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ABSTRACT	

Diabetic	embryopathy	(DE)	describes	a	spectrum	of	birth	defects	associated	with	a	

teratogenic	exposure	to	maternal	diabetes	in	utero.	These	defects	strongly	overlap	the	

phenotypes	of	known	genetic	syndromes;	however,	the	pathogenic	mechanisms	underlying	DE	

remain	uncertain	and	there	are	no	definitive	tests	that	distinguish	the	diagnosis.	Here,	we	

explore	the	potential	of	DNA	methylation	as	both	a	diagnostic	biomarker	and	a	means	of	

informing	disease	pathogenesis	in	DE.	Capture-based	bisulfite	sequencing	was	used	to	compare	

patterns	of	DNA	methylation	at	2,800,516	sites	genome-wide	in	seven	DE	neonates	and	11	

healthy	neonates,	including	five	with	in	utero	diabetes	exposure.	DE	infants	had	significantly	

lower	global	DNA	methylation	(ANOVA,	Tukey	HSD	p=0.045)	than	diabetes-unexposed,	healthy	

controls	(UH),	with	multiple	sites	showing	large	(mean	methylation	difference	=	16.6%)	and	

significant	(p<0.001)	differential	methylation	between	the	two	groups.	We	found	that	a	subset	

of	237	highly	differentially	methylated	loci	could	accurately	distinguish	DE	infants	from	both	UH	

and	diabetes-exposed	healthy	infants	(sensitivity	80%	-100%).	Differentially	methylated	sites	

were	enriched	in	intergenic	(p<3.52x10-15)	and	intronic	(p<0.001)	regions	found	proximal	to	

genes	either	associated	with	Mendelian	syndromes	that	overlap	the	DE	phenotype	(e.g.	TRIO,	

ANKRD11),	or	known	to	influence	early	organ	development	(e.g.	BRAX1,	RASA3).	Further,	by	

integrating	information	on	cis-sequence	variation,	we	found	that	39.3%	of	loci	with	evidence	

for	allele-specific	methylation	also	showed	differential	methylation	between	DE	and	controls.	

Our	study	suggests	a	role	for	aberrant	DNA	methylation	and	cis-sequence	variation	in	the	

pathogenesis	of	DE,	and	highlights	the	diagnostic	potential	of	DNA	methylation	for	teratogenic	

birth	defects.	
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BACKGROUND	

Teratogenesis	is	the	disruption	of	normal	fetal	development	as	a	consequence	of	an	

environmental	exposure.	This	disruption	frequently	leads	to	congenital	birth	defects	in	the	

growing	offspring1.	An	estimated	10%	of	all	birth	defects	are	likely	attributable	to	such	adverse	

environmental	encounters2.	Prenatal	exposure	with	a	teratogenic	agent	can	not	only	be	a	

consequence	of	maternal	medications	or	substance	abuse3-5,	but	also	of	maternal	health.	

Pregestational	diabetes	is	a	well-known	cause	of	congenital	malformations	and	infants	of	

diabetic	mothers	(IDMs)	are	2-	to	4-fold	more	likely	to	develop	birth	defects	compared	to	the	

general	population6-10.	Likewise,	maternal	obesity	and	gestational	diabetes	(GDM)	are	

associated	with	increased	risks	of	birth	defects11-14.	As	a	consequence,	approximately	4-9%	of	

children	prenatally	exposed	to	maternal	diabetes	are	born	with	diabetic	embryopathy	(DE)6-10	–	

a	phenotypic	spectrum	of	birth	defects	that	classically	includes	sacral	agenesis	and	related	

spine	defects,	complex	congenital	heart	defects,	central	nervous	system	(CNS)	malformations,	

and	limb	abnormalities.	These	defects	often	co-occur	as	so-called	‘multiple	congenital	

anomalies’	and	have	substantial	phenotypic	overlap	with	recognizable	genetic	and	genomic	

syndromes14.	In	clinical	practice,	this	poses	a	difficult	diagnostic	problem,	as	the	presence	of	

multiple	birth	defects	triggers	a	broad	and	often	expensive	diagnostic	odyssey	aimed	at	

providing	parents	with	information	regarding	recurrence	risk,	future	medical	management,	and	

recommendations	for	disease	screening.	However,	as	there	is	presently	no	definitive	diagnostic	

test	for	DE,	diagnostic	evaluations	in	such	contexts	are	usually	futile.	The	diagnosis	of	“infant	of	

a	diabetic	mother”,	therefore,	relies	almost	entirely	on	observing	congenital	malformations	in	

an	infant	with	a	history	of	maternal	diabetes	and	excluding	plausible	alternative,	usually	

genetic,	diagnoses.	

The	teratogenic	mechanisms	underlying	maternal	diabetes	remain	elusive,	but	the	

likelihood	of	congenital	anomalies	following	in	utero	maternal	diabetes	exposure	appears	to	

correlate	positively	with	first	trimester	maternal	blood	glucose	levels15,16.	DNA	methylation,	

most	commonly	found	at	cytosines	in	cytosine-guanine	dinucleotides	(CpG),	is	a	malleable	

regulatory	epigenetic	feature	that	can	reflect	in	utero	exposures	to	environmental	stimuli,	such	

as	maternal	nutrition17.	It	has	thus	been	hypothesized	that	maternal	diabetes	in	humans	could	
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disrupt	normal	epigenetic	patterns,	resulting	in	aberrant	gene	function	during	embryogenesis,	

and	ultimately	leading	to	complex	malformations	in	the	fetus.	For	instance,	in	a	recently	

published	murine	model,	oxidative	stress	induced	by	maternal	hyperglycemia	led	to	increased	

activity	of	the	DNA	methyltransferase	Dnmt3b,	which	in	turn	resulted	in	DNA	hypermethylation	

and	inhibited	embryonic	expression	of	Pax3	-	a	gene	crucial	for	neural	tube	and	heart	

development18.	Most	studies	of	DNA	methylation	in	IDMs,	however,	have	focused	on	

epigenetic	changes	that	could	influence	the	risk	of	later-life	obesity	and	diabetes	in	these	

offspring.	These	studies	have	assessed	the	effects	of	GDM	on	DNA	methylation	in	placental	

tissue	and	umbilical	cord	blood	in	exposed,	yet	phenotypically	healthy	progeny	and	have	

reported	disrupted	methylation	patterns	in	both	candidate	gene	analyses19-22	and	genome-wide	

array-based	scans23-26.	Using	array	and	methylated	DNA	immunoprecipitation	(MeDIP-chip)	

technologies,	epigenome-wide	studies	on	peripheral	blood	of	older	offspring	without	

congenital	malformations	(ranging	from	young	adolescents	to	adults)	also	showed	altered	DNA	

methylation	patterns	in	individuals	with	in	utero	exposure	to	gestational27,	type	1	(T1DM)28,	

and	type	2	diabetes	mellitus	(T2DM)29.	These	studies,	however,	provided	only	a	restricted	view	

of	methylation	following	diabetic	pregnancies	and	none	of	them	assessed	methylation	in	the	

context	of	DE.	

