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Climate change is likely to have a profound effect on the global distribution and burden of 20 

infectious diseases1–3. Current knowledge suggests that mosquito-borne diseases could expand 21 

dramatically in response to climate change4,5. However, the physiological and epidemiological 22 

relationships between mosquito vectors and the environment are complex and often non-linear, and 23 

experimental work has showed an idiosyncratic relationship between warming temperatures and 24 

disease transmission6,7. Accurately forecasting the potential impacts of climate change on Aedes-25 

borne viruses—especially dengue, chikungunya, and Zika—thus becomes a key problem for public 26 

health preparedness4,8,9. We apply an empirically parameterized Bayesian model of Aedes 27 

transmission of these viruses as a function of temperature6 to predict cumulative monthly global 28 

transmission risk in current climates, and compare against projected risk in 2050 and 2070 based 29 

on general circulation models (GCMs). Our results show that shifting suitability will track optimal 30 

temperatures for transmission (26-29 °C), potentially leading to poleward shifts. Furthermore, 31 

especially for Ae. albopictus, extreme temperatures are likely to limit transmission risk in current 32 

zones of endemicity, especially the tropics. The patterns of impact of changing minimum and 33 

maximum predicted temperatures lead to idiosyncratic outcomes for people at risk in the future. 34 

Validating these results with observed epidemic dynamics in upcoming decades will be paramount 35 

if global public health infrastructure is expected to keep pace with expanding vector-borne disease. 36 

 37 

The intensification and expansion of vector-borne disease is likely to be one of the most significant 38 

threats posed by climate change to human health2,10. Mosquito vectors are of special concern, due to the 39 

global morbidity and mortality from diseases like malaria and dengue fever, as well as the prominent 40 

public health crises caused by (or feared from) several recently-emergent viral diseases like West Nile, 41 

chikungunya, and Zika. The relationship between climate change and mosquito-borne disease is perhaps 42 

best studied, in both experimental and modeling work, for malaria and its associated Anopheles vectors. 43 

While climate change could exacerbate the burden of malaria at local scales, more recent evidence 44 

challenges the “warmer-sicker world” expectation11. The optimal temperature for malaria transmission 45 
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has recently been demonstrated to be much lower than previously expected12, likely leading to net 46 

decreases in suitable habitat at continental scales in the coming decades13.  47 

Relative to malaria, comparatively less is known about the net impact of climate change on 48 

Aedes-borne diseases. At a minimum, the distribution of Aedes mosquitoes is projected to shift in the face 49 

of climate change, with a mix of expansions in some regions and contractions in others, and no 50 

overwhelming net global pattern of gains or losses3,8. The consequences of those range shifts for disease 51 

burden are therefore likely to be important, but can be challenging to summarize across landscapes and 52 

pathogens. Of all Aedes-borne diseases, dengue fever has been most frequently modeled in the context of 53 

climate change, and several models of the potential future of dengue have been published over the last 54 

two decades, with limited work building consensus among them4. Models relating temperature to 55 

vectorial capacity, and applying general circulation models (GCMs) to predict the impacts of climate 56 

change, go back as far as the late 1990s5. A study from 2002 estimated that the population at risk (PAR) 57 

from dengue would rise from 1.5 billion in 1990, to 5-6 billion by 2085, as a result of climate change14. A 58 

more recent study suggested that climate change alone should increase the global dengue PAR by 0.28 59 

billion by 2050, but accounting for projected changes in global economic development (using GDP as a 60 

predictor for dengue risk) surprisingly reduces the projected PAR by 0.12 billion over the same interval15. 61 

Mechanistic models have shown that increases or decreases in dengue risk can be predicted for the same 62 

region based on climate models, scenario selection, and regional variability16.  63 

