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ABSTRACT 20	

Single-particle tracking (SPT) has become an important method to bridge biochemisty and 21	

cell biology since it allows direct observation of protein binding and diffusion dynamics in live 22	

cells. However, accurately inferring information from SPT approaches is challenging due to biases 23	

in both data analysis and experimental design. To address analysis biases, we introduce “Spot-On”, 24	

an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for 25	

known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and 26	

subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, 27	

we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-28	

blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and 29	

show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live 30	

mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On 31	

consistently and robustly infers subpopulation fractions and diffusion constants. 32	

	 	33	
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INTRODUCTION  34	

Recent advances in imaging technologies, genetically encoded tags and fluorophore 35	

development have made single-particle tracking (SPT) an increasingly popular method for 36	

analyzing protein dynamics (Liu et al., 2015). Recent biological application of SPT have revealed 37	

that transcription factors (TFs) bind mitotic chromosomes (Teves et al., 2016), how Polycomb 38	

interacts with chromatin (Zhen et al., 2016), that “pioneer factor” TFs bind chromatin dynamically 39	

(Swinstead et al., 2016) and that different nuclear proteins adopt distinct target search mechanisms 40	

(Izeddin et al., 2014; Rhodes et al., 2017). Compared with indirect and bulk techniques such as 41	

Fluorescence Recovery After Photobleaching (FRAP) or Fluorescence Correlation Spectroscopy 42	

(FCS), SPT is often seen as less biased and less model-dependent (Mueller et al., 2013; Shen et al., 43	

2017). In particular, SPT makes it possible to 44	

directly follow single molecules over time in live 45	

cells and has provided clear evidence that 46	

proteins often exist in several subpopulations 47	

that can be characterized by their distinct 48	

diffusion coefficients (Mueller et al., 2013; Shen 49	

et al., 2017). For example, nuclear proteins such 50	

as TFs and chromatin binding proteins typically 51	

show a quasi-immobile chromatin-bound 52	

fraction and a freely diffusing fraction inside the 53	

nucleus. However, while SPT of slow-diffusing 54	

membrane proteins is an established technology, 55	

2D-SPT of proteins freely diffusing inside a 3D 56	

nucleus introduces several biases that must be 57	

corrected for in order to obtain accurate 58	

estimates of subpopulations. First, while a frame 59	

is acquired, fast-diffusing molecules move and 60	

spread out their emitted photons over multiple 61	

pixels causing a “motion-blur” artifact 62	

(Berglund, 2010; Izeddin et al., 2014), whereas 63	

immobile or slow-diffusing molecules resemble 64	

point spread functions (PSFs; Figure 1A). This 65	

	
Figure 1. Bias in single-particle tracking (SPT) 
experiments and analysis methods. (A) “Motion-blur” 
bias. Constant excitation during acquisition of a frame will 
cause a fast-moving particle to spread out its emission 
photons over many pixels and thus appear as a motion-blur, 
which make detection much less likely with common PSF-
fitting algorithms. In contrast, a slow-moving or immobile 
particle will appear as a well-shaped PSF and thus readily 
be detected. (B) Tracking ambiguities. Tracking at high 
particle densities prevents unambiguous connection of 
particles between frames and tracking errors will cause 
displacements to be misidentified. (C) Defocalization bias. 
During 2D-SPT, fast-moving particles will rapidly move out-
of-focus resulting in short trajectories, whereas immobile 
particles will remain in-focus until they photobleach and 
thus exhibit very long trajectories. This results in a bias 
toward slow-moving particles, which must be corrected for. 
(D) Analysis method. Any analysis method should ideally 
avoid introducing biases and accurately correct for known 
biases in the estimation of subpopulation parameters such 
as DFREE, FBOUND, DBOUND. 
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2017. ; https://doi.org/10.1101/171983doi: bioRxiv preprint 

https://doi.org/10.1101/171983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

results in under-counting of the fast-diffusing subpopulation. Second, high particle densities tend to 66	

cause tracking errors when localized molecules are connected into trajectories. This can result in 67	

incorrect displacement estimates (Figure 1B). Third, since SPT generally employs 2D imaging of 68	

3D motion, immobile or slow-diffusing molecules will generally remain in-focus until they 69	

photobleach and therefore exhibit long trajectories, whereas fast-diffusing molecules in 3D rapidly 70	

move out-of-focus, thus resulting in short trajectories (we refer to this as “defocalization”; Figure 71	

1C). This results in a time-dependent under-counting of fast-diffusing molecules (Kues and 72	

Kubitscheck, 2002). Fourth, SPT analysis methods themselves may introduce biases; to avoid this 73	

an unbiased method is needed (Figure 1D).  74	

Here, we introduce an integrated approach to overcome all four biases. The first two biases 75	

must be minimized at the data acquisition stage and we describe an experimental SPT method to do 76	

so (spaSPT), whereas the latter two can be overcome using a previously developed kinetic modeling 77	

framework (Hansen et al., 2017; Mazza et al., 2012) now extended and implemented in Spot-On. 78	