Given	this	gap	in	knowledge,	we	used	genome-wide	targeted	enrichment	bisulfite	

sequencing	to	assess	DNA	methylation	across	the	genome	in	neonates	with	congenital	

malformations	and	a	history	of	in	utero	diabetes	exposure.	Buccal	epithelial	cell	samples	were	

obtained	for	DNA	isolation	in	order	to	avoid	confounding	by	cell	composition	differences	in	

peripheral	blood30.	Our	starting	premise	was	that	teratogenic	effects	incurred	during	early	

embryogenesis	will	be	substantial	and	affect	all	germ	layers.	Given	the	fidelity	of	mitotic	

inheritance	of	DNA	methylation,	we	hypothesized	that	traces	of	these	effects	would	still	be	

evident	in	differentiated	tissues	at	and	around	the	time	of	birth.	The	resulting	patterns	of	DNA	

methylation	were	compared	with	those	of	healthy	infants,	who	had	not	been	exposed	to	

maternal	diabetes	(unexposed,	healthy;	UH),	and	maternal	diabetes-exposed	newborns	without	

overt	evidence	of	a	congenital	clinical	phenotype	(exposed,	healthy;	EH).	In	so	doing,	we	aimed	
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to	evaluate	the	diagnostic	potential	of	the	methylation	and	possibly	gain	insight	into	the	

underlying	pathogenesis.	

	

MATERIALS	AND	METHODS	

Participants	

Participants	were	recruited	through	Texas	Children’s	Hospital	in	Houston,	Texas,	as	part	

of	a	larger	study	of	the	effects	of	maternal	diabetes	and	anti-epileptic	drug	consumption	on	

offspring	DNA	methylation.	The	study	was	reviewed	and	approved	by	the	Baylor	College	of	

Medicine	Institutional	Review	Board.	In	total,	22	neonates	were	enrolled	(Table	1)	–	15	were	

born	to	diabetic	mothers,	of	whom	nine	were	diagnosed	with	DE.	The	remaining	six	diabetes-

exposed	infants	did	not	have	any	clinical	stigmata	of	diabetes	exposure,	including	respiratory	

distress	or	metabolic	abnormalities	such	as	hypoglycemia.	All	but	three	of	our	cohort	were	

carried	to	term	(two	UH,	one	EH),	and	all	births	occurred	after	36	completed	weeks	of	gestation	

(median:	38.3	weeks,	range	36.4	to	40.1	weeks;	Table	1).	Our	study	design	was	inclusive	of	all	

types	of	maternal	diabetes,	however,	GDM	and	T2DM	were	the	most	commonly	observed	

(Table	1).	The	congenital	malformations	found	in	these	infants,	the	genetic	tests	undertaken	to	

eliminate	known	genetic	disorders	as	alternative	diagnoses,	as	well	as	infant	and	mother	

demographics	are	listed	in	Supplementary	Table	1.	At	the	time	of	enrollment,	mothers	of	

infants	with	congenital	malformations	had	significantly	higher	body	mass	indices	(BMIs)	

compared	to	healthy	mothers	(p=0.017,	Tukey	HSD;	Table	1),	making	maternal	obesity	an	

unavoidable	confounder	of	diabetes	exposure.	Maternal	blood	glucose	concentrations,	

assessed	by	glycated	hemoglobin	(HbA1c)	levels,	were	only	available	for	one	UH	control	

sample,	thus	impeding	any	statistical	comparisons;	nonetheless,	the	two	highest	HbA1c	

measurements	were	observed	in	mothers	of	infants	with	DE	(Supplementary	Figure	1).	This	

trend	is	consistent	with	previously	reported	positive	correlations	between	maternal	blood	

glucose	levels	and	the	risk	of	associated	congenital	malformations16,15.	The	American	Congress	

of	Obstetrics	and	Gynecology	recommends	screening	for	diabetes	in	pregnancy,	and	chart	

review	of	all	UH	mothers	showed	that	none	had	GDM.	We	did	not	find	any	significant	

differences	in	maternal	age	or	infant	birth	weight	(Table	1).			
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Sample	collection	and	sequencing	

Buccal	epithelial	cells	were	collected	within	ten	days	of	birth	using	the	Oragene	Discover	

(OGR-250)	DNA	collection	kit	(DNA	Genotek	Inc.,	Ottawa,	Ontario,	Canada),	modified	to	obtain	

a	cumulative	sample	of	the	inner	buccal	cheek	by	doing	multiple	(10)	passes	with	multiple	(5)	

swabs.	DNA	was	extracted	according	to	the	manufacturer’s	instructions.	In	order	to	quantify	

DNA	methylation	epigenome-wide,	the	SeqCap	Epi	CpGiant	Enrichment	Kit	(Roche	NimbleGen,	

Inc.,	Madison,	Wisconsin,	USA)	was	used.	This	is	a	targeted	methylation	capture	panel	designed	

to	assess	~5.5	million	methylation	sites	across	the	genome.	Library	preparation,	bisulfite	

conversion,	targeted	enrichment,	and	amplification	were	performed	as	outlined	in	the	SeqCap	

Epi	CpGiant	Enrichment	Kit	protocol.	Adapters	from	the	SeqCap	Adapter	Kit	A	were	used	in	

combination	with	SeqCap	EZ	HE-Oligo	Kit	A	barcode	blockers	(both	from	Roche	NimbleGen,	

Inc.,	Madison,	Wisconsin,	USA)	to	index	samples.	The	captured	DNA	fragments	were	amplified,	

then	sequenced	on	the	Illumina	HiSeq	2000	platform	using	100	bp	paired-end	reads,	and	

multiplexed	to	have	three	samples	per	lane.	Samples	were	sequenced	in	two	batches:	the	first	

(discovery)	batch	comprised	three	UH,	one	EH,	and	four	DE	infants,	and	the	second	(replication)	

batch	consisted	of	three	UH,	four	EH,	and	three	DE	samples,	excluding	outliers	(see	below).	

	

Post-sequencing	processing	and	quality	control	

De-multiplexed	BAM	files	were	processed	using	Bismark	(version	0.12.3)31,	including	(1)	

alignment	of	sequence	reads	to	the	hg19	reference	genome,	(2)	elimination	of	PCR	duplicates,	

(3)	removal	of	five	bases	from	5’	read	ends	in	order	to	reduce	known	technical	biases,	and	(4)	

quantification	of	the	methylation	level	at	each	targeted	CpG	locus.	The	average	mapping	

efficiency	was	77.15%,	with	a	mean	of	45,140,004	uniquely	aligned	reads	per	sample	(median:	

46,341,251,	range:	34,344,965	to	52,937,052).	CpG	loci	overlapping	common	SNPs	(MAF	³1%	in	

hg19	dbSNP	build	144)	were	discarded	from	subsequent	analyses.	The	average	capture	

efficiency	after	deduplication	-	defined	here	as	the	number	of	reads	overlapping	targeted	CpG	

loci	divided	by	the	total	number	of	sequencing	reads	-	was	65%.	The	median	coverage	at	all	CpG	
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sites	targeted	by	the	enrichment	kit	was	20X	(range:	1X	to	13,698X).	Downstream	analyses	

were	performed	using	only	those	CpG	sites	with	≥10X	coverage	in	every	sample	in	a	given	

analysis	(median:	26X).	Potential	batch	effects	were	evaluated	using	one-way	ANOVA	on	the	

medians	of	the	distributions	as	well	as	quantro	software	(1,000	data	permutations;	version	

1.4.0)32.	There	was	no	strong	evidence	of	batch	effects,	nor	were	there	other	biases	noted	in	

the	distribution	of	cases,	infant	demographics	or	maternal	demographics	(Supplementary	Table	

2).	