Chikungunya and Zika viruses, which have emerged more recently as a public health crisis, are 64 

less well-studied in the context of climate change. A monthly model for chikungunya in Europe, 65 

constrained by the presence of Ae. albopictus, found that the A1B and B1 scenarios both correspond to 66 

substantial increases in chikunguya risk surrounding the Mediterranean17. A similar modeling study found 67 

that dengue is likely to expand far more significantly due to climate change than Zika9 (though 68 

epidemiological differences among these three viruses remain unresolved18–20). However, the combined 69 

role of climate change and El Niño has already been suggested as a possible driver of the 2016 Zika 70 

pandemic’s severity9. Global mechanistic forecasts accounting for climate change are all but nonexistent 71 
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for both diseases, given how recently both emerged as public health crises, and how much critical 72 

information is still lacking in the basic biology and epidemiology of both pathogens. 73 

In this study, we apply a new mechanistic model of the spatiotemporal distribution of Aedes-74 

borne viral outbreaks, to resolve the role climate change could play in global transmission of dengue, 75 

chikungunya, and Zika. Whereas other mechanistic approaches rely on methods like dynamic energy 76 

budgets to build complex biophysical models for Aedes mosquitoes21,22, and subsequently (sometimes) 77 

extrapolate potential epidemiological dynamics5, our approach uses a single basic cutoff for the thermal 78 

interval where viral transmission is possible. The simplicity and transparency of the method masks a 79 

sophisticated underlying model that links the basic rate of reproduction R0 for Aedes-borne viruses to 80 

temperature, via experimentally-determined physiological response curves for traits like biting rate, 81 

fecundity, mosquito lifespan, extrinsic incubation rate, and transmission probability. The model is easily 82 

projected into geographic space by defining model based measures of suitability and classifying each 83 

location in space as suitable or not. We take a Bayesian approach in order to take into account uncertainty 84 

in the experimental data. We determine our suitability thresholds for transmission by calculating the 85 

temperature values at which the posterior probability that R0 > 0 exceeds 97.5%. For Aedes aegypti, these 86 

bounds are 21.3—34.0 C, and for Aedes albopictus, 19.9—29.4 C. This threshold condition defines the 87 

temperatures at which transmission is not prevented, rather than the more familiar threshold at which 88 

disease invasion is expected (R0 > 1, which cannot be predicted in the absence of additional information 89 

on vector and human population sizes and other factors). We then classify each location by suitability in 90 

each month based on already published projections for current climates in the Americas6.  Here, we 91 

expand the framework for both Ae. aegypti and Ae. albopictus to project cumulative months of suitability 92 

in current and future (2050 and 2070) climates, and further examine how global populations at risk might 93 

change in different climate change scenarios. In doing so, we provide the first mechanistic forecast for the 94 

potential future transmission risk of chikungunya and Zika, which have been forecasted primarily via 95 

phenomenological methods (like ecological niche modeling9). Our study is also the first to address the 96 

seasonal aspects of population at risk for Aedes-borne diseases in a changing climate.  97 
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We found that the current pattern of suitability suggested by our model based on mean monthly 98 

temperatures (Figure 1) reproduces the known or projected distributions of dengue23, chikungunya24, and 99 

Zika9,25,26 well. For both Ae. aegypti and Ae. albopictus, most of the tropics is currently optimal for viral 100 

transmission year-round, with suitability declining along latitudinal gradients. Many temperate regions 101 

are suitable for up to 6 months of the year currently, but outside the areas mapped as “suitable” by 102 

disease-specific distribution models; in some cases, limited outbreaks may only happen when cases are 103 

imported from travelers (e.g. in northern Australia, where dengue is not presently endemic but outbreaks 104 

happen in suitable regions16;  or in mid-latitude regions of the United States, where it has been suggested 105 

that traveler cases could result in limited autochthonous transmission25,27). Transmission models in current 106 

climates, and derived maps of seasonal population at risk, were extremely sensitive to whether minimum, 107 

mean, or maximum monthly temperatures were used (Figure S1-4). Under current climates, maximum 108 

temperatures predict a consistently worse pattern of population-at-risk (PAR) from Ae. aegypti than 109 

minimum temperatures. For Ae. albopictus, the pattern is less straightforward, with maximum 110 

temperatures predicting the worst outcome (highest number of people at risk) for shorter periods, but with 111 

minimum temperatures producing a worse pattern of risk measured by 6 or more months of suitability 112 