Spot-On is available as a web-interface (https://SpotOn.berkeley.edu) as well as Python and Matlab 79	

packages. 	80	

 81	

RESULTS  82	

Overview of Spot-On 83	

Spot-On is a user-friendly web-interface that pedagogically guides the user through a series 84	

of quality-checks of uploaded datasets consisting of pooled single-molecule trajectories. It then 85	

performs kinetic model-based analysis that leverages the histogram of molecular displacements over 86	

time to infer the fraction and diffusion constant of each subpopulation (Figure 2). Spot-On does not 87	

directly analyze raw microscopy images, since a large number of localization and tracking 88	

algorithms exist that convert microscopy images into single-molecule trajectories (for a comparison 89	

of particle tracking methods, see (Chenouard et al., 2014)).	90	

 
Figure 2. Overview of Spot-On interface. Overview of Spot-On. To use Spot-On, a user uploads raw SPT data in the 
form of pooled SPT trajectories to the Spot-On webinterface. Spot-On then calculates displacement histograms. The 
user inputs relevant experimental descriptors and chooses a model to fit. After model-fitting, the user can then 
download model-inferred parameters, meta-data and download publication-quality figures. 
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To use Spot-On, a user uploads their SPT trajectory data in one of several formats (Figure 91	

2). Spot-On then generates useful meta-data for assessing the quality of the experiment (e.g. 92	

localization density, number of trajectories etc.). Spot-On also allows a user to upload multiple 93	

datasets (e.g. different replicates) and merge them. Spot-On then calculates and displays histograms 94	

of displacements over multiple time delays. The next step is model fitting. Spot-On models the 95	

distribution of displacements for each subpopulation using Brownian motion under steady-state 96	

conditions without state transitions (full model description in Experimental Procedures). Spot-On 97	

also accounts for localization errors (either user-defined or automatically inferred from the SPT 98	

data). Crucially, Spot-On corrects for defocalization bias (Figure 1C) by explicitly calculating the 99	

probability that molecules move out-of-focus as a function of time and their diffusion constant. In 100	

fact, Spot-On uses the gradual loss of freely diffusing molecules over time as additional information 101	

to infer the diffusion constant and size of each subpopulation.  102	

Spot-On considers either 2 or 3 subpopulations. For instance, TFs in nuclei can generally 103	

exist in both a chromatin-bound state characterized by slow diffusion and a freely diffusing state 104	

associated with rapid diffusion. In this case, a 2-state model is generally appropriate (“bound” vs. 105	

“free”). Spot-On allows a user to choose their desired model and parameter ranges and then fits the 106	

model to the data. Using the previous example of TF dynamics, this allows the user to infer the 107	

bound fraction and the diffusion constants. Finally, once a user has finished fitting an appropriate 108	

model to their data, Spot-On allows easy download of publication-quality figures and relevant data 109	

(Figure 2).  110	

 111	

Validation of Spot-On using simulated SPT data and comparison to other methods 112	

We first evaluated whether Spot-On could robustly infer subpopulations (Figure 1D) and 113	

successfully account for known biases (Figure 1C) using simulated data. We compared Spot-On to a 114	

popular alternative approach of first fitting the mean square displacement (MSD) of individual 115	

trajectories of a minimum length and then fitting the distribution of estimated diffusion constants 116	

(we refer to this as “MSDi”) as well as a sophisticated Hidden-Markov Model-based Bayesian 117	

inference method (vbSPT) (Persson et al., 2013). Since most SPT data is collected using highly 118	

inclined illumination (Tokunaga et al., 2008) (HiLo), we simulated TF binding and diffusion 119	

dynamics (2-state model: “bound vs. free”) confined inside a  4 µm  radius mammalian nucleus 120	

under realistic HiLo SPT experimental settings subject to a 25 nm localization error. We considered 121	

the effect of the exposure time (1 ms, 4 ms, 7 ms, 13 ms, 20 ms), the free diffusion constant (from 122	
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0.5 µm²/s to 14.5 µm²/s in 0.5 µm²/s increments) and the bound fraction (from 0% to 95% in 5% 123	

increments) yielding a total of 3480 different conditions that span the full range of biologically 124	

plausible dynamics (Figure S1-6; Supplemental Information).  125	

Spot-On robustly inferred subpopulation sizes with minimal error (Figure 3A-B, Table 1), 126	

but slightly underestimated the diffusion constant (-4.8%; Figure 3B; Table 1). However, this 127	

underestimate was due to particle confinement inside the nucleus: Spot-On correctly inferred the 128	

diffusion constant when the confinement was relaxed (Figure S3; 20 µm nuclear radius instead of 4 129	

µm). This emphasizes that diffusion constants measured by SPT inside cells should be viewed as 130	

apparent diffusion constants. In contrast, the MSDi method failed under most conditions regardless 131	

of whether all trajectories were used (MSDi (all)) or a fitting filter applied (MSDi (R2>0.8); Figure 132	

3A-B; Table 1). vbSPT performed almost as well as Spot-On for slow-diffusing proteins, but 133	

showed larger deviations for fast-diffusing proteins (Figure S1-2).  134	

To illustrate how the methods could give such divergent results when run on the same SPT 135	

data, we considered two example simulations (Figure 3C-D; more examples in Figure S2). First, we 136	

considered a mostly bound and relatively slow diffusion case (DFREE: 2.0 µm²/s; FBOUND: 70%; Δτ: 7 137	