To	confirm	that	our	DNA	samples	were	in	fact	derived	from	buccal	epithelial	cells,	we	

isolated	available	CpG	sites	from	our	data	set	that	are	needed	for	the	online	Horvath	DNA	

methylation	age	calculator	(accessed	Nov.	22,	2016)33,	which	provides	probabilities	for	likely	

tissues	of	origin	based	on	tissue-specific	methylation	patterns.	Percent	methylation	values	were	

scaled	to	proportions	in	order	to	emulate	beta	values	-	the	measure	of	methylation	calculated	

in	array	analyses	and	required	by	the	tool.	Based	on	the	tissue	prediction	algorithm,	all	samples	

were	confirmed	to	be	primarily	buccal	(epithelial)	in	origin	(Supplementary	Table	3).		

Given	the	breadth	of	clinical	phenotypes	evident	in	the	cohort,	a	principal	component	

analysis	(PCA)	and	hierarchical	clustering	of	samples	using	all	sites	with	³10X	coverage	across	all	

individuals	was	performed.	Four	outlier	samples	–	one	UH,	one	EH,	and	two	DE	infants	

(Supplementary	Figures	1A	and	B)	–	were	removed	following	this	analysis.	This	is	conservative	

in	that	it	assumes	that	most	CpG	sites	are	not	differentially	methylated	comparing	cases	and	

controls.	After	outlier	removal,	a	total	of	3,108,549	CpG	sites	remained	in	DE	infants,	3,176,002	

in	UH	infants,	and	3,791,204	in	EH	infants;	2,760,543	were	shared	among	all	groups;	2,800,516	

sites	were	shared	between	UH	and	DE	samples.		

	

Differential	methylation	analysis	

Single	site	differential	methylation	analysis	using	a	logistic	regression	model	without	

covariates,	was	performed	using	methylKit	(version	0.9.5)34,	after	normalization	for	coverage	

using	the	same	tool.	In	an	effort	to	reduce	the	number	of	false	positive	results,	all	sites	with	

nominal	p-values	<0.001	were	permuted	1,000	times	with	replacement	by	randomly	switching	

case/control	labels.	In	order	to	give	greater	confidence	to	our	findings,	we	took	advantage	of	
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the	known	correlation	between	methylation	of	adjacent	CpG	dinucleotides	to	cluster	sites	into	

bins	of	multiple	high-confidence	differentially	methylated	loci	–	focusing	on	sites	at	which	≤10	

permutations	produced	an	equally	small	or	smaller	p-value	than	the	original	analysis.	All	high-

confidence	sites	within	a	bin	were	required	to	be	separated	from	neighboring	sites	by	no	more	

than	1	kb	and	share	the	same	direction	of	effect.	Bins	that	did	not	contain	at	least	one	high-

confidence	differentially	methylated	site	with	an	absolute	difference	(D)	in	percent	methylation	

≥10	(i.e.	≥10	absolute	percentage	points	–	pp)	were	excluded,	as	were	those	that	did	not	

contain	at	least	one	differentially	methylated	CpG	site	(p<0.05,	≤10/1,000	better	or	equal	

permutations)	using	methylSig	(version	0.4.1)	35	–	an	alternative	method	of	assessing	

differential	methylation	based	on	a	beta-binomial	approach.		

	

Joint	batch	differential	methylation	analysis	

	 We	initially	performed	differential	methylation	analysis	as	outlined	above	using	all	DE	

and	UH	samples,	focusing	on	the	largest	bins	(containing	≥3	high-confidence	sites).	On	average,	

in	this	analysis,	coverage	normalization	resulted	in	0.53	pp	difference	(i.e.	<1%	absolute	

difference	in	magnitude)	in	methylation	(range:	0	to	3.79	pp)	at	high-confidence	differentially	

methylated	CpG	loci	from	candidate	bins.		

To	test	classification	using	methylation	in	our	joint	analysis,	we	used	four-fold	cross-

validation	with	the	default	settings	of	WEKA’s	“Logistic”	classifier	(version	3.6.13)36	and	ten	

repetitions	on	the	joint	batch	data	set.	Four-fold	cross-validation	involves	first	dividing	the	data	

set	into	four	bins	of	equal	size;	next	one	bin	is	withheld	to	serve	as	test	data	set	and	the	

classifier	is	trained	on	the	remaining	bins.	Accuracy	is	determined	by	the	degree	of	concordance	

between	the	reported	and	classified	sample	labels.	The	process	is	then	repeated	ten	times,	

each	time	reallocating	the	samples	into	new	bins.	

	

Classification	

In	order	to	assess	the	utility	of	methylation	patterns	for	correctly	assigning	cases	and	

controls	when	blinded	to	sample	labels,	we	repeated	the	differential	methylation	analysis	using	

only	the	discovery	batch,	with	two	exceptions,	both	designed	to	account	for	the	smaller	sample	
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size.	First,	we	imposed	a	more	stringent	bin	size	of	≥7	high-confidence	sites	(Supplementary	

Figure	3);	second,	in	the	methylSig	analysis,	we	decreased	alpha	to	0.01	for	the	retention	of	

bins	containing	at	least	one	CpG	locus	which	passed	that	threshold	of	differential	methylation.	

Classification	was	performed	using	WEKA’s	logistic	regression	model	on	the	high-confidence	

sites	found	in	the	largest	bins	shared	between	the	discovery	and	the	test	batches.	As	a	

secondary	approach,	we	also	applied	a	classification	model	previously	used	to	distinguish	

individuals	based	on	their	DNA	methylation	patterns37.	This	entailed	first	calculating	the	median	

DNA	methylation	values	at	the	selected	loci	for	the	case	and	control	samples	in	the	discovery	

set,	and	then	determining	Pearson	correlation	coefficients	for	the	corresponding	CpG	sites	of	

each	sample	in	the	test	set.	A	sample	would	then	be	classified	as	case	or	control	depending	

upon	which	coefficient	(case	or	control)	was	larger.		

Coverage	normalization	during	data	processing	altered	percent	methylation	at	classifier	

loci	by	an	average	of	0.57	pp	(i.e.	<1%	absolute	difference	in	magnitude;	range:	0	to	4.55	pp)	in	

the	DE	and	UH	comparison,	and	by	0.34	pp	(range:	0	to	3.33	pp)	in	the	DE	and	EH	comparison.	

These	observations	suggested	that	our	results	were	unlikely	to	be	the	consequence	of	coverage	

normalization	artifacts.	

	

Gene	ontology	and	pathway	enrichment	analysis	

RefSeq	genes	overlapping	or	within	1	kb	of	our	candidate	regions	were	taken	as	

candidate	genes.	ConsensusPathDB’s	over-representation	analysis	(accessed	Feb.	2,	2017)38	

was	employed	to	identify	enriched	pathways	and	functional	annotations	from	these	candidates.	

RefSeq	genes	overlapping	or	within	1	kb	of	the	CpG	loci	targeted	by	the	enrichment	kit	were	

used	as	background.	All	pathway	database	options	except	‘SMPDB’	and	‘PharmGKB’	were	

included	and	default	parameters	were	used	for	each	analysis.	Gene	ontology	analysis	included	

level	2-5	categories	with	default	parameters.		

