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Abstract

Stacked generalization is an ensemble method that allows researchers to combine several different
prediction algorithms into one. Since its introduction in the early 1990s, the method has evolved
several times into what is now known as “Super Learner”. Super Learner uses V -fold cross-validation
to build the optimal weighted combination of predictions from a library of candidate algorithms.
Optimality is defined by a user-specified objective function, such as minimizing mean squared er-
ror or maximizing the area under the receiver operating characteristic curve. Although relatively
simple in nature, use of the Super Learner by epidemiologists has been hampered by limitations
in understanding conceptual and technical details. We work step-by-step through two examples to
illustrate concepts and address common concerns.

KEY WORDS: Ensemble Learning; Machine Learning; Super Learner; Stacked Generalization; Stacked
Regression.

KEY MESSAGES:

• Stacked generalization is a meta-learning algorithm that allows researchers to combine sev-
eral different methods to improve predictive performance.

• Since its introduction in the early 1990s, stacked generalization has evolved both practically
and theoretically into the Super Learner.

• The Super Learner combines predictions from several methods by using V -fold cross-validation
and minimizing a user-specified loss function, such as prediction error, negative-log-likelihood,
or rank loss.

• Under reasonable constraints, Super Learner is guaranteed to perform asymptotically as well
as the best performing algorithm included in the candidate set of algorithms.

• In practice, Super Learner is a powerful tool to estimate complex, real-world relationships
while avoiding unsubstantiated parametric assumptions and over-fitting.
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Predicting health-related outcomes is a topic of major interest in clinical and public health set-

tings. Despite numerous advances in methodology in the past two decades, clinical and population

health research scientists continue to rely heavily on parametric (e.g., logistic) regression models for

prediction. Often, only a single model is specified to generate predictions.

In the early 1990s, Wolpert developed an approach to combine several “lower-level” machine

learning methods into a “higher-level” model with the goal of increasing predictive accuracy.1 He

termed the approach “stacked generalization”, which later became known as “stacking”. Later, Breiman

demonstrated how stacking can be used to improve the predictive accuracy in a regression context,

and showed that imposing certain constraints on the higher-level model improved predictive per-

formance.2 More recently, van der Laan and colleagues proved that stacking possesses certain ideal

theoretical properties.3–5 In particular, their oracle inequality guarantees that in large samples the

algorithm will perform at least as well as the best individual predictor included in the ensemble.

Therefore, choosing a large library of diverse algorithms will enhance performance, and creating

the best weighted combination of candidate algorithms will further improve performance. Here,

“best” is defined in terms of a bounded loss function, and over-fitting is avoided with V -fold cross-

validation. In this context, the term “Super Learner” was coined.

Super Learner has tremendous potential for improving the quality of prediction algorithms in

applied health sciences, and minimizing the extent to which empirical findings rely on parametric

modeling assumptions. While the number of simulation studies and applications of Super Learner

are growing,6–10 wider use may be hampered by comparatively few pedagogic examples. Here, we

add to prior work by providing step-by-step implementation in the context of two simple simula-

tions. Our examples are motivated by common challenges to estimate a dose-response curve, and

to build a classifier for a binary outcome. We also link Super Learner to prior work on stacking, pro-

vide guidelines on fitting the Super Learner to empirical data, and discuss common concerns. Full

R code11 is publicly available at GitHub.

Example 1: Dose-Response Curve

For 1,000 observations, we generate a continuous exposure X by drawing from a uniform distri-

bution with a minimum of zero and a maximum of eight and then generate a continuous outcome
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Y as

Y = 5+4×
p

9X × I(X < 2)+ I(X ≥ 2)× (|x −6|2)+ε, (1)

where I() denotes the indicator function evaluating to 1 if the argument is true (zero otherwise), and

ε was drawn from a doubly-exponential distribution with mean zero and scale parameter one. The

true dose-response curve is depicted by the black line in Figure 1. We now manually demonstrate

how Super Learner can be used to flexibly model this relation without making parametric assump-

tions.

