 weeks).
These findings reveal an essential function for YTHDC2 in both male and female
gametogenesis.

Precocious meiotic progression in Ythdc2*e"/ "

spermatocytes

YTHDC2 and MEIOC coimmunoprecipitate from testis extracts and they bind an
overlapping set of transcripts as assessed by RNA immunoprecipitation, suggesting that the two
proteins function together in germ cells (Abby et al., 2016; Soh et al., 2017). This hypothesis
predicts similar phenotypes for mutants defective for either gene. In mice homozygous for a
targeted Meioc mutation, male and female germ cells enter meiosis at the correct
developmental stage (i.e., in juvenile males around 10 dpp, and in fetal ovary around embryonic
day 14.5), but show substantial meiotic defects including rapid progression to a metaphase-like
state with condensed univalent chromosomes and monopolar spindles (Abby et al., 2016; Soh
et al., 2017). Our initial findings from the screen showed comparable defects in Ythdc2 mutants
(Figure 1B,D and 3B,C,E), so we evaluated this phenotypic similarity more closely.

To evaluate the molecular characteristics of cells containing prematurely condensed
chromosomes, we stained testis sections to detect histone H3 phosphorylation on serine 10
(pH3), which appears at high levels on metaphase chromatin, and a-tubulin, a spindle
component. At 14 dpp, Ythdc2*"“**" mutants showed pH3-positive cells near the tubule
periphery, likely mitotic spermatogonia, with discrete foci that colocalized with pericentromeric
heterochromatin (DAPI-bright regions) (arrows in Figure 4A, right); this staining was also
present in wild type, and has been reported previously (Hendzel et al., 1997; Kimmins et al.,
2007; Song et al., 2011) (Figure 4A, left). More importantly, mutants also showed bright
staining in all cells that had abnormally condensed chromosomes (arrowheads in Figure 4A,
right). At this age, no wild-type spermatocytes have progressed far enough to reach a strongly
pH3-positive (metaphase |) stage (Figure 4A, left). In wild-type adults, spermatocytes at
metaphase | showed the expected bipolar a-tubulin-containing spindles and well-aligned
chromosomes at mid-spindle, with pericentromeric heterochromatin (DAPI-bright regions)

oketketu mtants showed no

oriented toward the poles (Figure 4B, left). In contrast, Ythdc
spermatocytes with bipolar spindles; instead, spermatocytes containing a mass of condensed
chromosomes had microtubules forming a single aster, consistent with the presence of
monopolar spindles (Figure 4B, right).

In normal spermatogenesis, cyclin A2 (CCNAZ2) is expressed during mitotic cell cycles in

spermatogonia, but is downregulated upon meiotic entry and is undetectable in SYCP3-positive
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spermatocytes (Ravnik and Wolgemuth, 1999). Meioc™ spermatocytes fail to properly
extinguish CCNAZ2 expression, suggesting that inappropriate retention of the spermatogonial
(mitotic) cell cycle machinery contributes to precocious metaphase and other meiotic defects
(Soh et al., 2017). When testis sections from 14-dpp wild-type animals were immunostained for
SYCP3 and CCNA2, the expected mutually exclusive localization pattern was observed:
CCNA2-positive spermatogonia were located at tubule peripheries while SYCP3-positive
spermatocytes occupied more lumenal positions (Figure 4C, left). In testis sections from
Ythdc2*"“* " animals of the same age, however, most SYCP3-positive spermatocytes also
contained detectable levels of nuclear CCNA2.

We conclude that Ythdc2-defective germ cells make an abortive attempt to enter meiosis
but then progress precociously to a metaphase-like state and undergo apoptosis. These
findings reveal substantial phenotypic similarities between Ythdc2 and Meioc mutants,
supporting the hypothesis that YTHDC2 and MEIOC function together to regulate germ cell

development around the time of meiotic entry.

YTHDC2 localizes to the cytoplasm of prophase | spermatocytes

To determine the temporal and spatial distribution of YTHDC2 protein in the male
germline, we immunostained testis sections from adult wild-type and mutant animals (Figure 5
and Figure S1). YTHDC2 staining was prominent in SYCP3-positive spermatocytes in wild
type, whereas little to no staining was observed in spermatocytes from Ythdc2°""*™" littermates
(Figure 5A), validating antibody specificity.

In contrast to wild-type littermates, Ythdc2*“**" mutants displayed only background
levels of YTHDC2 staining in SYCP3-positive cells (arrowheads in Figure 5B), indistinguishable
from Ythdc2°™"*™" mutants. The Ythdc2**" mutation may destabilize the protein, and/or
YTHDC2 may be required (directly or indirectly) for its own expression as cells transition into
meiosis.

In wild type, no YTHDC2 staining above background was observed in spermatogonia or
Sertoli cells (e.g., exemplified by the stage I-Ill tubule in Figure 5C). Strong staining first
became detectable in pre-leptotene spermatocytes (stage VIl tubule, Figure 5C), remained
strong from leptonema through diplonema, then returned to background levels in postmeiotic
cells (round spermatids) (Figure 5C). YTHDC2 appeared exclusively cytoplasmic throughout
prophase |, with no detectable nuclear signal above background. Indistinguishable patterns

were seen with an independent anti-YTHDC2 antibody (Figure S1), further confirming
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specificity. Our observations agree with and extend prior reports of cytoplasmic YTHDC2

staining in meiotic prophase | spermatocytes (Abby et al., 2016; Soh et al., 2017).

Structure and domain architecture of YTHDC2

The predicted Ythdc2 transcript encodes a putative RNA helicase of 1445 amino acids
and 161 kDa (presented schematically in Figure 6A). Protein domains and amino acid
sequence motifs characteristic of superfamily 2 DExH-box helicases are conserved in mouse
YTHDC2 and its homologs throughout Eumetazoa (Figure 6A,B). More specifically, YTHDC2 is
predicted to have the helicase core modules (DEXDc and HELICc domains, including matches
to helicase conserved sequence motifs) and two C-terminal extensions (the helicase-associated
2 (HA2) and oligonucleotide binding (OB) domains) that are characteristic of the DEAH/RNA
helicase A (RHA) helicase family (Figure 6A,B, Table S1) (Fairman-Williams et al., 2010). It is
important to note, however, that although YTHDC2 has been shown to have RNA-stimulated
ATPase activity (Morohashi et al., 2011) and is sometimes referred to as an RNA helicase
(e.g.,Tanabe et al., 2016; Soh et al., 2017), direct demonstration of helicase activity has not yet
been reported.

The ketu mutation (H327R) alters the amino acid located four residues N-terminal of the
DEVH sequence (Figure 6B). The biochemical effect of this mutation remains to be determined,
but we note that the affected histidine is invariant across likely YTHDC2 orthologs (Figure 6B).

On the basis of sequence alignments, human and mouse YTHDC2 cluster most closely
with DEAH-box proteins DHX30, DHX9, and TDRD9 (Figure 6C), but YTHDC?2 is decorated
with several auxiliary domains not found in these other proteins, namely, an N-terminal R3H
domain, an ankyrin repeat domain (ARD) inserted between the two helicase core domains and
containing a pair of ankyrin repeats, and a C-terminal YTH domain (Figure 6A and S2A). R3H
domains are implicated in nucleic acid binding and protein oligomerization (He et al., 2013; He
and Yan, 2014). The ARD may be involved in protein-protein interactions (Li et al., 2006).