(Figure 2). Perhaps most compelling, transmission curves generated by mean temperatures do not align 113 

neatly with either maximum or minimum curve, potentially demonstrating a downside of disease forecasts 114 

that do not account for the extreme ends of normal temperature variation. Resolving uncertainty in future 115 

climate-based disease forecasts requires resolving how temperature regimes as a whole (encapsulated by 116 

minimum, mean, and maximum monthly temperatures) translate into transmission potential. 117 

The most surprising result of our study is that the upper thermal bound of Aedes viral 118 

transmission is likely to be increasingly relevant in a changing climate—even in localities with current 119 

year-round transmission. For Ae. aegypti, minimum temperatures produce far lower total extents of 120 

transmission, though the extent of year-round transmission is roughly comparable; the pattern is reversed 121 

for Ae. albopictus, for which the cumulative extent is the same, but minimum monthly temperatures 122 

predict year-round transmission risk for 1-2 billion more people (Figure 2). This is ultimately an 123 
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emergent property of the same seasonal risk curves generated for current temperatures, and has key 124 

implications for interpreting the climate-disease relationship. (In particular, partial mitigation of climate 125 

change could keep Ae. albopictus mosquitoes especially within optimal thermal ranges for more of the 126 

year, and thereby produce worse clinical outcomes). Furthermore, for both mosquitoes, inter-annual and 127 

intra-monthly variation in weather may also have a more significant effect on viral outbreak outcomes 128 

than subtler variations in overall climate trends. Increasing climate change severity increases population 129 

at risk for both mosquitoes when using minimum temperatures but decreases it for Ae. albopictus 130 

transmission, using maximum temperatures (Figure 3). Moreover, the range of temperatures forecasted 131 

for a given month across scenarios produce a more dramatic range of risk forecasts than any combination 132 

of climate models and pathways.  133 

In the face of a changing climate, dramatic changes can be expected in the global spatiotemporal 134 

risk patterns from both Ae. aegypti (Figure 4) and Ae. albopictus (Figure 5). For minimum monthly 135 

temperatures, models for both mosquitoes in 2050 under the most and least optimistic pathways (RCPs 136 

2.6 and 8.5) are quite different from current distributions, with the most notable changes being a 137 

southward shift of year-round suitable area in sub-Saharan Africa, an increase in months of suitability 138 

over a larger area in the Americas, an increase in suitable area through southern Europe, and an expansion 139 

of the northern range limits of transmission for both Europe and North America. In contrast, for 140 

maximum temperature scenarios for 2050, much more idiosyncratic distributional patterns develop. Both 141 

mosquitoes gain significant ground towards the poles for at least a few months of the year. In some cases, 142 

climate change is expected to reverse well-documented geographic patterns of transmission, like 143 

Australia’s latitudinal gradient (with current transmission risk highest on the northern coast, but projected 144 

to shift towards the southern and eastern coasts by 2050). While some core areas (like the Amazon or 145 

Indian subcontinent) become less suitable for year round transmission for Ae. aegypti, the overall pattern 146 

is one of expanding thermally-suitable area in sub-Saharan Africa, Central America, and the Andes. 147 

Whether this translates into increased vector establishment will depend heavily on land use patterns and 148 

urbanization at regional scales, a fact that may ultimately buffer some regions like the Andes from 149 
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increased disease risk28,29. In contrast, for Ae. albopictus, future risk patterns change far more 150 

dramatically, primarily because maximum temperature scenarios produce large reductions in range 151 