To simplify our illustration, we consider only two “level-zero” algorithms as candidates to the

Super Learner library: generalized additive models with 5-knot natural cubic splines (gam)12 and

multivariate adaptive regression splines implemented via the earth package.17 In practice, a large

and diverse library of candidate estimators is recommended. Our specific interest is in quantifying

the mean of Y as a (flexible) function of X . To measure the performance of candidate algorithms and

to construct the weighted combination of algorithms, we select the L-2 squared error loss function

(Y − Ŷ )2 where Ŷ denotes our predictions. Minimizing the expectation of the L-2 loss function is

equivalent to minimizing mean squared error, which is the same objective function used in ordinary

least squares regression.13(section 2.4) To estimate this expected loss, called the “risk”, we use V -fold

cross-validation with V = 5 folds.

Step 1. Split the observed “level-zero” data into 5 mutually exclusive and exhaustive groups of n/V =
1000/5 = 200 observations. These groups are called “folds”.

Step 2. For each fold v = {1, . . . ,5},

a. Define the observations in fold v as the validation set, and all remaining observations

(80% of the data) as the training set.

b. Fit each algorithm on the training set.

c. For each algorithm, use its estimated fit to predict the outcome for each observation in

the validation set. Recall the observations in the validation set are not used train each

candidate algorithm.

2
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d. For each algorithm, estimate the risk. For the L-2 loss, we average the squared difference

between the outcome Y and its prediction Ŷ for all observations in the validation set

v . In other words, we calculate the mean squared error (MSE) between the observed

outcomes in the validation set and the predicted outcomes based on the algorithms fit

on the training set.

Step 3. Average the estimated risks across the folds to obtain one measure of performance for each

algorithm. In our simple example, the cross-validated estimates of the squared prediction

error are 2.58 for gam and 2.48 for earth.

At this point, we could simply select the algorithm with smallest cross-validated risk estimate

(here, earth). This approach is sometimes called the Discrete Super Learner.6 Instead, we

combine the cross-validated predictions, which are referred to as the “level-one” data, to im-

prove performance and build the “level-one” learner.

Step 4. Let Ŷgam-cv and Ŷearth-cv denote the cross-validated predicted outcomes from gam and earth,

respectively. Recall the observed outcome is denoted Y . To calculate the contribution of each

candidate algorithm to the final Super Learner prediction, we use non-negative least squares

to regress the actual outcome against the predictions, while suppressing the intercept and

constraining the coefficients to be non-negative and sum to 1:

E(Y |Ŷgam-cv, Ŷearth-cv) =α1Ŷgam-cv +α2Ŷearth-cv, (2)

such thatα1 ≥ 0;α2 ≥ 0, and
∑2

k=1αk = 1. Combining the Ŷgam-cv and Ŷearth-cv under these con-

straints (non-negative estimates that sum to 1) is referred to as a “convex combination,” and is

motivated by both theoretical results and improved stability in practice.2,5 Non-negative least

squares corresponds to minimizing the mean squared error, which is our chosen loss func-

tion (and thus, fulfills our objective). We then normalize the coefficients from this regression

to sum to 1. In our simple example, the normalized coefficient values are α̂1 = 0.387 for gam

and α̂2 = 0.613 for earth. Therefore, both generalized additive models and regression splines

each contribute approximately 40% and 60% of the weight in the optimal predictor.

3
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Step 5. The final step is to use the above weights to generate the Super Learner, which can then be

applied to new data (X ) to predict the continuous outcome. To do so, re-fit gam and earth on

the entire sample and denote the predicted outcomes as Ŷgam and Ŷearth, respectively. Then

combine these predictions with the estimated weights from Step 4:

ŶSL = 0.387Ŷgam +0.613Ŷearth (3)

where ŶSL denotes our final Super Learner predicted outcome. The resulting predictions are

shown in blue in Figure 1. For comparison, the predictions from the Rpackage SuperLearner-

v2.0-23-9000 are shown in red,14 while the predictions from gam and earth are shown in light

blue and green, respectively.