Most characterized YTH domains bind specifically to RNA containing N°-
methyladenosine (m°A) (Dominissini et al., 2012; Schwartz et al., 2013; Wang et al., 2014; Xu et
al., 2015). A crystal structure of the YTH domain of human YTHDC1 bound to 5'-GG(m°A)CU
revealed that the methyl group in m°A is accommodated in a pocket composed of three
aromatic/hydrophobic residues (Xu et al., 2014). These residues are present in the YTH
domains of human and mouse YTHDC2 (triangles in Figure 6D). To evaluate this conservation
in more detail, we examined an NMR structure of the YTH domain of human YTHDC2 (Figure

6E). The YTHDC2 YTH domain adopts an open o/ fold with a core composed of six  strands

10
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surrounded by four alpha helices. This solution structure matched closely with the crystal
structure of RNA-bound YTHDC1 (Co. r.m.s.d. = 2.27 A) and, importantly, the conserved m°A-
binding residues aligned well (Figure 6F). Consistent with this structural conservation, the
human YTHDC2 YTH domain was reported to bind m®A-modified RNAs, albeit with substantially
weaker affinity than YTH domains from other proteins (Xu et al., 2015).

The YTH domain of the Schizosaccharomyces pombe Mmi1 protein is an exception to
the more widely found m6A-binding specificity. Rather than binding mPA, the Mmi1 YTH domain
binds a specific RNA sequence called a “determinant of selective removal” (DSR: 5'-UNAAA/C)
found in transcripts of meiotic and other genes (Harigaya et al., 2006; Yamashita et al., 2012;
Chatterjee et al., 2016). Crystal structures of the S. pombe Mmi1 YTH domain alone and bound
to RNA with a DSR motif implicated an RNA interaction site distinct from the protein surface by
which other YTH domain proteins bind m®A-modified RNA (Chatterjee et al., 2016; Wang et al.,
2016). Although the human YTHDC2 structure superimposes well on that of Mmi1 (Figure
S2B), several key residues involved in DSR binding are not conserved in mouse and human
YTHDC2 (red boxes in Figure 6D). Specifically, RNA binding was shown to be compromised by
mutation of Mmi1 Tyr-466, the side-chain hydroxyl of which forms a hydrogen bond with the N’
atom of DSR nucleobase A; (Wang et al., 2016). This position is a proline in both human and
mouse YTHDC2 (Figure 6D and S2B). We infer that it is unlikely that the YTH domain of
YTHDC2 utilizes the DSR interaction surface to bind RNA.

Evolutionary path of ancestral Ythdc2 and its divergent paralog, Drosophila bgcn

YTHDC2 homologs were found in metazoan species in a limited analysis of conservation
(Soh et al., 2017). The closest homolog in Drosophila melanogaster is Bgcn (benign gonial cell
neoplasm), which regulates germ cell differentiation via translational control of target mMRNAs (Li
et al., 2009b; Kim et al., 2010; Insco et al., 2012; Chen et al., 2014). Bgcn was thus proposed to
be the fruit fly ortholog of YTHDC2 (Soh et al., 2017). However, Bgcn lacks YTH and R3H
domains (Figure 7A) and is missing motifs critical for ATP binding and hydrolysis (Ohlstein et
al., 2000) (Figure 7B). These differences led us to hypothesize either that the YTHDC2 family is
highly plastic evolutionarily, or that YTHDC2 and Bgcn are not orthologs. To distinguish
between these possibilities, we characterized the YTHDC2 phylogenetic distribution.

Likely YTHDC2 orthologs were readily found throughout the Eumetazoa subkingdom by
BLAST and domain architecture searches (Figure 7C, S3 and Table S2). The complete
YTHDC2 domain architecture (R3H, helicase core domains with intact helicase motifs | and |l

and ARD insertion, HA2, OB, and YTH domains) was the most common form (Figure 6B, 7C,
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S4). Orthologs of this type were present in Cnidaria, the deepest branching eumetazoans
examined (Hydra vulgaris and the starlet sea anemone Nematostella vectensis) (Figures 6B,
7C, S3, S4), indicating that full-length YTHDC2 was present in the LCA of the Eumetazoa.

Homologs with the full domain architecture, except for the YTH domain, were observed
in green plants, exemplified by Arabidopsis thaliana NIH (nuclear DEIH-box helicase) (Isono et
al., 1999), and choanoflagellates, e.g., Salpingoeca rosetta (Genbank accession
XP_004993066). No homologs with this domain architecture were found in other eukaryotic
lineages, including fungi (see Methods). The function of the plant homologs has not been
reported to our knowledge, but their existence suggests an even more ancient evolutionary
origin for this protein family.

Most metazoan YTHDC2 orthologs are highly conserved; for example, the mouse and H.
vulgaris proteins are 44.6% identical. Nonetheless, there were exceptions to this conservation,
including apparent sporadic loss of the YTH domain in some species [e.g., platypus and
Japanese gekko among vertebrates; and Annelida (e.g., the leech Helobdella robusta) and
Echinodermata (the purple sea urchin Strongylocentratus purpuratus) among invertebrates]
(Figures 7C and S3). Assuming these losses are not errors in genome assembly or annotation,
these findings suggest that the mode of YTHDC2 binding to RNA can be evolutionarily plastic.

Even more diversity was observed in the superphylum Ecdysozoa, which includes
nematodes and arthropods (Figures 7C,D and S3). Most of these species retain the full
architecture with the YTH domain, e.g., the horseshoe crab Limulus polyphemus; the common
house spider Parasteatoda tepidariorum; the deer tick Ixodes scapularis; and most insect
lineages. However, the YTH domain was apparently lost in at least one crustacean (Daphnia
magna) and more widely in nematodes and in dipteran and hymenopteran insects. We

examined these latter exceptions in more detail.

Nematodes. All of the identified YTHDC2 homologs in the phylum Nematoda have a
form distinct from other lineages: they retain the R3H, DExH RNA helicase (including intact
helicase motifs | and Il), HA2, and OB domains, but they lack a detectable YTH domain. More
uniquely, they have a sequence between the DEXDc and HELICc helicase core domains that
aligns poorly with the equivalent region (including the ARD) in other family members, and that is
more divergent between nematode species than between most other species (Figures 6B,
7A,D, S4 and S5). For example, the mouse and zebra finch (Taeniopygia guttata) proteins are
82.3% identical across this region, whereas the Caenorhabditis elegans and Caenorhabditis
briggsae proteins share only 49.7% identity (Figure S5B). If the ARD of YTHDC2 mediates
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protein-protein interactions, the diverged structure of this region suggests that the protein-

binding partners have also diverged substantially in nematodes.

Insects. Most insect lineages have YTHDC2 orthologs with the full architecture including
the YTH domain and intact helicase motifs | and Il (Figures 6B, 7C,D, S3, and S4). Examples
include Coleoptera (e.g., the red flour beetle Triboleum castaneum), Lepidoptera (e.g., the silk
moth Bombyx mori), and Hemiptera (true bugs, e.g., the bed bug Cimex lectularius). We
conclude that the ancestral metazoan form was present in the LCA of insects.

However, likely orthologs in Hymenoptera (e.g., bees, wasps, ants) and Diptera (e.g.,
flies, mosquitoes) uniformly lack the YTH domain, suggesting this domain was lost in the LCA of
these two clades. In all Hymenoptera and some Diptera examined (mosquitoes), this YTH-less
form was the only close homolog of YTHDC2 (Figure 7D).

