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Abstract : We present SVclone, a computational method for inferring the cancer cell fraction of 
structural variant breakpoints from whole-genome sequencing data. We validate our approach 
using simulated and real tumour samples, and demonstrate its utility on 2,658 whole-genome 
sequenced tumours.  We find a subset of liver, breast and ovarian cancer cases with decreased 
overall survival that have subclonally enriched copy-number neutral rearrangements, an 
observation that could not be discovered with currently available methods. 

 

One Sentence Summary: SVclone is a novel computational method for inferring the cancer cell 
fraction of tumour structural variation from whole-genome sequencing data. 
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The clonal theory of cancer evolution 1 posits that cancers arise from a single progenitor cell that                
has acquired mutations conferring selective advantage, resulting in the expansion of a genetically             
identical cell population or “clone”. As this cancer grows, a process akin to Darwinian species               
evolution emerges with subsequent genetically distinct populations arising from the founding           
clone via the continual acquisition of advantageous genomic aberrations. Consequently, tumours           
are likely to consist of a genetically heterogeneous combination of multiple cell populations, the              
extent of which has been revealed through the use of whole-genome sequencing2,3. As clones can               
respond differently to therapy4, understanding this cellular diversity has important clinical           
implications5. 
 
The mutations belonging to each clone in a tumour can be interrogated using bulk whole-genome               
sequencing, with mutation detection subject to sequencing depth, tumour cellularity, clonality           
and mutation copy-number6. The expansion of each clone over the life of a tumour is encoded in                 
the allele frequency of somatic mutations 7. In order to model clonal expansions, the variant allele               
frequency (VAF) must be converted to a cancer cell fraction (CCF), the fraction of cancer cells                
within which the variant is present. Events appearing inr all cancer cells (CCF 100%) are               
considered clonal and due to a pervasive expansion. Events appearing in a subset of cells (CCF                
<100%) are considered subclonal and part of an ongoing expansion. Estimating the cancer cell              
fraction of events is challenging, as the observed variant allele frequency depends on the amount               
of normal cell admixture (purity) and local copy-number.  
 
Given these challenges, previous computational approaches for estimating CCF have focused on            
individual facets of this complexity, commonly limiting their view to single nucleotide variants             
(SNVs)8-13 or somatic copy-number aberrations (SCNAs) 14-16. This has left the clonality of            
balanced rearrangements largely unexplored, despite their implication in oncogenic fusions 17 and           
subclonal translocations conferring a drug resistant phenotype18. While SNV-based approaches          
have provided solutions to the problem of downstream inference of mutation CCF, they cannot              
be used for structural variant (SV) breakpoint data as: (i) no complete and robust methodology               
exists yet to calculate VAFs from SVs (Fan et al.19 provides a limited framework that does not                 
correct for DNA-gains or support all SV types); (ii) the handling of copy-number changes for               
SNVs does not translate cleanly to SV data (additionally, SVs can themselves cause             
copy-number changes); and (iii) due to the relatively small number of data points (on average               
compared to SNVs), false positive SVs greatly diminish clustering performance, hence a robust             
filtering methodology is required to consider only high-confidence SVs. 
 
To address this gap, we have developed SVclone, an algorithmic approach that infers and              
clusters CCFs of SV breakpoints. It considers all types of large-scale structural variation (SV),              
including copy-number aberrant and copy-number neutral variation. The SVclone pipeline and a            
summary of its performance validation is shown in Figure 1a. Detailed explanations for each step               
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can be found in the Methods and Supplementary Information. The SVclone algorithm consists of              
five steps: annotate, count, filter, cluster and post-assign. The annotate, count and filter steps are               
used to obtain supporting and normal (non-supporting) reads of high-confidence SVs for            
clustering. The clustering step jointly infers CCF and groups variants of similar CCF. The              
post-assign step assigns the remaining variants a most-likely CCF, given the clusters obtained             
from the previous step. SV calls are required as input into the annotate step (single-nucleotide               
resolution paired SV loci), and the corresponding whole-genome sequencing file in BAM format.  
 
The structural variant allele frequency calculation in SVclone depends greatly on high quality             
read counts for normal and variant DNA. Therefore, to test if any potential bias could affect                
these counts, we simulated reads from SVs with known allele frequency and computed the              
observed VAF. Figure 1c shows that for each of the SV classes the observed VAF is                
systematically underestimated. The lower variant read count causing this discrepancy is due to a              
small number of variant reads not being aligned (Figure 1b). Duplications are more pronounced              
as they also have an increased normal read count due to DNA gains showing no loss of normal                  
DNA (Figure 1b). To account for this bias, SVclone employs a simple scaling factor that               
incorporates tumour purity to calibrate the supporting read counts and infer the true underlying              
VAF (Figures 1b and 1c). 
 
To test the ability of SVclone to infer clonal expansion frequencies using SVs we created a set of                  
samples with known clonal frequencies by subsampling and mixing read data in 10% increments              
from two previously sequenced prostate cancer metastases from a single patient 20 (Figure 1d).             
The prostate cancer samples used to create the mixtures had no evidence of subclonality (Hong               
et al.20 Supplementary Figure 2d), and had similar coverage and tumour purity. SVclone applied              
to these samples was able to identify the correct number of clusters in all cases (Supplementary                
Figure 4). The average mean squared error for cluster frequencies was 0.0109. The average              
adjusted Rand index was 0.1445, generally low, indicating that while SVclone can correctly             
identify the number of clusters and closely estimate their respective CCFs, correct assignment of              
SVs to their true clusters remains a challenge. To provide some insight into this we calculated                
optimal CCF distributions for SVs (a transformation of the VAF given the most likely              
copy-number state of each SV if the ‘correct’ cluster mean is known). The overlapping and               
multi-modal distributions in Figure 1e clearly illustrate the difficulty of the problem when             
considering breakpoint data, especially compared to optimal distributions for SNVs (Figure 1e)            
which are more separable.  
 