 
Figure 3. Validation of Spot-On using simulations and comparisons to other methods. 
(A-B) Simulation results. Experimentally realistic SPT data was simulated inside a spherical mammalian nucleus with a 
radius of 4 μm subject to highly-inclined and laminated optical sheet illumination (Tokunaga et al., 2008) (HiLo) of 
thickness 4 μm illuminating the center of the nucleus. The axial detection window was 700 nm with Gaussian edges and 
particles were subject to a 25 nm localization error in all three dimensions. Photobleaching corresponded to a mean 
trajectory length of 4 frames inside the HiLo sheet and 40 outside. 3480 experiments were simulated with parameters of 
DFREE=[0.5;14.5] in steps of 0.5 μm2/s and FBOUND=[0;95% in steps of 5% and the frame rate correspond to 
Δτ=[1,4,7,10,13,20] ms. Each experiment was then fitted using Spot-On, using vbSPT (maximum of 2 states allowed) 
(Persson et al., 2013), MSDi using all trajectories of at least 5 frames (MSDi (all)) or MSDi using all trajectories of at 
least 5 frames where the MSD-curvefit showed at least R2>0.8 (MSDi (R2>0.8)). (A) shows the distribution of absolute 
errors in the FBOUND–estimate and (B) shows the distribution of relative errors in the DFREE–estimate. (C) Single 
simulation example with DFREE = 2.0 µm2/s; FBOUND = 70%; 7 ms per frame. The table on the right uses numbers from 
CDF-fitting, but for simplicity the fits to the histograms (PDF) are shown in the three plots. (D) Single simulation 
example with DFREE = 14.0 µm2/s; FBOUND = 50%; 20 ms per frame. Full details on how SPT data was simulated and 
analyzed with the different methods is given in Supplemental Information. 
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ms; Figure 3C). Spot-On and vbSPT robustly inferred both DFREE and FBOUND. In contrast, MSDi 138	

(R2>0.8) greatly underestimated FBOUND (13.6% vs. 70%), whereas MSDi (all) slightly overestimated 139	

FBOUND. Since MSDi-based methods apply two thresholds (first, minimum trajectory length: here 5 140	

frames; second, filtering based on R2) in many cases less than 5% of all trajectories passed these 141	

thresholds and this example illustrate how sensitive MSDi-based methods are to these thresholds. 142	

Second, we considered an example with a slow frame rate and fast diffusion, such that the free 143	

population rapidly moves out-of-focus (DFREE: 14.0 µm²/s; FBOUND: 50%; Δτ: 20 ms; Figure 3D). 144	

Spot-On again robustly inferred FBOUND, and slightly underestimated DFREE due to high nuclear 145	

confinement (Figure S3). Although vbSPT generally performed well, because it does not correct for 146	

defocalization bias (vbSPT was developed for bacteria, where defocalization bias is minimal), 147	

vbSPT strongly overestimated FBOUND in this case (Figure 3D). The MSDi-based methods again gave 148	

divergent results despite seemingly fitting the data well. Thus, a good fit to a histogram of log(D) 149	

does not necessarily imply that the inferred DFREE and FBOUND are accurate. A full discussion of the 150	

simulations, methods comparison and Spot-On parameter sensitivity analysis is given in 151	

Supplemental Information. 152	

Taken together, this analysis of simulated SPT data suggests that Spot-On successfully 153	

overcomes defocalization and analysis method biases (Figure 1C-D), accurately and consistently 154	

estimates subpopulations and diffusion constants across a wide range of dynamics and, finally, 155	

outperforms other methods.  156	

 157	

  DFREE   FBOUND  
Analysis method bias std iqr bias std iqr 
Spot-On (all) -4.8% 3.3% 3.5% -1.7% 1.2% 1.8% 
vbSPT (2-state) 0.8% 12.5% 6.8% 5.0% 4.6% 6.1% 
MSDi (R2>0.8) 8.0% 28.5% 4.9% -20.6% 26.4% 32.1% 
MSDi (all) -39.6% 41.8% 19.0% 22.0% 15.8% 17.8% 
Table 1. Summary of simulation results and comparison of methods. 158	
The table shows the bias (mean error), the standard deviation (std) and the interquartile range (iqr) 159	
for each method for all 3480 simulations. The left column shows the relative bias/std/iqr for the 160	
DFREE-estimate and the right column shows the absolute bias/std/iqr for the FBOUND-estimate. 161	

 162	

spaSPT minimizes biases in experimental SPT acquisitions 163	

Having validated Spot-On on simulated data, which is not subject to experimental biases 164	

(Figure 1A-B), we next sought to evaluate Spot-On on experimental data. To generate SPT data 165	

with minimal acquisition bias we performed stroboscopic photo-activation SPT (spaSPT; Figure 166	

4A), which integrates previously and separately published ideas to minimize experimental biases. 167	
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First, spaSPT minimizes motion-blurring, which is caused by particle movement during the camera 168	

exposure time (Figure 1A), by using stroboscopic excitation (Elf et al., 2007). We found that the 169	

bright and photo-stable dyes PA-JF549 and PA-JF646 (Grimm et al., 2016) in combination with the 170	

HaloTag (“Halo”) labeling strategy made it possible to achieve a signal-to-background ratio greater 171	

than 5 with just 1 ms excitation pulses, thus providing a good compromise between minimal 172	

motion-blurring and high signal (Figure 4B). Second, spaSPT minimizes tracking errors (Figure 1B) 173	

by using photo-activation (Figure 4A)(Grimm et al., 2016; Manley et al., 2008). Tracking errors are 174	

generally caused by high particles densities. Photo-activation allows tracking at extremely low 175	

densities (£1 molecule per nucleus per frame) and thereby minimizes tracking errors (Izeddin et al., 176	