Remarkably, an even more diverged homolog was found specifically in members of the
Schizophora section of true flies (Figure 7D). Every species that we examined in this clade has
a YTHDC2 homolog annotated as an ortholog of D. melanogaster Bgcn (Figure 7E, Table S2).
Each has the ARD diagnostic of the YTHDC2 family but, like Bgcn, lacks R3H and YTH
domains and has Bgcn-like sequence alterations in helicase motifs | and Il that are expected to
preclude ATP binding and hydrolysis (Ohlstein et al., 2000) (Figure 7A,B, and S4). In addition,
most schizophoran flies also have a second YTHDC2 homolog that lacks the YTH domain but
that, unlike Bgcn, has intact R3H and helicase motifs | and Il (e.g., the house fly Musca
domestica and the tephritid fruit flies Rhagoletis zephyria, Ceratitus capetata, and Bactrocera
species; Figure 7B,D,E, and S4). None of the Drosophila genomes examined had this more
YTHDC2-like version (Figure 7D,E).

A straightforward interpretation is that the YTH domain was lost before the LCA of
Hymenoptera and Diptera, then a gene duplication before the LCA of Schizophora was followed
by substantial sequence diversification, creating the Bgcn subfamily. Most schizophoran species
have both YTHDC2-like and Bgcn-like paralogs, but Drosophilidae retain only the Bgcn version.
Thus, although Bgcn is the closest YTHDC2 homolog in D. melanogaster, Bgcn is a paralog of
YTHDCZ2, not its ortholog.

Supporting this interpretation, a phylogram based on multiple sequence alignments
placed one version from each of the non-Drosophila schizophoran species closer to YTHDC2
orthologs from other species, including mouse, and placed the other copy closer to D.
melanogaster Bgcn (Figure 7E). However, Bgcn paralogs from Drosophila and non-Drosophila

species formed two distinct clusters, and the more YTHDC2-like schizophoran paralogs formed
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a cluster separated from other YTHDC2 members, including other insect proteins lacking a YTH
domain (fuchsia branches in Figure 7E). Relative to YTHDC2 from non-schizophoran species,
there is greater diversity between Bgcn family members within Schizophora and even within
Drosophila (Figure 7E). Rapid evolution of Bgcn in Drosophila was noted previously, with
evidence of positive selection in D. melanogaster and D. simulans (Civetta et al., 2006; Bauer
DuMont et al., 2007) but not D. ananassae (Choi and Aquadro, 2014). Our findings extend this
diversity to other schizophoran flies and place the evolutionary dynamics of Bgcn (and
schizophoran YTHDC?2) in striking contrast to the conservation of the ancestral YTHDC2 form in

most other metazoan lineages.

Drosophila bag of marbles encodes a highly diverged homolog of MEIOC

Like YTHDC2, MEIOC is highly conserved, with likely orthologs throughout most
lineages in Eumetazoa, including Cnidaria (Abby et al., 2016; Soh et al., 2017) (Figure 8A). The
MEIOC C-terminus contains a domain with a putative coiled-coil motif (DUF4582 (domain of
unknown function); pfam15189); this domain is necessary and sufficient for interaction with
YTHDC2 (Abby et al., 2016). In Eumetazoa, DUF4582 appears to be unique to MEIOC
orthologs and is the protein’s most highly conserved feature.

In D. melanogaster, the product of the bag of marbles (bam) gene is a functional
collaborator and direct binding partner of Bgcn (Gonczy et al., 1997; Lavoie et al., 1999;
Ohlstein et al., 2000; Li et al., 2009b; Shen et al., 2009; Kim et al., 2010; Insco et al., 2012;
Chen et al., 2014). By analogy with YTHDC2-MEIOC, it was thus proposed that Bam may be a
functional analog of MEIOC (Soh et al., 2017). However, no sequence similarity between
MEIOC and Bam has been detected. Moreover, the rapid diversification of Bgcn and in
particular its biochemical divergence from the ancestral YTHDC2 form raised the possibility that
Bgcn has acquired novel interaction partners, i.e., that Bam and MEIOC are not evolutionarily
related. To address these issues, we examined the sequence and phylogenies of Bam and
MEIOC.

BLAST searches using mouse or human MEIOC as queries against available dipteran
genomes identified no clear homologs (expected (E) value threshold < 20), even though
homologs containing DUF4582 were easily found in other insect lineages (E < 10'35), including
Hymenoptera (e.g., the bumblebee Bombus terrestris) (Figure 8A, Table S$2). Conversely,
searches using D. melanogaster Bam as the query identified homologs in schizophoran flies (E

<107 Figure 8A, Table S2), establishing that Bam orthologs are coincident with the presence
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of Bgcn-like proteins. However, these searches failed to find Bam homologs in any other
species, including non-schizophoran Diptera.

Nonetheless, evidence of remote sequence similarity was observed when MEIOC
orthologs from widely divergent species were compared directly with schizophoran Bam
orthologs by multiple sequence alignment using COBALT (constrained basic alignment tool
(Papadopoulos and Agarwala, 2007)) (Figure 8B,C) or PROMALS3D ((Pei and Grishin, 2014);
data not shown). Bam orthologs are shorter, lacking an N-terminal extension present in MEIOC
(Figure 8B). Short patches of sequence similarity with Bam were distributed across the central,
nondescript region of MEIOC, but the region with greatest similarity spanned much of the
DUF4582 domain (Figure 8B). Supporting the significance of this similarity, the C-terminus of
Bam, including part of the conserved region, mediates the direct interaction with Bgcn (Li et al.,
2009b), as DUF4582 does for MEIOC-YTHDC2 (Abby et al., 2016). Interestingly, however, the
COILS prediction algorithm (Lupas et al., 1991) did not detect putative coiled-coil motifs in Bam,
unlike MEIOC (data not shown). We conclude that D. melanogaster Bam is evolutionarily
derived from MEIOC and has a functionally homologous version of the DUF4582 domain, albeit
diverged enough that it is not readily recognized as such.

A neighbor-joining tree based on multiple sequence alignments divided schizophoran
Bame-like proteins into two clusters representing, respectively, Drosophila and non-Drosophila
species (Figure 8A). Furthermore, Bam-like proteins showed substantially more sequence
diversity than MEIOC-like proteins, and there also was more diversity within Drosophila species
than within the other schizophoran flies (Figure 8A). Thus, conservation patterns are correlated
between MEIOC/Bam and YTHDC2/Bgcn: YTHDC2 and MEIOC are much more highly
conserved than are Bgcn and Bam, and Bgcn and Bam display even greater sequence diversity

among Drosophila than in other clades in Schizophora.
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DisCUSSION

This study establishes an essential function for Ythdc2 in the germlines of male and
female mice, specifically at the stage when stem cells transition from mitotic to meiotic divisions.
Ythdc2 mutant spermatogonia are able to initiate at least part of the meiotic developmental
program, making synaptonemal complex precursors and initiating recombination, but most cells
then rapidly progress to a premature metaphase-like state and die by apoptosis. Ythdc2 and
Meioc mutants have highly similar meiotic phenotypes, supporting the hypothesis that these
proteins function together to regulate germ cell differentiation in the mouse gonad (Abby et al.,
2016; Soh et al., 2017). During the course of this work, we isolated a novel point-mutated allele
of Ythdc2 (ketu) that harbors a non-synonymous mutation of a conserved residue, illustrating
the power of phenotype-based forward-genetic approaches for dissecting mammalian
reproductive processes.