(Figure 5), corresponding to 1-2 billion fewer people at risk of year-round transmission even though the 152 

overall extent of suitability is roughly the same with minima and maxima (Figure 2). In the most extreme 153 

warming scenarios, the tropics become unsuitable year-round, with the only projected year-round 154 

transmission projected for high-elevation regions like the Andes mountains, or isolated patches of Africa 155 

and southeast Asia (Figure 5).  156 

Our model predicts that 6.1 billion people currently live in areas suitable for Ae. aegypti 157 

transmission at least part of the year (i.e., 1 month or more) and 6.49 billion in areas suitable for Ae. 158 

albopictus transmission (using mean temperatures). Whether future risk will be driven by rising minimum 159 

temperatures, moving people into suitable transmission temperatures, or instead maximum temperatures 160 

curbing transmission, as people are exposed to temperatures above suitable ranges, remains to be seen. 161 

However, we can anticipate each of these, using our modeling approaches, and see that they give us quite 162 

different predictions. Based on comparisons of predicted monthly minimum and maximum temperatures 163 

(min/max) instead of means, current people at risk (PAR) in areas suitable for Ae. Aegypti based 164 

transmission are 4.30/7.15 billion and for Ae. albopictus are 4.82/6.49 billion.  An average (across RCPs 165 

and GCMs) of 5.12/7.24 billion people live in areas facing increased exposure to climate suitability for 166 

Ae. aegypti-borne viruses by 2050 (5.33/7.21 billion by 2070), while 5.57/5.82 billion live in areas facing 167 

increased exposure to climate suitability for Ae. albopictus-borne viruses by 2050 (5.77/5.61 billion by 168 

2070). It is important to note that these changes represent shifts in location of suitable climates, so new 169 

individuals will become exposed, while others will see decreasing risk. A total of 85,118/2,881,487,129 170 

people live in areas likely to experience decreased climate suitability for exposure to transmission by Ae. 171 

aegypti by 2050 (585,895/3,394,798,283 by 2070), and an even more surprising 172 

234,623,576/3,895,574,225 face decreased climate suitability for exposure to transmission by Ae. 173 

albopictus by 2050 (387,799,583/4,243,005,789 by 2070). Interestingly, 21,233/69,986,579 people live in 174 

areas predicted to entirely escape viral transmission by Ae. aegypti, and 28,277/922,980,947 are likely to 175 
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escape Ae. albopictus transmission, by 2070. These decreases suggest that climate change may not cause 176 

a direct global spike in Aedes-borne disease, and could ultimately mitigate it; however, gains in exposure 177 

may have a more visible effect than losses on realized disease outcomes, given the potential for explosive 178 

outbreaks (like Zika in the Americas) when viruses are first introduced into naïve populations30. The 179 

emergence of a Zika pandemic in the Old World, of chikungunya in Europe17, or of dengue anywhere the 180 

virus (or any given serotype) is not endemic, is still a critical concern. Whereas the highest risk is 181 

consistently obvious in south and southeast Asia, the most significant hotspots of uncertainty in our 182 

seasonal population at risk maps is evident in Europe and sub-Saharan Africa (Figure S5, S6), and we 183 

suggest that these especially require further, locally-tailored investigation by public health researchers. 184 

While climate change poses perhaps the most serious growing threat to global health security, the 185 

relationship between climate change and worsening clinical outcomes for Aedes-borne diseases is 186 

unlikely to be straightforward. In practice, shifting patterns of suitability will correspond to different local 187 

patterns of exposure in a changing climate, independent of broader geographic constraints. The link from 188 

transmission risk to clinical outcomes is confounded by other health impacts of climate change, including 189 

changing precipitation patterns, socioeconomic development, changing patterns of land use and 190 

urbanization, potential vector (and virus) evolution and adaptation to warming temperatures, and 191 

changing healthcare landscapes, all of which covary strongly (potentially leading to complex 192 

nonlinearities). Together these will determine the burden of Aedes-borne outbreaks. Moreover, human 193 

adaptation to climate change will matter just as much as mitigation in determining how risk patterns shift; 194 

for example, increased drought stress will likely correspond to water storage that increases proximity to 195 

Aedes breeding habitat31. Our models only provide an outer spatiotemporal bound to where transmission 196 

of dengue, chikungunya, and Zika is thermally plausible; climate change is likely to change the risk-197 

burden relationship at fine scales within those zones of transmission in nonlinear ways, such that areas 198 

with shorter seasons of transmission could still experience worse overall disease burdens, or vice versa. 199 