2014), whilst at the same time generating thousands of trajectories. To consider the full spectrum of 177	

nuclear protein dynamics, we studied histone H2B-Halo (overwhelmingly bound; fast diffusion; 178	

Figure 4C), Halo-CTCF (Hansen et al., 2017) (largely bound; slow diffusion; Figure 4D) and Halo-179	

NLS (overwhelmingly free; very fast diffusion; Figure 4F) in human U2OS cells and Halo-Sox2 180	

	
Figure 4. Overview of spaSPT and experimental results. (A) spaSPT. HaloTag-labeling with UV (405 nm) photo-
activatable dyes enable spaSPT. spaSPT minimizes tracking errors through photo-activation which maintains low 
densities. (B) Example data. Raw spaSPT images for Halo-CTCF tracked in human U2OS cells at 134 Hz. (C-F) 
Histograms of displacements for multiple Δτ of histone H2B-Halo in U2OS cells (C), Halo-CTCF in U2OS cells (d), 
Halo-Sox2 in mES cells (E) and Halo-3xNLS in U2OS cells (F). (G-H) Effect of frame-rate on DFREE and FBOUND. spaSPT 
was performed at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 Hz using the 4 cell lines and the data fit using Spot-
On and a 2-state model. Each experiment on each cell line was performed in 4 replicates on different days and ~5 cells 
imaged each day. Error bars show standard deviation between replicates. (I) Motion-blur experiment. To investigate the 
effect of “motion-blurring”, the total number of excitation photons was kept constant, but delivered during pulses of 
duration 1, 2, 4, 7 ms or continuous (cont) illumination. (J-K) Effect of motion-blurring on DFREE and FBOUND. spaSPT 
data was recorded at 100Hz and 2-state model-fitting performed with Spot-On. The inferred DFREE (J) and FBOUND (K) 
were plotted as a function of excitation pulse duration. Each experiment on each cell line was performed in 4 replicates 
on different days and ~5 cells imaged each day. Error bars show standard deviation between replicates. 
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(Teves et al., 2016) (largely free; intermediate diffusion; Figure. 4E) in mouse embryonic stem cells 181	

(mESCs). We labeled Halo-tagged proteins in live cells with the HaloTag ligands of PA-JF549 or 182	

PA-JF646 (Grimm et al., 2016) and performed spaSPT using HiLo illumination. To generate a large 183	

dataset to comprehensively test Spot-On, we performed 1064 spaSPT experiments across 60 184	

different conditions.  185	

 186	

Validation of Spot-On using spaSPT data at different frame rates	187	

First, we studied whether Spot-On could consistently infer subpopulations over a wide range 188	

of frame rates. Accordingly, we performed spaSPT at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 189	

50 Hz using the four cell lines. Spot-On consistently inferred the diffusion constant (Figure 4G) and 190	

total bound fraction across the wide range of frame rates (Figure 4H). This is notable since all four 191	

proteins exhibit apparent anomalous diffusion (Figure S7). Moreover, Spot-On gave intuitively 192	

reasonable results (histone H2B was overwhelmingly bound; free Halo-3xNLS was 193	

overwhelmingly unbound). These results provide additional validation for the bias corrections 194	

implemented in Spot-On. We then sub-sampled the data sets and found that just ~3000 short 195	

trajectories (mean length ~3-4 frames) were sufficient for Spot-On to reliably infer the underlying 196	

dynamics (Figure S8). Thus, since many thousands of trajectories can normally easily be obtained 197	

with spaSPT for all but the most lowly expressed nuclear proteins, this now makes it possible to 198	

study biological cell-to-cell variability in TF dynamics.  199	

 200	

Effect of motion-blur bias on parameter estimates	201	

Having validated Spot-On on experimental SPT data, we next applied Spot-On to estimate 202	

the effect of motion-blurring on the estimation of subpopulations. As mentioned, since most 203	

localization algorithms (Chenouard et al., 2014; Sergé et al., 2008) achieve super-resolution through 204	

PSF-fitting, this may cause motion-blurred molecules to be undersampled, resulting in a bias 205	

towards slow-moving molecules (Figure 1A). We estimated the extent of the bias by imaging the 206	

four cell lines at 100 Hz and keeping the total number of excitation photons constant, but varying 207	

the excitation pulse duration (1 ms, 2 ms, 4 ms, 7 ms, constant; Figure 4I). For generality, we 208	

performed these experiments using both PA-JF549 and PA-JF646 dyes (Grimm et al., 2016). We used 209	

Spot-On to fit the data and plotted the apparent free diffusion constant (Figure 4J) and apparent total 210	

bound fraction (Fig. 4K) as a function of the excitation pulse duration. For fast-diffusing proteins 211	

like Halo-3xNLS and H2B-Halo, motion-blurring resulted in a large underestimate of the free 212	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2017. ; https://doi.org/10.1101/171983doi: bioRxiv preprint 

https://doi.org/10.1101/171983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

diffusion constant, whereas the effect on slower proteins like CTCF and Sox2 was minor (Figure 213	