The YTHDC2 domain architecture, with its RNA interaction modules and putative RNA
helicase domains, leads to the obvious hypothesis that YTHDC2 regulates gene expression
posttranscriptionally via direct interaction with specific RNA targets. Specifically how this
regulation is accomplished remains unclear, however. Two distinct models have been proposed
in which the YTHDC2-MEIOC complex controls mRNA stability, either stabilizing the transcripts
of meiotic genes (Abby et al., 2016) or destabilizing the transcripts of mitotic cell cycle genes
(Soh et al., 2017). Conversely, it has been speculated that YTHDC2 promotes mRNA
translation, based on indirect data concerning the effects of shRNA knockdown of YTHDC2
expression in human colon cancer cell lines (Tanabe et al., 2016). We propose a further
alternative that YTHDC2-MEIOC is a translational suppressor, based on analogy with Bgcn-
Bam, which has well documented translational suppression functions in D. melanogaster germ
cells (Li et al., 2009b; Shen et al., 2009; Kim et al., 2010; Insco et al., 2012; Li et al., 2013; Chen
et al., 2014). The cytoplasmic localization of the YTHDC2-MEIOC complex (this study and
(Abby et al., 2016; Soh et al., 2017)) is consistent with all of these possibilities.

RNA co-immunoprecipitation data suggest that YTHDC2 interacts with specific RNA
targets in vivo (Abby et al., 2016; Soh et al., 2017), but the detailed list of putative targets has
differed between studies and the molecular determinants of binding specificity remain unknown.
Our structural analyses support the conclusion that the YTH domain mediates direct interaction
with mPA-containing RNA substrates, also suggested by direct binding studies in vitro (Xu et al.,
2015). RNA-stimulated ATPase activity has been reported for purified YTHDC2 (Morohashi et
al., 2011), but helicase activity has not yet been demonstrated, and what the ATPase function

might be remains unclear. Additionally, the biochemical role of MEIOC within the complex is
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unknown. Non-exclusive possibilities include modulating YTHDC2 RNA binding specificity,
facilitating interactions with other protein partners, and/or modifying ATPase/helicase activities
of YTHDC2.

Notwithstanding the intimate connection of YTHDC2 to MEIOC in the germline, it is likely

5 that YTHDC2 has additional, independent functions, because it is expressed much more widely
than the highly germline-specific MEIOC. Supporting this hypothesis, YTHDC2 has been
implicated in hepatitis C virus replication and cell proliferation in cultured, transformed human
cells not known to express MEIOC (Morohashi et al., 2011; Tanabe et al., 2014; Tanabe et al.,
2016). Although we have not observed obvious somatic phenotypes in Ythdc2""“*" or

10 Ythdc2*™"*™ homozygotes, or in Ythdc2*"*™ compound heterozygotes, we cannot rule out
cellular defects that do not yield gross pathology.

We demonstrate here that the YTHDC2 sequence is well conserved across most
metazoan lineages, including the deeply branching Cnidaria. Hence, we conclude that the full-
length YTHDC2 is the ancestral form, already present in the LCA of Metazoa. A related protein

15  (possibly lacking the YTH domain) was likely present even earlier, before the LCA of green
plants and metazoans. However, we also uncovered substantial structural diversity in the
nematode, hymenopteran, and dipteran lineages within Ecdysozoa, and particularly in
schizophoran flies. In the simplest cases (Hymenoptera and non-schizophoran Diptera), the
structural variation consists principally of loss of the YTH domain. The YTH domain thus

20  appears to be an evolutionarily and biochemically modular contributor to YTHDC2 function.

The nematode variant also lacks a YTH domain, but in addition, the region equivalent to
the ARD is highly divergent relative to the ancestral sequence and even between different
nematode species. It remains to be determined whether this diversification reflects positive
selection for changing sequence (source unknown) or neutral selection (e.g., if the nematode

25 protein has lost an interaction partner, relaxing constraint on the ARD sequence). The function
of this protein in nematodes also remains unknown. The C. elegans ortholog of YTHDC2 is
F52B5.3 (Table S2), and the MEIOC ortholog is Y39A1A.9 (Abby et al., 2016). Both proteins
are poorly characterized and, to our knowledge, no phenotypes caused by mutation or RNAI
have been observed (http://www.wormbase.org/).

30 More striking still, the dipteran YTH-less YTHDC2 family member in the LCA of the
Schizophora appears to have been duplicated to form the Bgcn family, which also lost the R3H
domain and accumulated the previously described alterations in ATPase motifs that preclude
ATP binding and hydrolysis (Ohlstein et al., 2000). Our studies also revealed for the first time

that the Bgcn partner Bam is a divergent homolog of MEIOC unique to Schizophora. Because
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we have been unable to identify Bam/MEIOC homologs in non-schizophoran Diptera, it is
currently unclear if bam arose from a Meioc gene duplication (analogous to the evolutionary
trajectory of bgcn) or if it is simply a highly diverged Meioc ortholog. Given the presence of only
Bam in non-Drosophila Schizophora, it would be interesting to know whether the YTHDC2
ortholog in these species can interact with Bam.

Previous researchers documented that both Bam and Bgcn are rapidly diversifying in
Drosophila species (Civetta et al., 2006; Bauer DuMont et al., 2007; Choi and Aquadro, 2014).
Our findings extend this property to schizophoran flies more generally and provide further
context by showing that both Bgcn-like and, when present, YTHDC2-like proteins have
experienced much greater sequence diversification within Schizophora than elsewhere, and that
this is mirrored by more rapid sequence changes in Bam compared with the ancestral MEIOC in
other lineages. The coincident occurrence — at or before the LCA of Schizophora — of the
Ythdc2/bgcn gene duplication, the YTHDC2, Bgcn, and Bam diversification, and the Bgcn
structural and biochemical changes makes it tempting to speculate that these were coordinate
changes driven by a common set of selective pressures.

If so, what was (is) the source of these pressures? It was speculated that the
diversification of Bam and Bgcn may be tied to infection with the alpha-proteobacteria
Wolbachia (Bauer DuMont et al., 2007). Wolbachia is an endosymbiont in many species of
insects and other arthropods that is transmitted from parent to offspring and manipulates host
reproductive processes (Engelstadter and Hurst, 2009; Pietri et al., 2016). Interestingly,
Wolbachia also infects a number of nematode species (Ferri et al., 2011), suggesting a possible
link to the rapid diversification of YTHDC2 orthologs in that clade as well. However, direct
evidence in any species for a link between Bgcn/Bam and Wolbachia remains elusive.
Moreover, many arthropod species across diverse taxa are infected with Wolbachia
(Engelstadter and Hurst, 2009; Pietri et al., 2016), but we find that the majority of these taxa
have more evolutionarily stable YTHDC2 and MEIOC sequences. Thus, if Bgcn and Bam
diversification can be attributed to host genomic conflicts with Wolbachia, it may reflect a mode
of interaction between Wolbachia and the germline that is unique to schizophoran flies (and
possibly nematodes).

The complex evolutionary relationships we document here raise the possibility that
mammalian YTHDC2 and fly Bgcn have substantially different functions and mechanisms of
action, especially given the striking biochemical changes private to the Bgcn subfamily.
Moreover, the phenotypic outcomes in mutants differ, for example bam and bgcn mutant germ

cells do not enter meiosis (McKearin and Spradling, 1990; Gonczy et al., 1997), whereas Meioc
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and Ythdc2 mutants do. Nonetheless, our findings, along with the recent characterization of
Meioc mutants (Abby et al., 2016; Soh et al., 2017), also establish intriguing parallels with bgcn
and bam; in both mouse and fruit fly these genes play critical roles in the switch from transit
amplifying mitotic cell cycles into meiosis, in both male and female germlines. On the basis of

5 this similarity, and because members of both the YTHDC2/Bgcn and MEIOC/Bam families
appear to be nearly ubiquitous in metazoans, we propose that the YTHDC2-MEIOC complex
has an evolutionarily ancient and conserved function as a regulator of germ cell fate and

differentiation.