	

Allele-specific	methylation	analysis	

	 BisulfiteGenotyper	in	the	Bis-SNP	package	(version	0.82.2)39,	which	is	built	upon	the	

GATK	framework,	was	used	to	call	single	nucleotide	variants	(SNVs)	within	100	bp	(the	length	of	
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a	sequencing	read)	of	all	targeted	CpG	sites.	The	algorithm	was	used	with	the	hg19	reference	

genome	and	dbSNP	build	144.	The	resulting	variant	files,	which	included	all	confident	sites,	

were	merged	into	a	single	file	using	GATK’s	CombineVariants	function	(version	2.3-9-

ge5ebf34)40.	Filtering	steps	included	the	removal	of	loci	with	overlap	of	variant	and	targeted	

CpG	sites,	SNVs	at	bases	affected	by	bisulfite	treatment	(cytosines	and	guanines),	and	minus	

strand	cytosines.	The	latter	were	omitted	to	avoid	the	overrepresentation	of	each	CpG	locus,	as	

plus	and	minus	strand	cytosines	of	the	same	CpG	dinucleotide	are	closely	correlated.	The	

comparison	of	percent	methylation	at	heterozygous	SNVs	in	a	single	individual,	was	limited	by	

the	small	number	of	available	high	coverage	reads	spanning	both	SNVs	and	CpGs	and	was	not	

included	in	our	analysis.	Instead,	allele-specific	methylation	(ASM)	was	assessed	at	SNV-CpG	

pairs	with	at	least	10X	coverage	that	were	observed	in	at	least	two	homozygous	individuals	for	

each	reference	and	alternate	allele.	Percent	methylation	and	coverage	were	averaged	across	

each	allelic	state.	Coverage	discrepancies	were	limited	and	not	statistically	significant	at	SNV-

CpG	pairs	of	interest	(p>0.05,	two-tailed	t-test;	Supplementary	Figure	4).		

	

Statistical	analysis	

 All	statistical	analyses	were	performed	in	R.	Quantitative	demographics	as	well	as	batch	

percent	methylation	were	compared	using	one-way	ANOVA;	statistically	significant	ANOVA	

comparisons	between	three	groups	were	followed	by	a	Tukey	HSD	test	to	determine	significant	

pair-wise	differences.	Categorical	demographics	were	assessed	between	two	or	three	groups	by	

two-sided	Fisher’s	exact	and	Fisher-Freeman-Halton	tests,	respectively.	Enrichment	and	

depletion	of	gene	annotations	in	data	subsets	were	evaluated	against	the	annotations	of	all	

tested	sites	using	a	hypergeometric	test.	The	threshold	of	significance	was	set	at	p<0.05	for	the	

above	analyses.	

 

Data	availability	

The	datasets	generated	during	and/or	analyzed	during	the	current	study	are	available	

from	the	corresponding	author	on	reasonable	request.	
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RESULTS	

Depletion	of	DNA	methylation	characterizes	infants	with	diabetic	embryopathy	

Of	the	22	infants	enrolled,	nine	were	given	a	diagnosis	of	DE	based	on	the	presence	of	

maternal	diabetes	during	pregnancy	and	the	observation	of	congenital	structural	defects	

consistent	with	that	diagnosis;	six	IDMs	were	completely	healthy	at	birth	(EH),	and	seven	were	

healthy	infants	born	to	healthy	mothers	(UH).	After	removing	four	outliers	(2	DE,	1	EH,	and	1	

UH;	see	methods),	we	evaluated	buccal	DNA	methylation	at	a	total	of	2,760,543	CpG	sites	

shared	between	all	infant	groups.	Global	mean	percent	DNA	methylation	levels	were	

significantly	lower	in	DE	infants	compared	to	UH	controls	(42.6%	versus	43.2%;	p=0.045,	Tukey	

HSD;	Figure	1A).	DNA	methylation	throughout	the	genome	typically	follows	a	bimodal	

distribution	in	which	most	CpG	loci	are	either	methylated	or	unmethylated,	with	fewer	sites	

having	intermediate	methylation41.	In	order	to	assess	differences	between	these	three	

methylation	categories,	CpG	sites	were	separated	into	bins	of	low	(<30%),	intermediate	(30-

70%),	and	high	(>70%)	DNA	methylation	using	UH	control	samples	as	a	reference.	There	was	no	

statistically	significant	difference	in	global	methylation	between	infant	groups	in	the	low-	

(p=0.298,	F(2,	15)=1.313,	one-way	ANOVA;	Figure	1B)	or	intermediate-	(p=0.142,	F(2,	15)=2.228,	

one-way	ANOVA;	Figure	1C)	methylation	bins;	however,	among	DE	infants,	we	observed	

significant	DNA	hypomethylation	at	highly	methylated	sites	when	compared	to	UH	controls	

(p=0.011,	Tukey	HSD;	Figure	1D).	These	results	suggested	that	the	global	reduction	of	DNA	

methylation	seen	in	DE	neonates	is	largely	a	consequence	of	reduced	methylation	at	CpG	sites	

that	are	highly	methylated	in	healthy,	un-exposed	infants.		

	

Differentially	methylated	sites	can	distinguish	clinical	outcomes	among	diabetes-exposed	and	

unexposed	infants	

In	light	of	the	epigenetic	changes	identified	in	DE	infants	at	the	global	level,	we	next	

considered	the	utility	of	DNA	methylation	as	a	biomarker	of	the	maternal	diabetes	exposure.	A	

linear	regression	model	was	used	to	evaluate	methylation	differences	between	UH	and	DE.	In	

total,	13,239	(0.5%)	high-confidence	sites	showed	evidence	of	differential	methylation	

(p<0.001)	and	surpassed	our	stringent,	permutation-based	cut-off	(see	methods).	We	then	
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leveraged	the	anticipated	correlations	between	neighboring	CpG	loci	to	further	eliminate	

spurious	associations	by	clustering	high-confidence	sites	into	non-overlapping	bins.	

Differentially	methylated	sites	fell	into	237	high-confidence	bins	(≥3	high-confidence	

differentially	methylated	sites	per	candidate	bin,	each	containing	a	CpG	site	with	p<0.05	using	

our	secondary	method;	see	methods).	Consistent	with	our	global	analysis,	the	majority	(87.8%)	

of	these	bins	showed	hypomethylation	across	clustered	sites	(Supplementary	Table	4).	The	

mean	absolute	difference	in	percent	methylation	across	all	1,010	high-confidence	CpG	sites	in	

these	bins	was	16.6%	(SE	0.3%).	Using	PCA	on	these	high-confidence	sites,	we	found	that	UH	

samples	clustered	separately	and	distinctly	from	infants	with	DE	(Figure	2A).	Moreover,	when	

we	repeated	the	same	analysis,	this	time	including	EH	infants,	we	observed	a	distinct	clustering	

of	EH	infants	on	the	first	principal	component	that	was	separate	from,	and	intermediate	to,	DE	

cases	and	UH	controls	(Figure	2B).	The	resulting	heat	map	of	differentially	methylated	sites	

further	bolstered	this	observation	–	EH	individuals	demonstrated	a	mixed,	intermediate,	

pattern	to	either	UH	or	DE,	with	most	sites	having	a	comparable	magnitude	of	differential	

methylation	(Figure	2C).	Four-fold	cross-validation	(see	methods)	correctly	categorized	samples	

with	100%	accuracy,	suggesting	that	the	differential	methylation	patterns	are	distinct	enough	

to	be	exploited	for	classification.		