4J). Regarding the total bound fraction, motion-blurring caused a ~2-fold overestimate for rapidly 214	

diffusing Halo-3xNLS (Figure 4K), but had a minor effect on slower proteins like H2B, CTCF and 215	

Sox2. Importantly, similar results were obtained for both dyes, though JF549 yielded a slightly lower 216	

bound fraction for Halo-3xNLS (Figure 4J-K). We note that the extent of the bias due to motion-217	

blurring will likely be very sensitive to the localization algorithm. Here, using the MTT-algorithm 218	

(Sergé et al., 2008), motion-blurring caused up to a 2-fold error in both the DFREE and FBOUND 219	

estimates. 220	

 Taken together, these results suggest that Spot-On can reliably be used even for SPT data 221	

collected under constant illumination provided that protein diffusion is sufficiently slow and, 222	

moreover, provides a helpful guide for optimizing SPT imaging acquisitions (we include a full 223	

discussion of considerations for SPT acquisitions and a proposal for minimum reporting standards 224	

in SPT in Supplemental Information).  225	

 226	

CONCLUSION  227	

In summary, SPT is an increasingly popular technique and has been revealing important new 228	

biological insight. However, a clear consensus on how to perform and analyze SPT experiments is 229	

currently lacking. In particular, 2D SPT of fast-diffusing molecules inside 3D cells is subject to a 230	

number of inherent experimental (Figure 1A-B) and analysis (Figure 1C-D) biases, which can lead 231	

to inaccurate conclusions if not carefully corrected for.  232	

Here, we introduce approaches for accounting for both experimental and analysis biases. 233	

Several methods are available for localization/tracking (Chenouard et al., 2014; Sergé et al., 2008) 234	

and for classification of individual trajectories (Monnier et al., 2015; Persson et al., 2013). Spot-On 235	

now complements these tools by providing a bias-corrected, comprehensive open-source framework 236	

for inferring subpopulations and diffusion constants from pooled SPT data. This platform can easily 237	

be extended to other diffusion regimes. Moreover, spaSPT provides an acquisition protocol for 238	

tracking fast-diffusing molecules with minimal bias. We hope that these validated tools will help 239	

make SPT more accessible to the community and contribute positively to the emergence of “gold-240	

standard” acquisition and analysis procedures for SPT.	241	

  242	
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MATERIALS AND METHODS  266	
Spot-On model. Spot-On implements and extends a kinetic modeling framework first described in 267	
Mazza et al. (Mazza et al., 2012) and later extended in Hansen et al. (Hansen et al., 2017) The 268	
evolution over time of a concentration of particles located at the origin as a Dirac delta function and 269	
which follows free diffusion in two dimensions with a diffusion constant D can be described by a 270	
propagator (also known as Green’s function). Properly normalized, the probability of a particle 271	
starting at the origin ending up at a location r = (x,y) after a time delay, ∆𝜏, is given by:  272	

𝑃 𝑟, ∆𝜏 = 𝑁
𝑟

2𝐷∆𝜏 𝑒
+ ,-
./∆0 273	

Here N is a normalization constant with units of length. Spot-On integrates this distribution over a 274	
small histogram bin window, Δr, to obtain a normalized distribution to compare to binned 275	
experimental data. For simplicity, we will therefore leave out N from subsequent expressions. Since 276	
experimental SPT data is subject to a significant localization error, 𝜎, Spot-On also accounts for this 277	
(Matsuoka et al., 2009): 278	

𝑃 𝑟, ∆𝜏 =
𝑟

2 𝐷∆𝜏 + 𝜎3 𝑒
+ ,-
. /∆045-  279	

Many proteins studied by SPT can generally exist in a quasi-immobile state (e.g. a chromatin-bound 280	
state in the case of transcription factors) and one or more mobile states. We will first consider the 2-281	
state model. Under most conditions, state transitions can be ignored (Hansen et al., 2017). Thus, the 282	
steady-state 2-state model considered by Spot-On becomes: 283	

𝑃 𝑟, ∆𝜏 = 𝐹BOUND
𝑟

2 𝐷BOUND∆𝜏 + 𝜎3
𝑒
+ ,-
. /BOUND∆045-284	

+ 1 − 𝐹BOUND
𝑟

2 𝐷FREE∆𝜏 + 𝜎3
𝑒
+ ,-
. /FREE∆045-  285	

Here, the quasi-immobile subpopulation has diffusion constant, 𝐷BOUND, and makes up a fraction, 286	
𝐹BOUND, whereas the freely diffusing subpopulation has diffusion constant, 𝐷FREE, and makes up a 287	
fraction, 𝐹FREE = 1 − 𝐹BOUND. To account for defocalization bias (Figure 1C), Spot-On explicitly 288	
considers the probability of the freely diffusing subpopulation moving out of the axial detection 289	
range, ∆𝑧, during each time delay, ∆𝜏. This is important. For example, only ~25% of freely-290	
diffusing molecules will remain in focus for at least 5 frames (assuming ∆𝜏=10 ms; ∆𝑧=700 nm; 1 291	
gap allowed; D=5 µm²/s), resulting in a 4-fold undercounting if uncorrected for. If we assume 292	
absorbing boundaries such that any molecule that contacts the edges of the axial detection range 293	
located at 𝑧MAX = ∆𝑧/2 and 𝑧MIN = −∆𝑧/2 is permanently lost, the fraction of freely diffusing 294	
molecules with diffusion constant, 𝐷FREE, that remain at time delay, ∆𝜏, is given by (Carslow and 295	
Jaeger, 1959; Kues and Kubitscheck, 2002): 296	