10
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MATERIALS AND METHODS

Generation of ketu mutants and endonuclease-targeted Ythdc2 mutations

All experiments conformed to regulatory standards and were approved by the Memorial
Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee. Wild-
type B6 and FVB mice were purchased from The Jackson Laboratory (Bar Harbor, Maine).
Details of the ENU mutagenesis and breeding for screening purposes are provided elsewhere
(Jain et al., 2017) (Figure 1A) and were similar to previously described methods (Caspary,
2010; Probst and Justice, 2010).

To screen for meiotic defects, spermatocyte squash preparation and immunostaining for
SYCP3 and yH2AX (described below) were carried out using testes from pubertal G3 males that
were 215 days post partum (dpp) or from adult G3 males (Figure 1B). At these ages,
spermatocytes in the relevant stages of meiotic prophase | are abundant in normal mice (Bellve
et al., 1977). Testes were dissected, frozen in liquid nitrogen, and stored at -80° until samples
from ~24 G3 males had been collected, then immunocytology was carried out side by side for
all animals from a given line. One testis per mouse was used for cytology and the second was
reserved for DNA extraction.

Genotyping of ketu animals was done by PCR amplification using ketu F and ketu R
primers (oligonucleotide primer sequences are provided in Table S$3), followed by digestion of
the amplified product with BstXI (NEB, Ipswich, Massachusetts). Wild-type mice contain a BstXI
restriction site that is mutated by the ketu mutation (A to G).

CRISPR/Cas9-mediated genome editing was done by the MSKCC Mouse Genetics
Core Facility to generate em alleles. A guide RNA (target sequence 5'-
AATAAAGGCTCTTTCCGTAC) was designed to target predicted exon 2 of Ythdc2 (NCBI Gene
ID: 240255 and Ensembl Gene ID: ENSMUSG00000034653) and used for editing as described
(Romanienko et al., 2016). Using the T7 promoter in the pU6T7 plasmid, the gRNA was
synthesized by in vitro transcription and polyadenylated, then 100 ng/pl of gRNA and 50 ng/ul of
Cas9 mRNA were co-injected into the pronuclei of CBA x B6 F2 hybrid zygotes using
conventional techniques (Hogan and Lacy, 1994). Founder mice were tested for the presence of
mutated alleles by PCR amplification of exon 2 using Ythdc2 F1 and Ythdc2 R1primers,
followed by T7 endonuclease | (NEB) digestion.

To determine the specific mutations in T7-positive Ythdc2°" founder mice, the targeted
region was amplified by PCR of tail-tip DNA (Ythdc2 F1 and Ythdc2 R1 primers) and sequenced
on the lllumina MiSeq platform (lllumina Inc, San Diego, California) at the MSKCC Integrated

Genomics Operation. Reads were aligned to mouse genome assembly GRCm37/mm9 and
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variants were identified using Genome Analysis Toolkit version 2.8-1-g932cd3a (McKenna et
al., 2010; DePristo et al., 2011; Van der Auwera et al., 2013). Variants with a minimum variant
frequency of 0.01 were annotated using VarScan v2.3.7 software (Koboldt et al., 2012).
Ythdc2®™ founder males mosaic for frame-shift mutations were bred with B6 mice and potential
heterozygote carriers were genotyped by PCR amplification of the targeted region (Ythdc2 F2
and Ythdc2 R2 primers), followed by Sanger sequencing (Ythdc2 Seq1 primer) and analysis
with CRISP-ID (Dehairs et al., 2016). A single founder male carrying the em1 mutation was
used to establish the Ythdc2°™ line, after two backcrosses to B6 mice. Ythdc2®™" heterozygote
carriers were then interbred to generate homozygotes, or crossed to ketu mice to generate
compound heterozygotes carrying both the ketu allele and a Ythdc2°™ allele. Genotyping of
Ythdc2°™" animals was done by PCR amplification using Ythdc2 F3 and Ythdc2 R3 primers,
followed by digestion of the amplified product with Rsal (NEB). The 5-bp deletion in Ythdc2®™

(Figure 1D) removes an Rsal site that is present in wild-type mice.

Genetic mapping and exome sequencing

Genome assembly coordinates are from GRCm38/mm10 unless indicated otherwise.
ketu was coarsely mapped by genome-wide microarray SNP genotyping (lllumina Mouse
Medium Density Linkage Panel) using genomic DNA from testes or tail biopsies as described
(Jain et al., 2017). Five G3 mutant mice obtained from the initial screen cross (a, b, c, d, e in
Figure 1C), as well as the F1 founder, one B6 and one FVB control mice were genotyped.
Microarray analysis was performed at the Genetic Analysis Facility, The Centre for Applied
Genomics, The Hospital for Sick Children, Toronto, ON, Canada. For bioinformatics analysis,
777 SNPs were selected based on the following criteria: allelic variation in B6 and FVB,
heterozygosity in F1 founder, and autosomal location.

We performed whole-exome sequencing on the same five mutant G3 mice analyzed by
microarray SNP genotyping and DNA was prepared as for microarray analysis. Whole-exome
sequencing was performed at the MSKCC Integrated Genomics Operation. A unique barcode
was incorporated into the DNA library prepared from each mouse, followed by library
amplification with 4 PCR cycles. Libraries were then quantified and pooled at equal
concentrations into a single sample for exome capture. Exome capture was performed using
SureSelectXT kit (Agilent Technologies, Santa Clara, California) and SureSelect Mouse All
Exon baits (Agilent Technologies). Libraries were amplified post-capture with 6 PCR cycles and
sequenced to generate approximately 80 million 100-bp paired-end reads. Read alignment,

variant calling and variant annotation were done as described (Jain et al., 2017), with the

21


https://doi.org/10.1101/171827
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

30

bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

following two modifications. Reads with three or more mismatches and reads without a pair
were discarded using SAMtools version 0.1.19 (Li et al., 2009a). Variants were filtered to only
include those that 1) had a minimum sequencing depth of five reads, 2) were called as

homozygous, and 3) were not known archived SNPs.

ENCODE data analysis

ENCODE long-RNA sequencing data (release 3) with the following GEO accession
numbers were used: testis GSM900193, cortex GSM1000563, frontal lobe GSM1000562,
cerebellum GSM1000567, ovary GSM900183, lung GSM900196, large intestine GSM900189,
adrena gland GSM900188, colon GSM900198, stomach GSM900185, duodenum GSM900187,
small intestine GSM900186, heart GSM900199, kidney GSM900194, liver GSM900195,
mammary gland GSM900184, spleen GSM900197, thymus GSM900192, whole brain E14.5
GSM1000572, limb E14.5 GSM1000568, liver E14.5 GSM1000571. We acknowledge the
ENCODE Consortium (Consortium, 2012) and the ENCODE production laboratory of Thomas

Gingeras (Cold Spring Harbor Laboratory) for generating the datasets.