Example 2: Binary Classification

Our second example is predicting the occurrence of a binary outcome with goal of maximizing

the area under the receiver operating characteristic (ROC) curve, which shows the balance between

sensitivity and specificity for varying discrimination thresholds. For 10,000 observations, we gen-

erate five covariates X = {X1, . . . , X5} by drawing from a multivariate normal distribution and then

generate the outcome Y by drawing from a Bernoulli distribution with probability

P(Y = 1 | X) = 1−expit
{
β0 +β1X1 +β2X2 +β3X3 +β4X4 +β5X5

+β1(X1 : X5)1 +β2(X1 : X5)2
}
,

where expit(•) = (1+exp[−•])−1; and (X1 : X5)1 and (X1 : X5)2 denote all first and second order in-

teractions between X1, . . . , X5, respectively; and β1 and β2 denote a set of parameters, one for each

interaction. In total, there were 25 terms plus the intercept in this model. The intercept was set to

β0 = 2, while all other parameters were drawn from a uniform distribution bounded by 0 and 1.

Our library of candidate algorithms consists of Bayesian GLMs (bayesglm), implemented via the

armpackage (v 1.9-3),15 and multivariate polynomial adaptive regression splines (polymars) via the

polspline package.16 Our objective is to generate an algorithm that correctly classifies individuals

given covariates. Correct classification is a function of both sensitivity and specificity. Thus, to

4
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measure the performance of these level-zero algorithms and build the meta-learner, we use the rank

loss function, which corresponds to maximizing the area under the ROC curve (AUC).18 We again

use 5-fold cross-validation to obtain an honest measure of performance and avoid over-fitting.

Steps 1-3. The implementation of Steps 1-3 are analogous to the previous example. In place of gam

and earth, we use bayesglm, and polymars. In place of the L-2 loss function, we use the

rank loss. Specifically, for each validation set and each algorithm, we estimate the sensitivity,

specificity, and then compute the AUC. The expected loss (i.e., “risk”) can then be computed

as 1−AUC. Averaging the estimated risks across the folds yields one measure of performance

for each algorithm. In our simple example, the cross-validated risk estimates are 0.122 for

bayesglm and 0.114 for polymars.

As before, we could simply select the model with lowest cross-validated risk estimate (here,

polymars). Instead in Steps 4-5, we combine the resulting cross-validated predictions to gen-

erate the level-one learner.

Step 4. Let Ŷbglm-cv and Ŷpm-cv denote the cross-validated predictions from bayesglm and polymars,

respectively. To calculate the contribution of each candidate algorithm to the final Super

Learner prediction, use the rank loss function to define “optimal” as the convex combina-

tion that maximizes the AUC. Then estimate the α parameters in the following constrained

regression

P(Y = 1|Ŷbglm-cv, Ŷpm-cv) =α1Ŷbglm-cv +α2Ŷpm-cv, where α1 ≥ 0;α2 ≥ 0; and
2∑

k=1
αk = 1 (4)

such that (1− AUC ) is minimized when comparing Super Learner predicted probabilities to

the observed outcomes. These parameters can be estimated with a tailored optimization

function, such as optim. In our simple example, the coefficient values are α̂1 = 0.223 for

bayesglm and α̂2 = 0.776 for polymars.

Step 5. As before, the final step is to use the above coefficients to generate the Super Learner. To do

so, refit bayesglm and polymars on the entire sample and denote the predicted outcomes as

5
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Ŷbglm and Ŷpm Then combine these predictions with the estimated weights:

P(Y = 1 | Ŷbglm, Ŷpm) = 0.223Ŷbglm +0.776Ŷpm (5)

These predictions can then be used to compute the ROC curve displayed in blue in Figure 2.

For comparison the predictions from the R package SuperLearner are shown in red.

Discussion

Stacked generalizations, notably the Super Learner, are fast becoming an important part of the

epidemiologic toolkit. There are several challenges in understanding precisely what stacking is, and

how it is implemented. These challenges include the use of complex machine learning algorithms

as candidate algorithms, and the actual process by which the resulting predictions are combined

into the meta-learner. Here, we sought to clarify the latter aspect, namely, implementation of the

Super Learner algorithm.