𝑃remaining ∆𝜏, ∆𝑧, 𝐷FREE =
1
∆𝑧

1 − −1 N erfc
2𝑛 + 1 ∆𝑧

2 − 𝑧

4𝐷FREE∆𝜏
+ erfc

2𝑛 + 1 ∆𝑧
2 + 𝑧

4𝐷FREE∆𝜏

S

NTU

∆V/3

+∆V/3
d𝑧 297	

However, this analytical expression overestimates the fraction lost since there is a significant 298	
probability that a molecule that briefly contacted or exceeded the boundary re-enters the axial 299	
detection range. The re-entry probability depends on the number of gaps allowed in the tracking (𝑔), 300	
∆𝜏, and ∆𝑧 and can be approximately accounted for by considering a corrected axial detection 301	
range, ∆𝑧corr, larger than ∆𝑧: ∆𝑧corr > ∆𝑧: 302	

∆𝑧corr ∆𝑧, ∆𝜏, 𝐷FREE, 𝑔 = ∆𝑧 + 𝑎 ∆𝑧, ∆𝜏, 𝑔 𝐷FREE + 𝑏 ∆𝑧, ∆𝜏, 𝑔  303	
Although ∆𝑧corr depend on the number of gaps (g) allowed in the tracking, we will leave it out for 304	
simplicity in the following. We determined the coefficients a and b from Monte Carlo simulations. 305	
For a given diffusion constant, D, 50,000 molecules were randomly placed one-dimensionally along 306	
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the z-axis drawn from a uniform distribution from 𝑧MIN = −∆𝑧/2 to 𝑧MAX = ∆𝑧/2. Next, using a 307	
time-step ∆𝜏, one-dimensional Brownian diffusion was simulated along the z-axis using the Euler-308	
Maruyama scheme. For time delays from 1∆𝜏 to 15∆𝜏, the fraction of molecules that were lost was 309	
calculated in the range of D=[1;12] μm2/s. 𝑎 ∆𝑧, ∆𝜏, 𝑔  and 𝑏 ∆𝑧, ∆𝜏, 𝑔  were then estimated 310	
through least-squares fitting of 𝑃remaining ∆𝜏, ∆𝑧corr, 𝐷  to the simulated fraction remaining. The 311	
process was repeated over a grid of plausible values of (∆𝑧, ∆𝜏, 𝑔) to derive a grid of 134,865 (a,b) 312	
parameter pairs. This pre-calculated library of (a,b) parameters enables Spot-On to perform model 313	
fitting on nearly any SPT dataset with minimal overhead.  314	
Thus, the 2-state model Spot-On uses for kinetic modeling of SPT data is given by: 315	

𝑃3 𝑟, ∆𝜏 = 𝐹BOUND
𝑟

2 𝐷BOUND∆𝜏 + 𝜎3
𝑒
+ ,-
. /BOUND∆045-316	

+ 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷FREE 1 − 𝐹BOUND
𝑟

2 𝐷FREE∆𝜏 + 𝜎3
𝑒
+ ,-
. /FREE∆045-  317	

where: 318	

𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷FREE =
1

∆𝑧corr
1 − −1 N erfc

2𝑛 + 1 ∆𝑧corr
2 − 𝑧

4𝐷FREE∆𝜏
+ erfc

2𝑛 + 1 ∆𝑧corr
2 + 𝑧

4𝐷FREE∆𝜏

S

NTU

∆Vcorr
3

+∆Vcorr3

d𝑧 319	

Having derived the 2-state model, generalization to a 3-state model with 1 bound and 2 diffusive 320	
states is straightforward. If the three subpopulations have diffusion constants 𝐷BOUND, 𝐷SLOW, 𝐷FAST, 321	
and fractions 𝐹BOUND, 𝐹SLOW, 𝐹FAST, such that 𝐹BOUND + 𝐹SLOW + 𝐹FAST=1, then the 3-state model 322	
considered by Spot-On becomes: 323	

𝑃c 𝑟, ∆𝜏 = 𝐹BOUND
𝑟

2 𝐷BOUND∆𝜏 + 𝜎3
𝑒
+ ,-
. /BOUND∆045-324	

+ 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷SLOW 𝐹SLOW
𝑟

2 𝐷SLOW∆𝜏 + 𝜎3
𝑒
+ ,-
. /SLOW∆045-325	

+ 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷FAST 1 − 𝐹BOUND − 𝐹SLOW
𝑟