As Aedes-borne diseases shift, research building consensus between our models and others, that works 200 

towards refine risk assessments within experimentally-determined outer bounds is paramount32.  201 
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 202 

Methods  203 

 204 

The Bayesian Model 205 

Our study presents geographic projections of a published experimentally-derived mechanistic model of 206 

Aedes viral transmission. The approach to fit the thermal responses in a Bayesian framework and combine 207 

them to obtain the posterior distribution of R0 as a function of these traits is described in detail in Johnson 208 

et al.7 and the particular traits and fits for Aedes aegypti and Ae. albopictus are presented in Mordecai et 209 

al.33. Once we obtain our posterior samples for R0 as a function of temperature we can evaluate the 210 

probability that R0 > 0 (Prob(R0 > 0)) at each temperature, giving a distinct curve for each mosquito 211 

species. We then define cutoff of Prob(R0 > 0) = α to determine our estimates of the thermal niche. For all 212 

except Figure 2 we use α = 0.975. This very high probability allows us to isolate a temperature window 213 

for which transmission is almost certainly not excluded. For Figure 2, points correspond to α = 0.5 and 214 

the lower/upper error bars to α = 0.975 and 0.025 respectively. Note that the smaller probability leads to 215 

larger population at risk estimates because the lower cutoff results in a wider thermal niche (i.e., 216 

temperatures where there is even a small chance that transmission could be permitted).  217 

 218 

Current & Future Climates  219 

Current mean, maximum, and minimum monthly temperature data was derived from the WorldClim 220 

dataset (www.worldclim.org).34 For future climates, we selected general circulation models (GCMs) that 221 

are most commonly used by studies forecasting species distributional shifts, at a set of four representative 222 

concentration pathways (RCPs) that account for different global responses to mitigate climate change. 223 

These are the Beijing Climate Center Climate System Model (BCC-CSM1.1); the Hadley GCM 224 

(HadGEM2-CC and HadGEM2-ES); and the National Center for Atmospheric Research’s Community 225 

Climate System Model (CCSM4). Each of these can respectively be forecasted for RCP 2.6, RCP 4.5, 226 

RCP 6.0 and RCP 8.5. RCP numbers correspond to increased radiation in W/m2 by the year 2100, 227 
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therefore expressing scenarios of increasing severity. (However, even these scenarios are nonlinear over 228 

time. For example, in 2050, RCP 4.5 is a more severe change than 6.0; see Figure 3.) For future climate 229 

scenarios, only minimum and monthly maximum projected temperatures are available. For most 230 

visualizations presented in the main paper (Figures 3 & 4), we used the HadGEM2-ES model, the most 231 

commonly used GCM. The mechanistic transmission model was projected onto the climate data using the 232 

‘raster’ package in R 3.1.1. Subsequent visualizations were generated in ArcMap.  233 

 234 

Population at Risk 235 

To quantify a measure of risk, comparable between current and future climate scenarios, we used 236 

population count data from the Gridded Population of the World, version 4 (GPW4)35, predicted for the 237 

year 2015. We selected this particular population product as it is minimally modeled a priori, ensuring 238 

that the distribution of population on the earth’s surface has not been predicted by modeled covariates that 239 

would also influence our mechanistic vector-borne disease model predictions. These data are derived 240 

from most recent census data, globally, at the smallest administrative unit available, then extrapolated to 241 

produce continuous surface models for the globe for 5-year intervals from 2000-2020. These are then 242 

rendered as globally gridded data at 30 arc-seconds; we aggregated these in R (raster30) to match the 243 

climate scenario grids at 5 minute resolution (approximately 10km2 at the equator). We used 2015 244 

population count as our proxy for current, and explored future risk relative to the current population 245 

counts. This prevents arbitrary demographic model-imposed patterns emerging, possibly obscuring 246 