We	then	further	explored	the	diagnostic	potential	of	these	methylation	patterns	by	

assessing	whether	highly	differentially	methylated	sites	could	be	used	to	blindly	classify	clinical	

status.	We	did	not	find	evidence	for	significant	batch	effects	between	our	first	(discovery)	and	

second	(replication)	batches	(p=0.544,	F(1,	11)=0.392,	one-way	ANOVA;	quantro	permutation	

p=0.597;	see	methods;	Supplementary	Table	2).	Therefore,	we	started	by	evaluating	

differential	methylation	in	our	discovery	batch	of	4	DE	and	3	UH	samples.	Of	the	3,092,753	

shared	CpG	sites	analyzed,	13,731	high-confidence	sites	(0.4%)	showed	evidence	of	differential	

methylation	(p<0.001)	and	surpassed	our	stringent	permutation-based	cut-off.	These	sites	were	

further	filtered	to	15	high-confidence	bins,	containing	at	least	one	site	with	≥10%	absolute	

difference	in	methylation,	using	the	same	criteria	as	the	joint	analysis,	with	the	exception	of	

necessitating	seven,	instead	of	three,	differentially	methylated	loci	(see	methods;	

Supplementary	Figure	3).	High-confidence	bins	had	an	average	absolute	difference	in	
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methylation	of	28.6	percentage	points	(SE	2.0)	between	DE	and	UH	infants,	and	again	the	

majority	(73.3%)	were	hypomethylated	in	DE	infants.		

Using	the	156	CpG	sites	in	our	high-confidence	bins	that	had	adequate	coverage	in	our	

test	batch,	our	logistic	regression	model	(see	methods)	was	able	to	classify	the	remaining	six	

UH	and	DE	test	samples	with	100%	accuracy	(6/6).	To	avoid	overfitting,	we	applied	a	secondary	

classifier	built	on	the	correlation	of	methylation	values	from	each	test	sample	with	either	case	

or	control	DNA	methylation	values	from	the	discovery	batch	(see	methods).	Using	this	

approach,	we	were	able	to	distinguish	between	UH	and	DE	samples	in	5/6	(83.3%)	instances	

(Figure	3A).	To	investigate	how	well	EH	infants	would	be	grouped	using	a	classifier	trained	to	

distinguish	DE	from	UH	individuals,	we	applied	both	methods	using	the	155	CpG	sites	shared	by	

all	infants.	The	logistic	regression	model	classified	2/5	(40%)	of	EH	samples	as	“DE”,	thereby	

performing	no	better	than	random;	however,	the	correlation-based	model	labeled	100%	of	EH	

samples	as	“DE”,	suggesting	that	this	method	might	be	better	for	the	distinction	between	

diabetes	exposed	and	unexposed	individuals.	

Not	all	pregnancies	exposed	to	maternal	diabetes	result	in	birth	defects;	therefore,	we	

evaluated	the	potential	to	discern	malformation	from	exposure	by	comparing	the	two	groups	

with	in	utero	exposure	to	maternal	diabetes	–	DE	and	EH	–	in	the	same	classifier	analysis.	Since	

most	EH	samples	were	sequenced	in	the	second	batch,	we	carefully	matched	them	on	the	basis	

of	demography	such	that	we	had	three	infants	in	the	discovery	cohort	and	two	in	the	

replication	set	(test	of	batch	effects:	p=0.769,	F(1,	10)=0.091,	one-way	ANOVA;	quantro	

permutation	p=0.673;	Supplementary	Table	2).	Differential	methylation	analysis	and	

permutation	testing	revealed	19,139	(0.6%	of	3,197,718	loci)	high-confidence	differentially	

methylated	sites,	of	which	197	fell	into	21	high-confidence	bins.	In	contrast	to	the	previous	

comparison,	however,	fewer	than	half	of	these	bins	were	hypomethylated	in	DE	relative	to	EH	

individuals	(10/21,	47.6%).		

Both	classification	methods	correctly	identified	80%	(4/5)	of	samples,	although	the	

misidentified	individuals	differed	between	classifier	methods	(Figure	3B).	When	we	looked	at	

the	overlap	between	loci	used	to	distinguish	infants	with	DE	from	both	UH	and	EH	neonates,	

nine	differentially	methylated	sites	were	characteristic	of	the	malformation	group	(Figure	3C).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172262doi: bioRxiv preprint 

https://doi.org/10.1101/172262
http://creativecommons.org/licenses/by-nc-nd/4.0/


Somewhat	surprisingly,	all	sites	were	contained	in	the	same	bin	and	were	hypermethylated	in	

DE	infants.	This	region	is	less	than	4.5	kb	upstream	of	CSF3	(chr17:	38,167,214	–	38,167,428)	–	a	

granulocyte	colony	stimulating	factor	that,	in	rodents,	has	been	shown	to	protect	against	left	

ventricular	remodeling	and	cardiac	myocyte	apoptosis	after	myocardial	infarction42.		

 

IDM-related	differential	methylation	occurs	at	non-promoter	sites	of	developmental	genes		

To	further	characterize	the	changes	in	DNA	methylation	and	to	gauge	how	these	might	

relate	to	the	clinical	presentation	of	diabetic	embryopathy,	we	interrogated	the	gene	content	

of	the	differentially	methylated	sites	from	the	initial	joint	analysis.	Among	the	binned	loci	of	

interest,	we	found	an	expansion	of	the	previously	mentioned,	DE-characteristic	region	

upstream	of	CSF3,	which	was	second	in	the	number	of	binned	CpG	sites	only	to	another	

hypermethylated	region	encompassing	two	microRNAs	of	unknown	function,	MIR3648	and	

MIR3687	(Table	2,	Figure	4A,	and	Supplementary	Table	4).	In	this	list	were	also	several	genes	

associated	with	genetic	syndromes	whose	phenotypic	spectrum	closely	overlaps	the	clinical	

features	of	DE	(Table	2	and	Supplementary	Table	4);	this	included	ANKRD11,	the	causal	gene	in	

KBG	syndrome	(MIM	#148050;	Figure	4B),	which	includes	spinal	and	digit	malformations	as	well	

as	occasional	heart	defects;	B3GNT1,	associated	with	Walker-Warburg	syndrome	(MIM	

#615287);	BRF1,	which	results	in	the	characteristic	CNS	and	skeletal	abnormalities	of	

cerebellofaciodental	syndrome	(MIM	#616202);	CACNA1C,	which	gives	rise	to	the	cardiac	and	

digit	abnormalities	noted	in	Timothy	syndrome	(MIM#601005),	and	ZBTB20	which	causes	the	

large	stature	noted	as	part	of	Primrose	syndrome	(MIM	#259050).	We	also	observed	significant	

differential	methylation	at	other	genes	that	result	in	DE-like	features	when	knocked	down	in	

mouse	models,	including	BARX1	(embryonic	lethal	with	cleft	palate43;	Figure	4C)	and	RASA3	

(abnormal	embryogenesis	including	abnormal	vascular	endothelial	cell	development44).	

In	order	to	get	a	broader	sense	of	the	genes	implicated	in	our	analysis,	we	performed	

gene	ontology	and	pathway	enrichment	analyses	using	all	genes	within	1	kb	of	binned	regions	

(n=176).	Out	of	six	enriched	pathways	(nominal	p≤0.01),	two	were	related	to	cardiac	and	

neuron	function	(Phase	2	-	plateau	phase	and	DCC	mediated	attractive	signaling;	

Supplementary	Table	5)	-	both	major	systems	affected	in	DE.	The	former	included	three	of	our	
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candidate	genes,	CACNA1C,	CACNG6,	and	KCNQ1,	all	of	which	encode	ion-gated	channels,	while	

the	latter	encompasses	PTK2,	a	tyrosine	kinase,	and	TRIO,	a	serine/threonine	kinase	and	

guanine	exchange	factor	associated	with	autosomal-dominant	mental	retardation	(MIM	

#617061).	Among	the	24	gene	ontology	terms	for	which	our	candidate	gene	set	was	enriched,	

ten	related	to	basic	cellular	and	organismal	development	including	actin	function,	ion	binding,	

cell	development,	and	nervous	system	function	and	development	(Table	3).		