2 𝐷FAST∆𝜏 + 𝜎3
𝑒
+ ,-
. /FAST∆045-  326	

Where 𝑍CORR ∆𝜏, ∆𝑧corr, 𝐷  is as described above. 327	
 328	
Numerical implementation of models in Spot-On. Spot-On calculates the empirical histogram of 329	
displacements based on a user-defined bin width. Spot-On allows the user to choose between PDF- 330	
and CDF-fitting of the kinetic model to the empirical displacement distributions; CDF-fitting is 331	
generally most accurate for smaller datasets and the two are similar for large datasets (Figure S6). 332	
The integral in 𝑍CORR ∆𝜏, ∆𝑧corr  was numerically evaluated using the midpoint method over 200 333	
points and the terms of the series computed until the term falls below a threshold of 10-10. Model 334	
fitting and parameter optimization was performed using a non-linear least squares algorithm 335	
(Levenberg-Marquardt). Random initial parameter guesses are drawn uniformly from the user-336	
specified parameter range. The optimization is then repeated several times with different 337	
initialization parameters to avoid local minima. Spot-On constrains each fraction to be between 0 338	
and 1 and for the sum of the fractions to equal 1.  339	
 340	
Cell Culture. Halo-Sox2 (Teves et al., 2016) knock-in JM8.N4 mouse embryonic stem cells (Pettitt 341	
et al., 2009) were grown on plates pre-coated with a 0.1% autoclaved gelatin solution (Sigma-342	
Aldrich, G9391) under feeder free conditions in knock-out DMEM with 15% FBS and LIF (full 343	
recipe: 500 mL knockout DMEM (ThermoFisher #10829018), 6 mL MEM NEAA (ThermoFisher 344	
#11140050), 6 mL GlutaMax (ThermoFisher #35050061), 5 mL Penicillin-streptomycin 345	
(ThermoFisher #15140122), 4.6 μL 2-mercapoethanol (Sigma-Aldrich M3148), 90 mL fetal bovine 346	
serum (HyClone FBS SH30910.03 lot #AXJ47554)) and LIF. mES cells were fed by replacing half 347	
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the medium with fresh medium daily and passaged every two days by trypsinization. Halo-3xNLS, 348	
H2B-Halo-SNAP and knock-in C32 Halo-CTCF(Hansen et al., 2017) Human U2OS osteosarcoma 349	
cells  were grown in low glucose DMEM with 10% FBS (full recipe: 500 mL DMEM 350	
(ThermoFisher #10567014), 50 mL fetal bovine serum (HyClone FBS SH30910.03 lot #AXJ47554) 351	
and 5 mL Penicillin-streptomycin (ThermoFisher #15140122)) and were passaged every 2-4 days 352	
before reaching confluency. For live-cell imaging, the medium was identical except DMEM without 353	
phenol red was used (ThermoFisher #31053028). Both mouse ES and human U2OS cells were 354	
grown in a Sanyo copper alloy IncuSafe humidified incubator (MCO-18AIC(UV)) at 37°C/5.5% 355	
CO2. Cell lines were pathogen tested and authenticated through STR profiling (U2OS) as described 356	
previously (Hansen et al., 2017; Teves et al., 2016). 357	
 358	
Single-molecule imaging. The indicated cell line was grown overnight on plasma-cleaned 25 mm 359	
circular no 1.5H cover glasses (Marienfeld High-Precision 0117650) either directly (U2OS) or 360	
MatriGel coated (mESCs; Fisher Scientific #08-774-552 according to manufacturer’s instructions 361	
just prior to cell plating). After overnight growth, cells were labeled with 5-50 nM PA-JF549 or PA-362	
JF646 (Grimm et al., 2016) for ~15-30 min and washed twice (one wash: medium removed; PBS 363	
wash; replenished with fresh medium). At the end of the final wash, the medium was changed to 364	
phenol red-free medium keeping all other aspects of the medium the same. Single-molecule 365	
imaging was performed on a custom-built Nikon TI microscope equipped with a 100x/NA 1.49 oil-366	
immersion TIRF objective (Nikon apochromat CFI Apo TIRF 100x Oil), EM-CCD camera (Andor 367	
iXon Ultra 897; frame-transfer mode; vertical shift speed: 0.9 μs; -70°C), a perfect focusing system 368	
to correct for axial drift and motorized laser illumination (Ti-TIRF, Nikon), which allows an 369	
incident angle adjustment to achieve highly inclined and laminated optical sheet illumination 370	
(Tokunaga et al., 2008). The incubation chamber maintained a humidified 37°C atmosphere with 371	
5% CO2 and the objective was also heated to 37°C. Excitation was achieved using the following 372	
laser lines: 561 nm (1 W, Genesis Coherent) for PA-JF549; 633 nm (1 W, Genesis Coherent) for PA-373	
JF646; 405 nm (140 mW, OBIS, Coherent) for all photo-activation experiments. The excitation lasers 374	
were modulated by an acousto-optic Tunable Filter (AA Opto-Electronic, AOTFnC-VIS-TN) and 375	
triggered with the camera TTL exposure output signal. The laser light is coupled into the 376	
microscope by an optical fiber and then reflected using a multi-band dichroic (405 nm/488 nm/561 377	
nm/633 nm quad-band, Semrock) and then focused in the back focal plane of the objective. 378	
Fluorescence emission light was filtered using a single band-pass filter placed in front of the camera 379	
using the following filters: PA-JF549: Semrock 593/40 nm bandpass filter; PA-JF646: Semrock 380	
676/37 nm bandpass filter. The microscope, cameras, and hardware were controlled through NIS-381	
Elements software (Nikon). 382	
 383	
spaSPT experiments and analysis. The spaSPT experimental settings for Figure 4G-H were as 384	
follows: 1 ms 633 nm excitation (100% AOTF) of PA-JF646 was delivered at the beginning of the 385	