climate generated change. We note that these count data reflect the disparities in urban and rural patterns 247 

appropriately for this type of analysis, highlighting population dense parts of the globe. Increasing 248 

urbanization would likely amplify the patterns we see, as populations increase overall, and the lack of 249 

appropriate population projections at this scale for 30-50 years in the future obviously limits the precision 250 

of the forecasts we provide.  251 

 252 

Acknowledgements 253 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172221doi: bioRxiv preprint 

https://doi.org/10.1101/172221
http://creativecommons.org/licenses/by-nc-nd/4.0/


This work was funded by the National Science Foundation (DEB-1518681 to SJR, LRJ, EAM,NSF DEB-254 

1641145 to SJR, and DEB-1640780 to EAM), the Stanford Woods Institute for the Environment (https:// 255 

woods.stanford.edu/research/environmental- venture-projects), and the Stanford Center for Innovation in 256 

Global Health (http://globalhealth. stanford.edu/research/seed-grants.html). Van Savage, Naveed Heydari, 257 

Jason Rohr, Matthew Thomas, and Marta Shocket provided helpful discussions on modeling approaches. 258 

 259 

Author Information 260 

The authors declare no competing interests. Correspondence and requests for materials should be 261 

addressed to S.J.R. (sjryan@ufl.edu).  262 

 263 

Author Contributions 264 

SJR initiated the idea for the study. SJR and LJ ran the models. CJC, SJR, EAM, and LJ wrote the 265 

manuscript. SJR and CJC made the figures. 266 

267 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172221doi: bioRxiv preprint 

mailto:sjryan@ufl.edu
https://doi.org/10.1101/172221
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 268 

1. Hoberg, E. P. & Brooks, D. R. Evolution in action: climate change, biodiversity dynamics and 269 

emerging infectious disease. Phil Trans R Soc B 370, 20130553 (2015). 270 

2. Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009). 271 

3. Escobar, L. E. et al. Declining Prevalence of Disease Vectors Under Climate Change. Sci. Rep. 6, 272 

(2016). 273 

4. Messina, J. P. et al. The many projected futures of dengue. Nat. Rev. Microbiol. 13, 230–239 (2015). 274 

5. Patz, J. A., Martens, W., Focks, D. A. & Jetten, T. H. Dengue fever epidemic potential as projected by 275 

general circulation models of global climate change. Environ. Health Perspect. 106, 147 (1998). 276 

6. Mordecai, E. et al. Detecting the impact of temperature on transmission of Zika, dengue, and 277 

chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017). 278 

7. Johnson, L. R. et al. Understanding uncertainty in temperature effects on vector-borne disease: a 279 

Bayesian approach. Ecology 96, 203–213 (2015). 280 

8. Campbell, L. P. et al. Climate change influences on global distributions of dengue and chikungunya 281 

virus vectors. Phil Trans R Soc B 370, 20140135 (2015). 282 

9. Carlson, C. J., Dougherty, E. R. & Getz, W. An ecological assessment of the pandemic threat of Zika 283 

virus. PLoS Negl Trop Dis 10, e0004968 (2016). 284 

10. Githeko, A. K., Lindsay, S. W., Confalonieri, U. E. & Patz, J. A. Climate change and vector-285 

borne diseases: a regional analysis. Bull. World Health Organ. 78, 1136–1147 (2000). 286 

11. Ibelings, B. et al. Chytrid infections and diatom spring blooms: paradoxical effects of climate 287 

warming on fungal epidemics in lakes. Freshw. Biol. 56, 754–766 (2011). 288 

12. Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than 289 

previously predicted. Ecol. Lett. 16, 22–30 (2013). 290 

13. Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate 291 

change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015). 292 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172221doi: bioRxiv preprint 

https://doi.org/10.1101/172221
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Hales, S., De Wet, N., Maindonald, J. & Woodward, A. Potential effect of population and climate 293 

changes on global distribution of dengue fever: an empirical model. The Lancet 360, 830–834 (2002). 294 