Histology

Histological analysis was conducted as described (Jain et al., 2017). Testes from adult
or juvenile mice were fixed overnight in 4% paraformaldehyde (PFA) at 4°, or in Bouin’s fixative
for 4 to 5 hr at room temperature. Bouin’s-fixed testes were washed in water for 1 hr at room
temperature, followed by five 1-hr washes in 70% ethanol at 4°. Wild-type and mutant ovaries
were fixed in 4% PFA, overnight at 4° and for 1 hr at room temperature, respectively. PFA-fixed
tissues were washed twice for 5 min in water at room temperature. Fixed tissues were stored in
70% ethanol for up to 5 days prior to embedding, embedded in paraffin, and sectioned (5 ym).
Periodic acid Schiff (PAS) staining, immunohistochemical TUNEL assay, and
immunofluorescent staining were performed by the MSKCC Molecular Cytology Core Facility
using the Autostainer XL (Leica Microsystems, Wetzlar, Germany) automated stainer for PAS
with hematoxylin counterstain, and using the Discovery XT processor (Ventana Medical
Systems, Oro Valley, Arizona) for TUNEL and immunofluorescent staining. For
immunofluorescent staining, slides were incubated with primary antibody for 5 hr, followed by 60
min incubation with biotinylated goat anti-rabbit, horse anti-goat, or horse anti-mouse antibodies
(1:200, Vector Labs, Burlingame, California). Streptavidin-HRP D (part of DABMap kit, Ventana
Medical Systems) was used for detection, followed by incubation with Tyramide Alexa Fluor 488

or 594 (Invitrogen, Carlsbad, California). PAS-stained and TUNEL slides were digitized using
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Pannoramic Flash 250 (3DHistech, Budapest, Hungary) with 20x objective. Images were
produced and analyzed using the Pannoramic Viewer software (3DHistech). Higher
magnification images of PAS-stained slides were produced using Axio Observer Z2 microscope
(Carl Zeiss, Oberkochen, Germany) with 63x oil-immersion objective. Immunofluorescence
images were produced using a TCS SP5 Il confocal microscope (Leica Microsystems) with
40x/1.25 NA or 63x/1.4 NA oil-immersion objective.

Cytology

Spermatocyte squashes were prepared as described (Page et al., 1998), with
modifications as indicated in (Jain et al., 2017) and slides were stored at -80°. Slides were
thawed in 1x PBS for 5 min with gentle agitation and immunofluorescent staining was performed
as described (Dowdle et al., 2013) using primary and appropriate Alexa Fluor secondary
antibodies (1:100; Invitrogen). Primary antibody staining was done overnight at 4° and
secondary antibody staining was done for 30 min at room temperature. All antibodies were
diluted in blocking buffer. Stained slides were rinsed in water and mounted with coverslips using
mounting medium (Vectashield, Vector Labs) containing 4',6-diamidino-2-phenylindole (DAPI).
Slides were stored at 4° for up to 5 days, and were imaged on a Marianas Workstation
(Intelligent Imaging Innovations (Denver, Colorado); Zeiss Axio Observer inverted epifluorescent
microscope with a complementary metal-oxide semiconductor camera) using a 63x oil-

immersion objective.

Antibodies

Primary antibodies and dilutions used for cytology are as follows: mouse anti-SYCP3
(SCP-3 (D-1), 2 pg/ml, Santa Cruz (Dallas, Texas), sc-74569), rabbit anti-yH2AX (p-Histone
H2A.X (ser 139), 0.13 pg/ml, Santa Cruz, sc-101696). Those used for histology are as follows:
mouse anti-SYCP3 (SCP-3 (D-1), 1 ug/ml, Santa Cruz, sc-74569), goat anti-YTHDC2 (YTHDC2
(G-19), 5 yg/ml, Santa Cruz, sc-249370), rabbit anti-YTHDC2 (YTHDC2, 1 ug/ml, Bethyl
Laboratories (Montgomery, Texas), A303-025A), rabbit anti-CCNAZ2 (anti-Cyclin A2 (Y193), 2.5
pg/ml, Abcam (Cambridge, Massachusetts), ab32386), mouse anti-a-Tubulin (anti-a-Tubulin,
2.5 pg/ml, Millipore (Billerica, Massachusetts), MABT205), rabbit anti-pH3 (anti-phospho-
Histone H3 (Ser10), 1 pg/ml, Upstate (Millipore) , 06-570).
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Phylogenetic analysis

Mouse YTHDC2 was used as a query in searches using BLASTP (version 2.6.1
(Altschul et al., 1997)) and CDART (conserved domain architecture retrieval tool (Geer et al.,
2002)) using NCBI servers. Searches were performed iteratively, with new searches seeded
with hits from initial searches. When multiple accessions were present in the same species, we
chose the longest isoform available. Searches were further repeated in targeted mode (i.e.,
restricting the taxon ID in BLASTP) to examine specific lineages in more detail (e.g., Nematoda,
Schizophora, Insecta, Crustacea). MegAlign Pro (DNASTAR Inc., Madison, Wisconsin) version
14.1.0 (118) was used to generate multiple sequence alignments with Clustal Omega (Sievers
et al., 2011) or MUSCLE (Edgar, 2004) using default settings; to calculate alignment distances
using the scoredist function (Sonnhammer and Hollich, 2005); and to output neighbor-joining
trees using the BioNJ algorithm (Gascuel, 1997). COBALT (Papadopoulos and Agarwala, 2007)
alignments were carried out on the NCBI server
(https://www.ncbi.nIm.nih.gov/tools/cobalt/re_cobalt.cgi). NCBI taxonomic cladograms were
constructed using the PhyloT web tool (http://phylot.biobyte.de/). Trees were visualized using
the interactive tree of life (ITOL) server (http://itol.embl.de/) (Letunic and Bork, 2016) or FigTree
version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree).

From targeted BLASTP searches of the following taxa, no clear matches to the YTHDC2
architecture were observed: Amoebozoa, Fornicata, Euglenozoa, Alveolata, Apusozoa,
Cryptophyta, Haptophyceae, Heterolobosea, Parabasalia, Rhizaria, Rhodophyta,
Stramenopiles. In these lineages, the closest homologs found were RNA helicase-like proteins
more similar in architecture to the DHX30 family, without R3H and YTH domains and lacking the
ARD insertion between the helicase core domains.

We also did not find clear matches to the YTHDC2 architecture in fungi. The closest
Saccharomyces cerevisiae homolog (YLR419W) lacks the diagnostic ARD insertion between
the helicase core domains, has N-terminal UBA (ubiquitin-associated) and RWD domains rather
than an R3H domain, and lacks a YTH domain. YLR419W thus more closely resembles human
DHX57 (Figure S2A), which is indeed the top hit when YLR419W is used as the query in a
BLASTP search against the human genome (GenBank accession AAH65278.1; 29% identity, E

value 2 x 10™"9),

Protein analysis

Domain annotations were obtained from SMART (Letunic et al., 2015) and pfam database

(Finn et al., 2016) searches. Atomic coordinates of NMR and crystal structures of YTH domains
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were retrieved from the following Protein Data Bank (PDB) entries: 2YU6 (human YTHDC2 apo
structure), 4R3I (RNA-bound human YTHDC1), 5DNO (RNA-bound S. pombe Mmi1), and 5SH8A
(S. pombe Mmi1 apo structure). Alignments of three-dimensional structures were performed
using the cealign command (Vertrees, 2007) and the figures prepared using PyMol

(Schrodinger, 2015). Protein accession numbers are listed in Tables S1 and S2.

Data availability

Reagents and mouse strains are available upon request.
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FIGURE LEGENDS

Figure 1. Mice from the ENU-induced mutant line ketu have meiotic defects.