Several considerations (including strengths and limitations) merit attention. First, any number

of loss functions could be chosen determine the optimal combination of algorithm-specific predic-

tions. The choice should be based on the objective of the analysis. The target parameter depends

on the loss function choice, but various loss functions can identify the same target parameter as

minimizer of its risk. Our examples demonstrated the use of the L-2 loss to minimize prediction

error when estimating a dose-response curve, and the rank loss to maximize AUC when developing

a binary classifier. Other loss functions could be entertained. For example, Zheng et al. recently

aimed to simultaneously maximize sensitivity and minimize rate of false positive predictions with

application to identify high-risk individuals for pre-exposure prophylaxis.10

Second, a wide array of candidate algorithms can be included in the Super Learner library. We

recommend including standard parametric modeling approaches (e.g., generalized linear models,

simple mean, simple median) and more complex data-adaptive methods (e.g., penalized regression,

and tree- or kernel-based methods). Often, the performance of data-adaptive methods depends on

how tuning parameters are specified. The Super Learner can also include variations of the same

algorithm under different tuning parameter choices (e.g., extreme gradient boosting with varying

6
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shrinkage rates). We refer the readers to Polley et al.14 for a practical demonstration.

Third, a critically important part of Super Learning is the use of V -fold cross-validation. How-

ever, the optimal choice of V is not always clear. At one end of the extreme, leave-one-out cross

validation chooses V = N , but is subject to potentially high variance and low bias. On the other end,

2-fold cross validation is subject to potentially low variance and high bias. A general rule of thumb

is to use V = 10.19 Though common, this number will not optimize performance in all settings.20 In

general, we recommend increasing the number of folds (V ) as sample size n decreases.

While the Super Learner with a rich set of candidates represents a versatile tool, important lim-

itations should be noted, particularly in the context of effect estimation. First, no algorithm (Super

Learner or any other machine learning method) should be used to replace careful thinking of the

underlying causal structure. The goal of Super Learner is to do the best (as specified through the

loss function) possible job predicting the outcome (or exposure) given the inputted covariates. Su-

per Learner does not distinguish between confounders, instrumental variables, mediators, and the

exposure. Indeed, Super Learner is a“black box” algorithm; so the exact contribution of each co-

variate to prediction is unclear. These contributions can be revealed by estimating variable impor-

tance measures, which quantify the marginal association between each predictor and the outcome

after adjusting for the others. Nevertheless, a large predictor contribution may be the result of di-

rect causation, unmeasured confounding, collider stratification, reverse causation, or some other

mechanism.

The goal of prediction is distinct from causal effect estimation, but prediction is often an in-

termediate step in estimating causal effects.31 Indeed, some researchers have been advocating for

the use of data-adaptive methods, including the Super Learner, for effect estimation via singly-

robust methods, depending on estimation of either the conditional mean outcome or the propen-

sity score.21–27 While flexible algorithms can reduce the risk of bias due to regression model mis-

specification, a serious concern is that the use of data-adaptive algorithms in this context can result

in invalid statistical inference (i.e. misleading confidence intervals). Specifically, there is no the-

ory to support the resulting estimator is asymptotically linear (i.e., consistent and asymptotically

normal).28,31 This concern can be alleviated through the use of doubly robust estimators29–33 or
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higher-order influence function based estimators.34,35 In contrast, statistical inference is usually

not included in prediction algorithms13 (as in our examples). One could, however, evaluate the

performance of Super Learner through an additional layer of cross-validation.6

Overall, Super Learner is an important tool that researchers can use to improve predictive ac-

curacy, avoid overfitting, and minimize parametric assumptions. We have provided a simple expla-

nation of the Super Learner to facilitate a more widespread use in epidemiology. More advanced

treatments with realistic data examples are available5,7,31 and should be consulted for additional

depth.
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Figure 1: Dose-response curves for the relation between our simulated continuous exposure and
continuous outcome in Example 1. The black line represents the true curve, while the red and blue
lines represent curves estimated with the programmed Super Learner package in R, and the manu-
ally coded Super Learner. Light blue and green curves show the fits from the level-zero algorithms,
earth and gam respectively. Gray dots represent observed data-points.
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Figure 2: Receiver operating characteristic curves displaying the ability of 5 simulated exposures to
predict the simulated outcome in Example 2. Blue line represents the curve obtained from the Super
Learner package. Red dotted line represents curve obtained from manually coded Super Learner.
The green line represents the curve from level-zero Bayes GLM algorithm, and the black line repre-
sents the curve from PolyMARS.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/172395doi: bioRxiv preprint 