15. \AAström, C. et al. Potential distribution of dengue fever under scenarios of climate change and 295 

economic development. Ecohealth 9, 448–454 (2012). 296 

16. Williams, C. et al. Projections of increased and decreased dengue incidence under climate 297 

change. Epidemiol. Infect. 1–10 (2016). 298 

17. Fischer, D. et al. Climate change effects on Chikungunya transmission in Europe: geospatial 299 

analysis of vector’s climatic suitability and virus’ temperature requirements. Int. J. Health Geogr. 12, 300 

51 (2013). 301 

18. Funk, S. et al. Comparative analysis of dengue and Zika outbreaks reveals differences by setting 302 

and virus. PLoS Negl. Trop. Dis. 10, e0005173 (2016). 303 

19. Bastos, L. et al. Zika in Rio de Janeiro: assessment of basic reproductive number and its 304 

comparison with dengue. BioRxiv 055475 (2016). 305 

20. Riou, J., Poletto, C. & Boëlle, P.-Y. A comparative analysis of Chikungunya and Zika 306 

transmission. Epidemics (2017). 307 

21. Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical 308 

models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito 309 

Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009). 310 

22. Hopp, M. J. & Foley, J. A. Global-scale relationships between climate and the dengue fever 311 

vector, Aedes aegypti. Clim. Change 48, 441–463 (2001). 312 

23. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013). 313 

24. Nsoesie, E. O. et al. Global distribution and environmental suitability for chikungunya virus, 314 

1952 to 2015. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 21, (2016). 315 

25. Samy, A. M., Thomas, S. M., Wahed, A. A. E., Cohoon, K. P. & Peterson, A. T. Mapping the 316 

global geographic potential of Zika virus spread. Mem. Inst. Oswaldo Cruz 111, 559–560 (2016). 317 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172221doi: bioRxiv preprint 

https://doi.org/10.1101/172221
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Messina, J. P. et al. Mapping global environmental suitability for Zika virus. Elife 5, e15272 318 

(2016). 319 

27. Bogoch, I. I. et al. Anticipating the international spread of Zika virus from Brazil. Lancet Lond. 320 

Engl. 387, 335–336 (2016). 321 

28. Grau, H. R. et al. The ecological consequences of socioeconomic and land-use changes in 322 

postagriculture Puerto Rico. AIBS Bull. 53, 1159–1168 (2003). 323 

29. Li, Y. et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito 324 

development and survivorship. PLoS Negl. Trop. Dis. 8, e3301 (2014). 325 

30. Lucey, D. R. & Gostin, L. O. The emerging Zika pandemic: enhancing preparedness. Jama 315, 326 

865–866 (2016). 327 

31. Beebe, N. W., Cooper, R. D., Mottram, P. & Sweeney, A. W. Australia’s dengue risk driven by 328 

human adaptation to climate change. PLoS Negl. Trop. Dis. 3, e429 (2009). 329 

32. Carlson, C. J., Dougherty, E., Boots, M., Getz, W. & Ryan, S. Consensus and conflict among 330 

ecological forecasts of Zika virus outbreaks in the United States. bioRxiv 138396 (2017). 331 

33. Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and 332 

chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017). 333 

34. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution 334 

interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005). 335 

35. Center for International Earth Science Information Network (CIESIN), Columbia University. 336 

Gridded Population of the World, Version 4 (GPWv4). (US NASA Socioeconomic Data and 337 

Applications Center (SEDAC), 2016). 338 

36. Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. (2012). 339 

 340 

  341 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172221doi: bioRxiv preprint 

https://doi.org/10.1101/172221
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 342 

Figure 1 | Mapping current transmission risk. Maps of current monthly suitability based on mean 343 

temperatures for a temperature suitability threshold corresponding to the posterior probability that scaled 344 