(A) Breeding scheme. Mutagenized males (B6) were crossed to females of a different strain
(FVB) to produce founder (F1) males that were potential mutation carriers. Each F1 male was
then crossed to wild-type FVB females. If an F1 male was a mutation carrier, half of his
daughters (second generation, G2) should also be carriers, so the G2 daughters were crossed
back to their F1 sire to generate third-generation (G3) offspring that were potentially
homozygous. For a line carrying a single autosomal recessive mutation of interest, one eighth of
G3 males were expected to be homozygous. Un-filled shapes represent animals that are wild-
type for a mutation of interest, half-filled shapes are heterozygous carriers, and filled shapes are
homozygotes. (B) Representative images of squashed spermatocyte preparations
immunostained for SYCP3 and yH2AX. Mutant spermatocytes were classified as Types |, Il, or
lIl on the basis of SYCP3 patterns. Scale bar represents 20 um. (C) Screen results for the ketu
line. The F1 male was harem-bred to six G2 females, yielding 26 G3 males that displayed either
a wild-type or ketu (mice a, b, c, d, e) phenotype. (D) Distribution of SYCP3-staining patterns in
four G3 ketu mutants (a, b, ¢, d) and their phenotypically wild-type littermates (a’, b’, ¢'). Wild-
type spermatocytes were classified as either early prophase-like (leptonema or zygonema) or
late prophase-like (pachynema or diplonema). Spermatocytes from mutant mice were
categorized as described in panel B. The number of SYCP3-positive spermatocytes counted

from each animal is indicated and raw data are provided in Figure 1D—-Source Data 1.

Figure 2. ketu mice harbor a point mutation in Ythdc2.

(A) SNP genotypes of five G3 ketu mutants (a, b, c, d, e; from Figure 1C) obtained using the
lllumina Medium Density Linkage Panel. The single 30.59-Mbp region of B6 SNP homozygosity
that is shared between mutants is highlighted in pink. (B) Top: Schematic of Ythdc2 (as
predicted by Ensembl release 89) showing the locations of the ENU-induced lesion and the
gRNA used for CRISPR/Cas9-targeting. Bottom: The density of ENCODE long RNA-
sequencing reads (release 3) from adult testis within a window spanning from 3,500 bp
upstream to 200 bp downstream of Ythdc2. The vertical viewing range is 0-50; read densities
exceeding this range are overlined in pink. (C) The ketu and CRISPR/Cas9-induced (em1)
alleles of Ythdc2. (D) Ythdc2 and Meioc expression level estimate (mean reads per kilobase per
million mapped reads (RPKM) values provided by ENCODE (Figure 2D-Source Data 1)) in

adult and embryonic tissues.
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Figure 3. ketu and em1 alleles of Ythdc2 lead to gametogenic failure and fail to
complement each other.

(A) The ratios of testes weight to body weight for 6- to 34-week-old mice (Figure 3A-Source
Data 1). (B) PAS-stained sections of Bouin’s-fixed testes from an 8-month-old Ythdc2+e"/ "
male and a wild-type littermate. (C) PFA-fixed, PAS-stained testis sections. In wild type,
examples are indicated of a less advanced (“La”) tubule harboring cells with spermatogonia-like
morphology and Sertoli cells, and more advanced (“Ma”) tubules harboring cells with
morphological characteristics of pre-leptonema and meiotic prophase stages. In the mutant,
examples are indicated of abnormal (“Ab”) tubules containing cells with condensed and
individualized chromosomes (arrowheads), and an emptier-looking (“Ep”) tubule harboring cells
with spermatogonia-like morphology and Sertoli cells. (D) TUNEL-stained testis sections. Black
arrowheads point to TUNEL-positive cells (stained dark brown). (E and F) PFA-fixed, PAS-
stained testis sections from an 8-week-old Ythdc2°™"*™ male, a 7-week-old Ythdc2*""*™ male,
and their wild-type littermates. (G) PFA-fixed, PAS-stained ovary sections from a 6-week-old
Ythdc2*"* " female and a wild-type littermate, and a 9-week-old Ythdc2°""*™ female and a
heterozygous littermate. In the higher magnification views of panels B, C, E, and F, arrowheads
indicate cells with condensed and individualized chromosomes, arrows indicate cells with
morphological characteristics of pre-leptonema and leptonema, and S and Spg indicate Sertoli
cells and cells with morphological characteristics of spermatogonia, respectively. In panels B, C,
E, and F, the scale bars represent 50 um and 20 ym in the lower and higher magnification
images, respectively. In panels D and G, the scale bars represent 50 ym and 300 pm,

respectively.

Figure 4. Ythdc2**"**" spermatocytes show precocious meiotic progression.

(A) Anti-pH3 immunofluorescence on testis sections from 14-dpp Ythdc2e"/ket

and wild-type
littermates. Arrows indicate cells with spermatogonia-like morphology and arrowheads point to
cells with abnormally condensed chromosomes. (B) Anti-a-tubulin immunofluorescence on
testis sections from 2-month-old Ythdc2**"*¢" and wild-type littermates. (C) CCNA2 and SYCP3
immunofluorescence on testis sections from 14-dpp Ythdc2"*"**" and wild-type littermates.
Arrows point to cells with spermatogonia-like morphology and arrowheads indicate SYCP3-
positive spermatocytes. In panels A and B, the scale bars represent 5 pm. In panel C, the scale
bars represents 50 ym and 15 um in the lower (left) and higher (right) magnification images,

respectively.
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Figure 5. YTHDC2 localization in wild-type and mutant testes.

(A and B) YTHDC2 and SYCP3 immunofluorescence on testis sections from 2-month-old
Ythdc2°™"*™  Ythdc2"*"**" and their wild-type litermates. Arrowheads indicate SYCP3-positive
spermatocytes. Scale bars represent 100 um. (C) YTHDC2 and SYCP3 immunofluorescence on
testis sections from an adult B6 male. Approximate seminiferous epithelial cycle stages (based
on SYCP3 and DAPI staining patterns) are provided. S, Sertoli cell; Spg, spermatogonia; L,
leptotene spermatocyte; Z, zygotene spermatocyte; P, pachytene spermatocyte; D, diplotene

spermatocyte; RS, round spermatid, ES, elongating spermatid. Scale bar represents 15 ym.

Figure 6. YTHDC2 domain architecture and structure of its YTH domain.

(A) Schematic of mouse YTHDC2 domain structure (not to scale). Sequence motifs
characteristic of superfamily 2 DExH-box helicases (I, la, II, Ill, IV, V, VI) within the helicase core
domain are indicated, along with sequence logos from Clustal Omega alignments of 157
superfamily 2 DExH-box helicases. The height of each stack of residues reflects the degree of
conservation, and the height of each amino acid symbol within each stack is proportional to the
frequency of a residue at that position. Amino acids are colored according to their physico-
chemical properties (hydrophilic (blue), neutral (green), and hydrophobic (black)). (B) Clustal
Omega alignments of sequences around helicase motifs | and Il from YTHDC2 proteins of the
indicated species. The position of the kefu mutation is indicated. The residues are shaded
based on the percentage that agree with the consensus. Sequence logos were generated from
Clustal Omega alignments of YTHDC2 homologs from 201 species and are colored as in panel
A. (C) Cladogram of Clustal Omega protein sequence alignments of mouse and human
YTHDC2 paralogs. The tree was rooted using vaccinia virus NPH-II sequence and D.
melanogaster Bgcn is included for comparison. DHX29 is an RNA helicase that promotes
translation initiation on mMRNAs with structured 5’ untranslated regions (Pisareva et al., 2008).
DHX57 is an uncharacterized protein of unknown function. DHX36 has G-quadruplex unwinding
activity for DNA and RNA and is involved in antiviral responses to dsRNA (Vaughn et al., 2005;
Yoo et al., 2014). DHX9 (also known as RNA helicase A and DNA helicase Il) has both DNA
and RNA helicase activities and multiple cellular functions, including in genome stability and
viral and cellular RNA metabolism (Friedemann et al., 2005; Lin et al., 2012). DHX30 is a poorly
characterized protein required for cell viability in the developing mouse embryo (Zheng et al.,
2015). And TDRD9 forms a complex with MIWI2 involved in piRNA-directed transposon
silencing in the male germline (Shoji et al., 2009; Wenda et al., 2017). (D) Clustal Omega