Since	methylation	at	different	genic	features	can	have	different	effects	on	gene	

expression45,46,	we	also	assessed	which	features	were	most	affected	by	exposure	to	maternal	

diabetes.	Relative	to	all	analyzed	sites,	proportionately	fewer	loci	of	interest	were	found	at	

promoter	(8.2%	versus	19.5%;	hypergeometric	test,	p<1.63x10-23)	and	5’	UTR	regions	(4.6%	

versus	10.8%;	p<7.25x10-13;	Figure	5A).	Conversely,	differentially	methylated	sites	were	

particularly	enriched	for	intronic	(28.7%	versus	24.5%;	p<0.001),	and	intergenic	(37.0%	versus	

25.9%;	p<3.52x10-15)	annotations,	and	less	so	for	coding	sequence	(16.2%	versus	14.4%;	p<0.05)	

and	non-coding	RNA	exons	(3.4%	versus	2.3%;	p<0.05).	These	trends	were	reflected	in	CpG	

context	annotations,	which	showed	a	depletion	of	sites	in	CpG	islands	-	commonly	found	in	

promoter	regions	(34.1%	versus	37.6%;	p<0.05),	and	an	enrichment	for	sites	outside	of	such	

islands	(36.6%	versus	34.0%;	p<0.05;	Figure	5B).	Thus,	the	majority	of	significant	DNA	

methylation	changes	overlapped	gene	bodies	and	intergenic	regions,	which	have	functional	

consequences	on	gene	regulation	that	are	more	difficult	to	extrapolate45,46.		

	

Allele-specific	methylation	suggests	a	role	for	sequence	variation	in	diabetic	embryopathy	

Finally,	we	decided	to	leverage	the	genetic	information	available	in	our	bisulfite	

sequencing	data	to	evaluate	the	role	of	sequence	variation	in	the	observed	methylation	

differences.	Bisulfite	treatment	converts	unmethylated	cytosines	to	thymines;	at	the	level	of	

single	sequencing	reads,	this	can	create	ambiguity	over	whether	SNVs	with	C>G,	G>C,	G>A,	or	

G>T	base	changes	represent	true	SNVs	or	artefacts	of	the	bisulfite	conversion	process.	

Therefore,	we	focused	on	individuals	homozygous	for	both	reference	and	alternate	alleles.	We	

identified	541	unique,	common	SNVs	that	were	homozygous	in	at	least	two	samples	per	allele	
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and	within	100	bp	up-	and	downstream	of	548	unique	plus-strand	CpG	cytosines,	resulting	in	a	

total	of	609	SNV-CpG	pairs	(Figure	6A).		

For	this	exercise,	we	defined	allele-specific	methylation	(ASM)	as	a	mean	difference	in	

the	percent	methylation	associated	with	the	reference	vs	the	alternate	SNV	allele	that	fell	in	

the	tails	(<5th	centile;	>95th	centile)	of	the	distribution.	Of	the	62	SNV-CpG	pairs	with	evidence	

of	ASM	-	24	(39.3%),	fell	within	our	candidate	bins	(Supplementary	Table	6).	These	pairs	were	

composed	of	13	unique	SNVs	associated	with	23	distinct	CpGs	and	overlapped	six	RefSeq	genes:	

CDH12,	ECHDC3,	LINC02098,	NTM,	RNF157,	and	TRIO.	Among	the	pairs	with	the	most	

pronounced	difference	in	percent	methylation,	were	two	CpG	sites	associated	with	the	variant	

rs142180914	in	the	lincRNA	LINC02098	that	showed	increasing	DNA	methylation	with	

increasing	numbers	of	reference	alleles	(Figure	6B).	Remarkably,	all	samples	homozygous	for	

the	alternate	allele	were	from	infants	with	DE.	We	also	observed	four	CpG	loci	that	were	

strongly	correlated	with	the	intronic	variant	rs389729	in	TRIO,	but	showed	a	decrease	in	

methylation	for	each	additional	reference	allele	(Figure	6C).	In	this	case	as	well,	the	only	

individuals	homozygous	for	the	alternate	allele	were	diabetes-unexposed	controls	(Figure	6C).	

Apart	from	intellectual	disability,	individuals	with	heterozygous	pathogenic	variants	in	TRIO	

share	additional	features	in	common	with	the	phenotypic	spectrum	of	DE,	including	

microcephaly,	and	digit	malformations47,48.		

	

DISCUSSION	

The	rising	prevalence	of	diabetes	and	its	known	teratogenic	effects	reinforce	the	need	

to	not	only	learn	more	about	the	disease	pathogenesis	in	IDMs,	but	to	also	improve	the	current	

diagnosis	of	diabetic	embryopathy.	Other	studies	have	already	explored	the	utility	of	DNA	

methylation	for	improved	diagnoses	of	congenital	disorders;	in	Sotos	Syndrome	(MIM	#117550)	

–	a	neurodevelopmental	disorder	associated	with	tissue	overgrowth	–	loss	of	function	of	NSD1,	

a	histone	methyltransferase,	was	shown	to	result	in	a	characteristic	genome-wide	DNA	

methylation	pattern	that	could	distinguish	Sotos	patients	from	controls	and	individuals	with	the	

phenotypically	similar	Weaver	syndrome	(MIM	#277590)37.	Likewise,	distinct	methylation	

patterns	have	been	proffered	in	the	diagnosis	of	CHARGE	(MIM	#214800)	and	Kabuki	(MIM	
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#147920)	syndromes49.	The	utility	of	DNA	methylation	biomarkers	has	also	been	demonstrated	

in	diseases	not	primarily	driven	by	defects	in	epigenome	maintenance	genes,	including	a	range	

of	cancers50-52.	Similar	to	our	investigation,	a	recent	study	of	fetal	alcohol	spectrum	disorder	–	

caused	by	in	utero	exposure	to	ethanol	–	also	identified	significantly	altered	DNA	methylation	

patterns	in	buccal	epithelial	cells53.		

Our	results	suggest	that,	comparable	to	the	aforementioned	Mendelian	disorders,	the	

teratogenic	effect	that	leads	to	DE	has	a	large	enough	influence	on	offspring	DNA	methylation	

to	allow	accurate	and	consistent	distinction	between	UH	and	DE	infants	using	modest	sample	

sizes.	More	importantly,	using	PCA,	we	could	also	distinguish	diabetes-exposed,	but	healthy	

infants	from	diabetes-exposed	infants	with	congenital	malformations.	Thus,	DNA	methylation	

biomarkers	may	not	only	be	useful	for	identifying	intrauterine	diabetes	exposure,	but	may	also	

have	the	potential	to	inform	the	severity	of	teratogenesis.	A	screening	test	based	on	such	DNA	

methylation	patterns	could	be	used	by	clinicians	to	efficiently	evaluate	the	likelihood	of	

diabetes	exposure	as	the	cause	of	birth	defects	among	IDMs	–	an	option	that	does	not	

presently	exist	–	and	could	prove	useful	for	studying	the	causes	of	DE	in	humans.	Additionally,	a	

more	definitive	IDM	diagnosis	would	help	to	abrogate	the	emotional	and	financial	costs	

associated	with	the	prolonged	medical	odyssey	faced	by	a	substantial	portion	of	children	with	

birth	defects.	This	would	bring	such	congenital	defects	in	line	with	current	considerations	for	

the	use	of	whole-exome	sequencing	in	rare	Mendelian	disorders54,	thereby	furthering	

appropriate	patient-centered	care	and	genetic	counseling.	