https://doi.org/10.1101/172395
http://creativecommons.org/licenses/by/4.0/


References

1. Wolpert D. Stacked generalization. Neural Networks. 1992; 5:241–59.

2. Breiman L. Stacked regressions. Machine Learning. 1996; 24:49–64.

3. van der Laan M, and Dudoit S. Unified Cross-Validation Methodology For Selection Among Es-

timators and a General Cross-Validated Adaptive Epsilon-Net Estimator: Finite Sample Oracle

Inequalities and Example. Technical Report 30, Division of Biostatistics, University of California,

Berkeley. 2003.

4. van der Laan M, Dudoit S, and van der Vaart AW. The cross-validated adaptive epsilon-net

estimator. Statistics & Decision. 2006; 24:373.

5. van der Laan MJ, Polley EC, and Hubbard AE. Super learner. Statistical Applications in Genetics

and Molecular Biology. 2007; 6:Article 25.

6. Polley EC, Rose S, and van der Laan MJ. Super Learning. In: van der Laan MJ and Rose S

(Eds.) Targeted Learning: Causal Inference for Observational and Experimental Data. New York

Dordrecht Heidelberg London: Springer. 2011; 43–66.

7. Rose S. Mortality risk score prediction in an elderly population using machine learning. Am J

Epidemiol. 2013; 177:443–452.

8. Pirracchio R, Petersen ML, Carone M, Resche Rigon M, Chevret S, and van der Laan M. Mor-

tality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a

population-based study. Lancet Resp Med. 2015; 3:42-52.

9. Petersen M, LeDell E, Schwab J, Sarovar MS, and et. al. Super Learner Analysis of Electronic

Adherence Data Improves Viral Prediction and May Provide Strategies for Selective HIV RNA

Monitoring. J Acquir Immune Defic Syndr. 2015; 69:109-118.

10. Zheng W, Balzer L, van der Laan M, Petersen M, and the SEARCH Collaboration. Constrained

binary classification using ensemble learning: an application to cost-efficient targeted PrEP

strategies. Statistics in Medicine. 2017; Early View.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/172395doi: bioRxiv preprint 

https://doi.org/10.1101/172395
http://creativecommons.org/licenses/by/4.0/


11. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. 2017.

12. Hastie T and Tibshirani R. Generalized Additive Models. London; New York: Chapman & Hall.

1990.

13. Hastie T, Tibshirani R, and Friedman JH. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. New York, NY: Springer. 2009.

14. Polley E, LeDell E, Kennedy C, and van der Laan M. Super Learner: Super Learner Prediction.

2016. URL https://CRAN.R-project.org/package=SuperLearner. R package version 2.0-22.

15. Andrew Gelman and Yu-Sung Su. arm: Data Analysis Using Regression and Multi-

level/Hierarchical Models. 2016. URL https://CRAN.R-project.org/package=arm. R package ver-

sion 1.9-3.

16. Charles Kooperberg. polspline: Polynomial Spline Routines. 2015. URL https://CRAN.R-project.

org/package=polspline. R package version 1.1.12.

17. Stephen Milborrow. Derived from mda:mars by Trevor Hastie and Rob Tibshirani. Uses Alan

Miller’s Fortran utilities with Thomas Lumley’s leaps wrapper.. earth: Multivariate Adaptive

Regression Splines. 2017. URL https://CRAN.R-project.org/package=earth. R package version

4.5.0.

18. Erin Ledell. Scalable Ensemble Learning and Computationally Efficient Variance Estimation.

2015. PhD Dissertation. UC Berkeley.

19. Kohavi R. A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selec-

tion. In. Proceedings of the 14th International Joint Conference on Artificial Intelligence. 1995;

2.