alignment of YTH domain sequences. Inverted triangles in auburn indicate residues that make
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up the hydrophobic pocket that binds m°A. Residues boxed in auburn are required for Mmi1
interaction with RNA (Wang et al., 2016). (E) NMR structure of the YTH domain from human
YTHDC2 (PDB ID: 2YUB). (F) Structure of the m°A binding pocket is conserved in YTHDC2.
The solution structure of YTH domain from human YTHDC2 (green) is shown superimposed on
the crystal structure of the RNA-bound YTH domain from human YTHDC1 (pink; PDB ID: 4R3l)
(Xu et al., 2014). The m°A nucleotide and the hydrophobic amino acid residues lining the
binding pocket are shown at a higher magnification on the right. Protein accession numbers for
sequence logos in panel A are in Table S$1; all other protein accession numbers are in Table
S2.

Figure 7. Distribution of YTHDC2 variants in Metazoa.

(A) Schematic of domain architectures (not to scale) of metazoan YTHDC2 orthologs and
paralogs. (B) Clustal Omega alignment of sequences around helicase motifs | and Il for
YTHDCZ2-like and Bgcn-like proteins from schizophoran flies. Mouse YTHDCZ2 is shown for
comparison. Bgcn proteins have amino acid changes that are incompatible with ATPase activity
(Ohlstein et al., 2000). (C) Phylogenetic distribution of YTHDCZ2 in Metazoa. The tree is an
unrooted cladogram of NCBI taxonomy for a non-exhaustive collection of 234 species in which
at least one close YTHDC2 homolog was identified. Tree leaves are color coded according to
YTHDC2 domain architecture. The same tree topology is reproduced in Figure S3 with
complete species names. (D) Distribution of YTHDC2 variants in Ecdysozoa. The rooted
cladogram shows NCBI taxonomy for the ecdysozoan portion of the metazoan tree in panel C.
Background shading and color-coding of tree leaves is the same as in panel C. (E) Phylogram
for sequence alignments of complete YTHDC2 and Bgcn orthologs from the indicated species.
Note that protein sequence distances are similar within the YTHDC2 and Bgcn subfamily trees,
but species in the YTHDC2 tree span much greater evolutionary distances. Sequences were
aligned with Clustal Omega and the unrooted neighbor-joining tree was constructed from
distances calculated using the scoredist function (Sonnhammer and Hollich, 2005). Tree leaves
are color coded by YTHDC2 protein domain architecture as in panel C. Protein accession

numbers are in Table S2.

Figure 8. Bam shares distant sequence similarity with MEIOC.
(A) Phylograms based on sequence alignments of MEIOC or Bam orthologs. Sequences were
aligned with Clustal Omega and the unrooted neighbor-joining trees were constructed from

distances calculated using the scoredist function. Note that the two trees have the same scale,
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but the MEIOC proteins are from species separated by much greater evolutionary distances. (B,
C) Remote sequence similarity between MEIOC and Bam, concentrated across the conserved
DUF4582 domain of MEIOC. Sequences were aligned using COBALT (Papadopoulos and
Agarwala, 2007). Panel B shows a schematic of the full alignment, with thin gray lines indicating
gaps and thick gray lines indicating amino acid sequence. Species are in the same order as
panel C, which shows a zoomed-in view of the region of greatest contiguous sequence
similarity. Residues aligned across all proteins with no gaps are colored in blue or red according
to relative entropy, with red indicating more highly conserved (entropy threshold = 2 bits)
(https://www.ncbi.nIm.nih.gov/tools/cobalt/re_cobalt.cgi). Boundaries of DUF4582 are indicated

relative to their annotation in the mouse protein. Protein accession numbers are in Table S2.
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SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. YTHDC2 staining with an independent anti-YTHDC2 antibody
in wild-type and mutant testes.

YTHDC2 and SYCP3 immunofluorescence on testis sections from 2-month-old Ythdc2*e"et
and wild-type littermates. Figure labels are as in Figure 5. Scale bars represent 100 ym (A) or
20 um (B). In this figure, the anti-YTHDC2 antibody from Santa Cruz Biotechnology was used
(Abby et al., 2016). In Figure 5, the anti-YTHDC2 antibody from Bethyl Laboratories was used
(Soh et al., 2017).

Supplementary Figure $S2. Domain architecture of YTHDC2 and related DExH-box
helicases.

(A) Schematics of domains in YTHDC2 and related DExH-box helicases (not to scale). Domain
annotations were obtained from SMART (Letunic et al., 2015) and pfam database (Finn et al.,
2016) searches, except TDRD9, for which domains were as previously defined (Handler et al.,
2011). DHX9/RHA contains two copies of a double-stranded RNA binding domain (dsRBD) (Fu
and Yuan, 2013). DHX57 has a ubiquitin-associated (UBA) domain and an RWD domain whose
functions have yet to be demonstrated. TDRD9 has an RNA recognition motif (RRM) typically
involved in interacting with nucleic acids, and a Tudor domain that binds dimethylated arginine
(Handler et al., 2011). (B) Superposition of YTH domain structures of human YTHDC2 and S.
pombe Mmi1 in either the apo state (left, PDB ID: 5SH8A) or RNA-bound state (right, PDB ID:
5DNO). A closer view of the interaction of S. pombe Mmi1 Tyr-466 with the DSR nucleobase A4

is also shown.

Supplementary Figure S3. Phylogenetic distribution of YTHDC2 in Metazoa.

The same tree topology is reproduced in Figure 7C.

Supplementary Figure S4. Full length alignment of YTHDC2 orthologs and paralogs.
Clustal Omega was used to align YTHDC2 or Bgcn sequences from the indicated species.
Domains and helicase core motifs are indicated, defined according to the annotation for the

mouse protein. Accession numbers are in Table S2.

Supplementary Figure S5. The YTHDC2 ortholog in nematodes has a distinct and highly

diverse sequence in the location equivalent to the ARD insertion in other species.
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Phylogram (A) and pairwise sequence identity matrix (B) for multiple sequence alignments of
the regions between the DEXDc and HELICc domains of the YTHDC2 orthologs from the
indicated nematode species (green shaded portion of tree), with mammalian and avian
examples for comparison (coral shading). Because of the substantial divergence between these
protein segments, sequences were aligned using MUSCLE and the VTML200 substitution
matrix. The neighbor-joining tree was constructed with the vertebrate orthologs as the outgroup.

Distances were calculated using the scoredist function. Accession numbers are in Table S2.

LiST OF SUPPLEMENTARY TABLES

Supplementary Table S1. Protein accession numbers for Figure 6A.
Supplementary Table S2. Protein accession numbers for Figures 6B-D, 7 and 8.
Supplementary Table S3. Genotyping primers.

Figure 1D-Source Data 1. Number of SYCP3-staining cells.

Figure 2D-Source Data 1. Ythdc2 and Meioc RPKM values.

Figure 3A-Source Data 1. Testes and body weights.
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