We	were	careful	in	our	analysis	to	focus	on	differential	methylation	of	large	magnitude	

that	passed	stringent	statistical	thresholds	of	significance;	however,	the	sample	size	employed	

did	not	allow	us	to	include	covariates	such	as	maternal	smoking,	which	has	been	associated	

with	altered	DNA	methylation	in	offspring55,56.	Among	the	DE	and	UH	participants,	there	was	

only	one	instance	in	each	category	of	reported	maternal	smoking	during	pregnancy.	The	first	

was	an	affected	(DE)	infant	who	was	identified	as	an	outlier	and	removed	from	subsequent	

analyses.	The	other	(UH)	infant	had	an	otherwise	unremarkable	methylation	pattern.	In	our	

cohort,	DE	was	marginally	correlated	with	maternal	obesity,	which	has	been	shown	to	influence	

offspring	DNA	methylation57,58	and	is	an	independent,	albeit	less	pronounced,	risk	factor	for	
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birth	defects11.	Given	that	obese	women	are	more	likely	to	develop	T2DM59	and	GDM60,	it	

remains	to	be	seen	whether	the	teratogenic	mechanisms	of	maternal	obesity	are	distinct	from,	

or	synergistic	with,	those	of	maternal	diabetes61.	

For	diagnostic	purposes,	accessible	tissue,	such	as	buccal	epithelial	cells,	are	sufficient	

(and	even	preferred)	as	long	as	the	characteristic	DNA	methylation	fingerprint	of	maternal	

diabetes	exposure	is	consistently	correlated	with	the	phenotype.	Unlike	germline	genetic	

information,	however,	which	is	typically	the	same	across	all	tissues	in	a	given	individual,	

epigenetic	information	can	vary	between	cell	types.	Compared	to	blood	–	another	commonly	

used	and	readily-available	surrogate	tissue	–	methylation	levels	in	buccal	epithelial	cells	are	

more	consistently	correlated	with	other,	non-blood	cells62,	suggesting	that	our	results	may	

closely	mirror	differential	methylation	patterns	in	other	organ	systems.	Formal	evaluation	of	

methylation	patterns	across	cell	types	is	needed	to	fully	understand	whether	the	changes	in	

DNA	methylation	seen	in	buccal	epithelial	cells	are	consistent	and,	more	importantly,	causally-

implicated	in	DE.	

Elevated	glucose	concentrations	during	development,	resulting	from	maternal	

hyperglycemia,	have	been	shown	to	amplify	glucose	metabolism	and	consequently	increase	the	

levels	of	reactive	oxygen	species	(ROS)18,63.	DNA	damage	incurred	by	ROS	is	known	to	prompt	

cell	cycle	arrest	and	induce	apoptosis,	with	the	potential	to	disrupt	crucial	developmental	

stages.	Nonetheless,	a	cell	that	has	escaped	apoptosis	can	still	be	left	with	substantial	damage.	

Given	that	double	strand	break	repair	can	produce	heritable	changes	in	DNA	methylation	at	the	

break	locus64,	it	is	feasible	that	the	base	excision	and	single	strand	break	repair	mechanisms	

also	invoked	by	ROS	damage	could	result	in	similar	DNA	methylation	disruptions,	which	might	

significantly	alter	the	expression	of	important	developmental	genes.	Favorably,	our	gene	and	

pathway	analyses	converged	upon	a	number	of	genes	affecting	embryonic	development,	

including	many	that	underlie	known	genetic	syndromes;	this	could	explain	the	strong	

phenotypic	overlap	between	many	of	these	syndromes	and	DE.		

Non-random	alterations	in	DNA	methylation	patterns	could,	at	least	in	part,	be	

explained	by	the	influence	of	genetic	factors.	By	exploring	the	immediate	cis	DNA	sequence	of	

our	bisulfite	sequencing	–	a	feature	not	available	with	conventional	methylation	arrays	–	we	
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identified	SNVs	that	correlate	with	DNA	methylation	at	proximal	CpG	sites.	Differential	

methylation	occurring	at	CpG	sites	under	the	control	of	cis-genetic	variation	could	be	the	result	

of	differences	in	the	chance	distribution	of	ASM	alleles	between	cases	and	controls;	

alternatively,	this	might	reflect	genetic	variation	that,	upon	exposure	to	the	milieu	of	maternal	

diabetes,	potentiates	changes	in	DNA	methylation	in	an	allele-specific	manner	and	predisposes	

an	individual	to	DE.	Although	bisulfite	treatment	can	obscure	the	state	of	certain	single	

nucleotide	polymorphisms	at	variable	base	positions,	ever-improving	SNV	calling	algorithms	

and	the	adjunctive	use	of	genome	sequencing,	suggest	that	this	limitation	will	be	surmountable	

in	the	near	future.	As	a	further	advantage	of	bisulfite	sequencing,	we	were	able	to	evaluate	

DNA	methylation	in	regions	of	the	genome	that	are	not	typically	evaluated	by	microarray-based	

epigenome	screens	–	18.6%	of	our	top	candidate	bins	are	not	represented	on	the	widely-used	

Illumina450K	methylation	array.	Moreover,	sequencing	can	be	done	on	an	individual	(rather	

than	batched)	level	as	has	been	done	for	rare	Mendelian	disorders65,66,	and	is	thus	better	suited	

to	the	diagnosis	of	relatively	rare	teratogenic	exposures.		

The	recent	expansion	in	our	understanding	of	the	epigenome	has	illuminated	the	

formative	influence	of	DNA	methylation	on	human	diseases.	The	assembly	of	larger	IDM	

cohorts	would	allow	for	the	diagnostic	potential	of	methylation	in	IDM	to	be	further	refined,	

enabling	an	assessment	of	the	impact	of	previously-mentioned	covariates.	Recruitment	of	

additional	comparison	samples,	particularly,	infants	with	birth	defects	but	no	diabetes	

exposure,	IDMs	with	less	severe	complications,	and	older	children/adolescents	who	are	more	

distant	from	in	utero	exposure,	would	allow	for	robust	estimates	of	the	sensitivity	and	

specificity	of	DNA	methylation	in	the	diagnosis	of	IDM.	Finally,	the	emerging	role	of	DNA	

methylation	across	a	spectrum	of	environmental	exposures	suggests	that	our	approach	may	be	

applicable	in	a	variety	of	other	teratogenic	exposures,	paving	the	way	for	long-overdue	

improvements	in	diagnostics	for	this	class	of	disorder.	
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FIGURES	AND	TABLES	

	

		 UH	(n=7)	 EH	(n=6)	 DE	(n=9)	 p-value	

Weeks	gestation,	mean	(range)	 38.4	
(36.4-40.0)	

38.2	
(36.7-39.4)	

38.1	
(37-40.1)	

0.885A	

F(2,19)=0.123	

Birth	weight	(g),	mean	(range)	 3210	
(2835-3710)	

3130	
(2630-3875)	

3386	
(2914-3960)	

0.455A	

F(2,19)=0.821	

Males	(count)	 4	 4	 2	 0.234FFH	
Maternal	age	(years),		
mean	(range)	

28.7	
(19-34)	

34	
(31-38)	

29.6	
(23-38)	

0.137A	

F(2,19)=2.214	
Maternal	BMI	(kg/m2),		
mean	(range)	