frame; 405 nm photo-activation pulses were delivered during the camera integration time (~447 μs) 386	
to minimize background and their intensity optimized to achieve a mean density of £1 molecule per 387	
frame per nucleus. 30,000 frames were recorded per cell per experiment. The camera exposure 388	
times were: 4.5 ms, 5.5 ms, 7 ms, 9.5 ms, 13 ms and 19.5 ms.  389	
For the motion-blur spaSPT experiments (Figure 4I-K), the camera exposure was fixed to 9.5 ms 390	
and photo-activation performed as above. To keep the total number of delivered photons constant, 391	
we generated an AOTF-laser intensity calibration curve using a power meter and adjusted the 392	
AOTF transmission accordingly for each excitation pulse duration. The excitation settings were as 393	
follows: 1 ms, 561 nm 100% AOTF, 633 nm 100% AOTF; 2 ms, 561 nm 43% AOTF, 633 nm 40% 394	
AOTF; 4 ms, 561 nm 28% AOTF, 633 nm 27% AOTF; 7 ms, 561 nm 20% AOTF, 633 nm 19% 395	
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AOTF; constant illumination, 561 nm 17% AOTF, 633 nm 16% AOTF.  396	
spaSPT data was analyzed (localization and tracking) and converted into trajectories using a 397	
custom-written Matlab implementation of the MTT-algorithm (Sergé et al., 2008) and the following 398	
settings: Localization error: 10-6.25; deflation loops: 0; Blinking (frames): 1; max competitors: 3; 399	
max D (µm2/s): 20. The spaSPT trajectory data was then analyzed using the Matlab version of Spot-400	
On (v1.0; GitLab tag 1f9f782b) and the following parameters: dZ=0.7 µm; GapsAllowed=1; 401	
TimePoints: 4 (50 Hz), 6 (74 Hz), 7 (100 Hz), 8 (134 Hz), 9 (167 and 200 Hz); 402	
JumpsToConsider=4; ModelFit=2; NumberOfStates=2; FitLocError=0; LocError=0.035 µm; 403	
D_Free_2State=[0.4;25]; D_Bound_2State=[0.00001;0.08];  404	
 405	
SPT simulations. We developed a utility to simulate diffusing proteins in a confined geometry 406	
(simSPT). Briefly, simSPT simulates the diffusion of an arbitrary number of populations of 407	
molecules characterized by their diffusion coefficient, under a steady state assumption. Particles are 408	
drawn at random between the populations and their location in the 3D nucleus is initialized 409	
following a uniform law within the confinement volume. The lifetime of the particle (in frames) is 410	
also drawn following an exponential law of mean lifetime 𝛽. Then, the particle diffuses in 3D until 411	
it bleaches. Diffusion is simulated by drawing jumps following a normal law of parameters 412	
~𝑁 0, 2𝐷∆𝜏 , where D is the diffusion coefficient and ∆𝜏 the exposure time. Finally, a localization 413	
error (~𝑁 0, 𝜎 ) is added to each (x,y,z) localization in the simulated trajectories. For this work, we 414	
parameterized simSPT to consider that two subpopulations of particles diffuse in a sphere (the 415	
nucleus) of 8 µm diameter illuminated using HiLo illumination (assuming a HiLo beam width of 4 416	
µm), with an axial detection range of ~700 nm, centered at the middle of the HiLo beam. Molecules 417	
are assumed to have a mean lifetime of 4 frames (when inside the HiLo beam) and of 40 frames 418	
when outside the HiLo beam. The localization error was set to 25 nm and the simulation was run 419	
until 100,000 in-focus trajectories were recorded. More specifically, the effect of the exposure time 420	
(1 ms, 4 ms, 7 ms, 13 ms, 20 ms), the free diffusion constant (from 0.5 µm²/s to 14.5 µm²/s in 0.5 421	
µm²/s increments) and the fraction bound (from 0 % to 95 % in 5 % increments) were investigated, 422	
yielding a dataset consisting of 3480 simulations. More details on the simulations, including scripts 423	
to reproduce the dataset, are available on GitLab as detailed in the “Computer code” section. Full 424	
details on how the simulations were analyzed by Spot-On, vbSPT and MSDi are given in 425	
Supplemental Information. 426	
 427	
Data availability. All raw 1064 spaSPT experiments as well as the 3480 simulations (Figure 3) are 428	
freely available in Spot-On readable Matlab and CSV file formats in the form of SPT trajectories at 429	
Zenodo. The experimental data is available at Zenodo after publication and upon request before 430	
publication; The simulations are available in Matlab format at: https://zenodo.org/record/835541; 431	
The simulations are available in CSV format at: https://zenodo.org/record/834787; And 432	
supplementary software used for MSDi and vbSPT analysis as well as for generating the simulated 433	
data at: https://zenodo.org/record/835171  434	
 435	
Computer code. Spot-On is fully open-source. The web-interface can be found at: 436	
https://SpotOn.berkeley.edu. All raw code is available at GitLab: https://gitlab.com/tjian-darzacq-437	
lab. The web-interface code can be found at https://gitlab.com/tjian-darzacq-lab/Spot-On; the 438	
Matlab command-line version of Spot-On can be found at: https://gitlab.com/tjian-darzacq-lab/spot-439	
on-matlab; the Python command-line version of Spot-On can be found at https://gitlab.com/tjian-440	
darzacq-lab/Spot-On-cli; finally, the SPT simulation code (simSPT) can be found at: 441	
https://gitlab.com/tjian-darzacq-lab/simSPT. 442	
  443	
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