R0 > 0 is 97.5% for (a) Aedes aegypti and (b) Aedes albopictus.  345 

 346 
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Figure 2 | Current and future global population-at-risk. Values correspond to population at risk for a 351 

given minimum number of months. Points correspond to the 50% posterior probability that scaled R0 > 0, 352 

while confidence intervals correspond to probabilities of 2.5% and 97.5%. Left and right: Aedes aegypti 353 

and Aedes albopictus. Current models are separated by mosquito and by monthly minimum, mean, or 354 

maximum temperature; future model colors also reflect representative concentration pathways (RCPs) 355 

and minimum vs. maximum monthly temperature (see legend), while contrasting GCMs are plotted as 356 

separate trajectories with the same plotting scheme.  357 

 358 

 359 
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Figure 3 | Projected total changes in global population at risk (PAR, for one or more months), for Aedes 361 

aegypti and Aedes albopictus transmission, from current modeled PAR, as a function of minimum (Tmin) 362 

and maximum (Tmax) monthly temperatures, to 2050 and 2070, by representative climate pathways 363 

(RCPs), across 4 general circulation models.  364 
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Figure 4 | Mapping future transmission risk scenarios for Aedes aegypti. Maps of monthly suitability 366 

based on a temperature threshold corresponding to the posterior probability that scaled R0 > 0 is greater or 367 

equal to 97.5%, for transmission by Aedes aegypti for predicted minimum (Tmin, Left - a,c,e) and 368 

maximum (Tmax, Right - b,d,f) monthly temperatures under current (a,b) and future scenarios (HadGEM2-369 

ES 2050 for RCP 2.6 (c,d) and RCP 8.5 (e,f). 370 

 371 
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Figure 5 | Mapping future transmission risk scenarios for Aedes albopictus. Maps of monthly 373 

suitability based on a temperature threshold corresponding to the posterior probability that scaled R0 > 0 is 374 

greater or equal to 97.5%, for transmission by Aedes albopictus for predicted minimum (Tmin, Left - a,c,e) 375 

and maximum (Tmax, Right - b,d,f) monthly temperatures under current (a,b) and future scenarios 376 

(HadGEM2-ES 2050 for RCP 2.6 (c,d) and RCP 8.5 (e,f). 377 

 378 
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Figure S1 | Current months of the year suitable for Ae aegypti transmission for (a) minimum, (b) mean, 380 

and (c) maximum monthly temperatures, where the posterior probability that scaled R0 > 0 is greater or 381 

equal to 97.5%.  382 
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Figure S2 | Current months of the year suitable for Ae albopictus transmission for (a) minimum, (b) 384 

mean, and (c) maximum monthly temperatures, where the posterior probability that scaled R0 > 0 is 385 

greater or equal to 97.5%.  386 
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Figure S3 | Aedes aegypti current mPAR (months*people at risk), for (a) minimum, (b) mean, and (c) 388 

maximum temperature. The number of months of transmission suitability generated under current 389 

temperature models were multiplied by the estimated population for 2015 (Gridded Population of the 390 

World GPW435).   391 
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Figure S4 | Aedes albopictus current mPAR (months*people at risk), for (a) minimum, (b) mean, and (c) 393 

maximum temperature. The number of months of transmission suitability generated under current 394 

temperature models were multiplied by the estimated population for 2015 (Gridded Population of the 395 

World GPW435).   396 
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Figure S5 | Aedes aegypti future mPAR (months*people at risk), for (a) 2050 and (c) 2070 (max 399 

HadGEM2-ES RCP 8.5), versus the highest year-round PaR for (b) 2050 and (d) 2070 (max CCSM4 RCP 400 

2.6). The number of months of transmission suitability generated under temperature models were 401 

multiplied by the estimated population for 2015 (Gridded Population of the World GPW435).   402 
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Figure S6 | Aedes albopictus future mPAR (months*people at risk), for (a) 2050 and (c) 2070 (max 405 

HadGEM2-ES RCP 8.5), versus the highest year-round PaR for (b) 2050 and (d) 2070 (max CCSM4 RCP 406 

2.6). The number of months of transmission suitability generated under temperature models were 407 

multiplied by the estimated population for 2015 (Gridded Population of the World GPW435).   408 
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