20. Zhang Y and Yang Y. Cross-validation for selecting a model selection procedure. Journal of

Econometrics. 2015; 187.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/172395doi: bioRxiv preprint 

https://CRAN.R-project.org/package=SuperLearner
https://CRAN.R-project.org/package=arm
https://CRAN.R-project.org/package=polspline
https://CRAN.R-project.org/package=polspline
https://CRAN.R-project.org/package=earth
https://doi.org/10.1101/172395
http://creativecommons.org/licenses/by/4.0/


21. Moodie EEM and Stephens DA. Treatment prediction, balance, and propensity score adjust-

ment. Epidemiology. 2017; 28.

22. Pirracchio R and Carone M. The balance super learner: A robust adaptation of the super learner

to improve estimation of the average treatment effect in the treated based on propensity score

matching. Stat Methods Med Res. 2016; :962280216682055.

23. McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, and Burgette LF. A tutorial

on propensity score estimation for multiple treatments using generalized boosted models. Stat

Med. 2013; 32:3388–3414.

24. Westreich D, Lessler J, and Funk MJ. Propensity score estimation: neural networks, support

vector machines, decision trees (cart), and meta-classifiers as alternatives to logistic regression.

J Clin Epidemiol. 2010; 63:826 – 833.

25. Lee BK, Lessler J, and Stuart EA. Improving propensity score weighting using machine learning.

Stat Med. 2010; 29:337–346.

26. Snowden JM, Rose S, and Mortimer KM. Implementation of g-computation on a simulated data

set: Demonstration of a causal inference technique. Am J Epidemiol. 2011; 173:731–738.

27. Westreich D, Edwards JK, Cole SR, Platt RW, Mumford SL, and Schisterman EF. Imputation ap-

proaches for potential outcomes in causal inference. International Journal of Epidemiology.

2015; :Published ahead of print July 25, 2015.

28. van der Vaart A. Higher Order Tangent Spaces and Influence Functions. Statistical Science. 2014;

29:679–686.

29. Robins JM, Rotnitzky A, and Zhao LP. Estimation of regression coefficients when some regres-

sors are not always observed. Journal of the American Statistical Association. 1994; 89:846-866.

30. van der Laan MJ, and Robins JM. Unified Methods for Censored Longitudinal Data and Causality.

New York Berlin Heidelberg: Springer-Verlag. 2003.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/172395doi: bioRxiv preprint 

https://doi.org/10.1101/172395
http://creativecommons.org/licenses/by/4.0/


31. van der Laan MJ and Rose S. Targeted learning: causal inference for observational and experi-

mental data. New York, NY: Springer. 2011.

32. Naimi AI and Kennedy EH. Nonparametric double robustness. bioRxiv. 2017; .

33. Kennedy EH and Balakrishnan S. Discussion of “Data-driven confounder selection via Markov

and Bayesian networks” by Jenny Häggström. Biometrics. 2017; In Press.

34. Robins J, Li L, Tchetgen Tchetgen E, and van der Vaart A. Higher order influence functions

and minimax estimation of nonlinear functionals. In: Nolan D and Speed T (Eds.) Probability

and Statistics: Essays in Honor of David A. Freedman, vol. Volume 2 of Collections. Beachwood,

Ohio, USA: Institute of Mathematical Statistics. 2008; 335–421. URL http://dx.doi.org/10.1214/

193940307000000527.

35. Diaz I, Carone M, and van der Laan MJ. Second-order inference for the mean of a vari-

able missing at random. 2016; 12:333. URL //www.degruyter.com/view/j/ijb.2016.12.issue-1/

ijb-2015-0031/ijb-2015-0031.xml.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/172395doi: bioRxiv preprint 

http://dx.doi.org/10.1214/193940307000000527
http://dx.doi.org/10.1214/193940307000000527
//www.degruyter.com/view/j/ijb.2016.12.issue-1/ijb-2015-0031/ijb-2015-0031.xml
//www.degruyter.com/view/j/ijb.2016.12.issue-1/ijb-2015-0031/ijb-2015-0031.xml
https://doi.org/10.1101/172395
http://creativecommons.org/licenses/by/4.0/