25.3	
(20.8-30.8)	

37.5	
(25.0-62.5)	

40.2	
(27.7-49.7)	

0.018A†	

F(2,19)=5.045	
Maternal	T1DM,	count	(outliers)	 0	(0)	 0	(0)	 1	(0)	

0.776FFH	Maternal	T2DM,	count	(outliers)	 0	(0)	 2	(0)	 4	(1)	
Maternal	GDM,	count	(outliers)	 0	(0)	 4	(1)	 4	(1)	
	
Table	1:	Maternal	and	infant	characteristics.	Body	mass	index	(BMI)	at	enrollment;	UH=diabetes	

unexposed,	 healthy	 infants;	 EH=diabetes	 exposed,	 healthy	 infants;	 DE=infants	 with	 diabetic	

embryopathy;	T1DM=type	1	diabetes	mellitus;	T2DM=type	2	diabetes	mellitus;	GDM=gestational	

diabetes	 mellitus;	 A=one-way	 ANOVA;	 FFH=Fisher-Freeman-Halton	 exact	 test;	 †Tukey’s	 HSD	

adjusted	p-value=0.017.	
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Table	2:	Candidate	binned	regions	with	the	most	high-confidence	differentially	methylated	CpG	

sites.	A	complete	list	of	all	237	CpG	bins	can	be	found	in	Supplementary	Table	3.	
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Enriched	gene	ontologies	(GO	ID)	 p-value	 q-value	
actomyosin		(GO:0042641)	 0.00001	 0.00049	
receptor	signaling	complex	scaffold	activity		(GO:0030159)	 0.00081	 0.03882	
contractile	actin	filament	bundle		(GO:0097517)	 0.00081	 0.00701	
actin	cytoskeleton		(GO:0015629)	 0.00082	 0.00701	
actin	filament	bundle		(GO:0032432)	 0.00108	 0.02530	
metal	ion	binding		(GO:0046872)	 0.00180	 0.04317	
neurofilament		(GO:0005883)	 0.00224	 0.03512	
pyridine	nucleotide	metabolic	process		(GO:0019362)	 0.00268	 0.22828	
cation	binding		(GO:0043169)	 0.00281	 0.13482	
transcriptional	repressor	complex		(GO:0017053)	 0.00365	 0.17878	
pyridine-containing	compound	metabolic	process		(GO:0072524)	 0.00368	 0.43572	
regulation	of	meiotic	cell	cycle		(GO:0051445)	 0.00408	 0.43572	
oxidoreduction	coenzyme	metabolic	process		(GO:0006733)	 0.00420	 0.22828	
cell	development		(GO:0048468)	 0.00431	 0.66789	
regulation	of	carbohydrate	catabolic	process		(GO:0043470)	 0.00438	 0.22828	
negative	regulation	of	cellular	component	organization		(GO:0051129)	 0.00475	 0.22828	
atrial	cardiac	muscle	cell	to	AV	node	cell	communication		(GO:0086066)	 0.00476	 0.43572	
atrial	cardiac	muscle	cell	to	AV	node	cell	signaling		(GO:0086026)	 0.00476	 0.22828	
ion	binding		(GO:0043167)	 0.00505	 0.14137	
regulation	of	cofactor	metabolic	process		(GO:0051193)	 0.00643	 0.25725	
nervous	system	development		(GO:0007399)	 0.00661	 0.43572	
gastric	acid	secretion		(GO:0001696)	 0.00720	 0.43572	
negative	regulation	of	reproductive	process		(GO:2000242)	 0.00807	 0.43572	
excitatory	postsynaptic	potential		(GO:0060079)	 0.00851	 0.29188	
	

Table	3:	Enrichment	of	development-related	gene	ontologies	in	candidate	genes;	ontologies	

with	enrichment	p	≤0.01	are	shown.	
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Figure	1:	Infants	with	diabetic	embryopathy	(DE)	show	a	global	loss	in	DNA	methylation	

compared	to	unexposed,	healthy	controls	(UH).	All	boxplots	are	comparisons	of	mean	sample	

percent	methylation	across	the	number	of	sites	in	each	category.	(1A)	2,760,543	sites	shared	

among	DE,	UH,	and	diabetes	exposed,	yet	healthy	infants	(EH);	(1B)	1,362,136	(49.3%)	sites	

with	mean	methylation	<30%	in	UH	infants;	(1C)	276,215	(10.0%)	sites	with	mean	methylation	

30-70%	in	UH	infants;	(1D)	1,122,192	(40.7%)	sites	with	mean	methylation	>70%	in	UH	infants.	

*Tukey	HSD	p<0.05.	
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Figure	2:	Distinct	DNA	methylation	profile	in	DE	cases	compared	to	controls.	Each	analysis	was	

based	on	all	sites	found	in	candidate	bins	with	≥10X	coverage	and	non-zero	variance	across	

samples.	(2A)	Principal	component	analysis	(PCA)	based	on	1,010	high-confidence	differentially	

methylated	CpG	sites	shared	across	all	DE	and	UH	infants.	(2B)	PCA	based	on	1,001	high-

confidence	differentially	methylated	CpG	sites	shared	across	all	DE,	UH,	and	EH	infants.	

Difference	in	numbers	between	2B	and	2A	is	the	result	of	coverage	adequacy	in	EH	samples.	

(2C)	Heat	map	of	scaled	and	centered	percent	methylation	values	corresponding	to	2B,	with	

each	row	representing	one	high	confidence	differentially	methylated	site,	and	each	column	a	

sampled	individual.	
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Figure	3:	Batch	classification	results.	Predictions	in	green	were	classified	correctly	in	the	

comparisons	between	DE	and	UH	(3A),	and	EH	(3B)	samples.	Of	the	CpG	loci	used	to	distinguish	

between	sample	groups	in	each	comparison,	nine	were	present	in	both	(3C).	 	
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Figure	4:	Differentially	methylated	sites	in	candidate	bins,	showing	MIR3648	and	MIR3687	(4A),	

ANKRD11	(4B),	and	BARX1	(4C).	Differences	in	methylation	are	found	in	the	“meth.diff”	track.	

Hypomethylation	in	DE	infants	is	denoted	with	negative	values	(blue	bars),	while	positive	values	

(pink	bars)	indicate	hypermethylation.	High-confidence	differentially	methylated	sites	are	

marked	in	red.		
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Figure	5:	Depletion	of	differentially	methylated	sites	in	promoters	accompanied	by	enrichment	of	loci	in	introns	and	intergenic	

regions.	(5A)	RefSeq	gene	annotations.	Promoters	are	defined	as	the	region	2	kb	upstream	of	a	transcription	start	site.	

UTR=untranslated	region;	CDS=coding	sequence;	ncRNA=non-coding	RNA.	(5B)	CpG	context	annotation.	CGI=CpG	island.		 	
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Figure	6:	Allele-specific	methylation	(ASM)	at	differentially	methylated	CpG	loci.	(6A)	Mean	%	

methylation	of	homozygous	reference	samples	plotted	against	homozygous	alternate.	Each	

genotype	category	contains	at	least	two	individuals.	Colored	points	are	found	within	clustered	

regions	of	differential	methylation.	Yellow	dots	show	one	SNV	associated	with	ASM	at	two	

proximal	CpG	sites	found	in	an	intergenic	region	(6B).	Pink	dots	show	one	SNV	associated	with	

ASM	at	four	proximal	CpG	sites	found	in	TRIO	(6C).	
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