We also compared SVclone’s performance (run on SVs) to PyClone9, a state of the art clustering                
approach (run on SNVs). SVclone and PyClone results were in good concordance, with PyClone              
finding 3 clusters in 5/9 mixtures and SVclone in 9/9 mixtures (Figure 1e and Supplementary               
Figure 4). SVclone’s mean squared error (MSE) across all mixture proportions was 0.011,             
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compared with with PyClone’s MSE of 0.003. A higher deviation from the true cluster mean is                
expected, given SVclone has comparatively fewer variants available for clustering. SVclone’s           
comparable performance indicates that clonal structure can be effectively reconstructed with           
high concordance and accuracy, despite the relative deficit in variant number. Both SVclone and              
PyClone had little difficulty in identifying minor subclonal clusters in the mixtures due to the               
lack of overlapping CCFs from clonal or major subclonal clusters. One major advantage of using               
SVclone is that it can also be used in coclustering mode, where CCF estimates can be given for                  
SVs and SNVs simultaneously, thus substantially increasing the number of variants available for             
clustering. 
 
We applied SVclone to 2,658 WGS samples from the pan-cancer analysis of whole genomes              
(PCAWG) project (dcc.icgc.org/pcawg), coclustering both SVs and SNVs, an extensive          
discussion of which can be found in the PCAWG-11 heterogeneity manuscript (Dentro et al. in               
preparation). Here, downstream analysis was performed on the 23 tumour types showing ≥ 20              
samples with >10 SVs and SNVs (n=1,773). A comparison of the fraction of subclonal SVs               
versus SNVs showed different patterns across tumour types (Figure 2a). Briefly, tumour types             
showing more subclonal SVs versus SNVs include 80.4% of lung squamous cell carcinomas and              
77.4% of osteosarcomas. This is in contrast to the 36.3% of lung adenocarcinomas and 40% of                
gastric cancers (Supplementary Table 3). Some cancers contained subsets with distinct patterns            
of clonality, for instance liver cancers contained a cluster of 21 samples with high SV               
subclonality (≥ 50%) and low SNV subclonality (< 30%).  
 
One unique feature of SVclone is that it determines the clonality of copy-number neutral              
rearrangements. As such, we applied a test for enrichment of subclonal copy-number neutral             
rearrangements (inversions and inter-chromosomal translocations) across the PCAWG cohort. A          
total of 162 samples across 17 cancer types exhibited this novel, subclonal copy-number neutral              
rearrangement (SCNR) phenotype (e.g. Figure 2c-f), with ovarian (n=31, 14.9% of total ovarian),             
liver hepatocellular carcinoma (n=27, 6.5% of total liver) and breast cancers (n=24, 10.2% of              
total breast) overrepresented in this set. To test if SCNR events were the result of a single                 
complex rearrangement event (such as chromothripsis), or were simply a set of unrelated             
rearrangements, we looked for clustered events, and where possible, attempted to walk the             
derivative chromosome. SCNR events showed a twofold increase in propensity for being part of              
a complex event, compared to background (32.5% vs. 18.5%). 50% of these clustered SCNR              
events were linked by at least one inter-chromosomal translocation, compared to only 13.7% of              
other samples (see Supplementary Table 4), suggesting these events can span multiple            
chromosomes. 5.4% of tested SCNR chromosomes could be walked, compared with just 0.6% of              
background chromosomes. These data suggest that subclonal events present in SCNR samples            
are likely a result of complex, interrelated rearrangements.  
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To test for potential clinical relevance of the SCNR phenotype, we compared the overall survival               
of SCNR cases (n=90), with high subclonal SV fraction cases (n=582), and all remaining cases               
(n=1070) for which overall survival was recorded. These groups showed significantly different            
(p<0.001) survival probabilities, with median survival times of 796, 1260 and 2543 days,             
respectively (Figure 2b). To address the issue of varying background survival rates of different              
tumour subtypes and different levels of SV enrichment, we stratified on tumour histological             
subtype and binned tumours on 7 levels of SVs (0, 1-100, 101-200, 201-300, 301-400, 401-500               
and 501+). This resulted in a hazard ratio of 1.61 for SCNR cases, significantly higher compared                
to the baseline cohort (p<0.001). This analysis indicates that considering the clonality of             
balanced genome rearrangements reveals functionally important and clinically relevant         
observations. Importantly, considering only the clonality of SNVs and/or SCNAs would have            
failed to reveal this information. 
 
Despite these successful applications of SVclone, it is important to consider some of its              
limitations. Our approach infers clusters of SVs with similar cancer-cell fractions but does not              
infer the phylogenetic history of cellular populations, which is beyond the scope of this              
contribution. Furthermore, we have simplified our model to consider all breakpoints as            
independent events despite the fact that in some cases these breakpoints may be part of the same                 
complex SV event. Complex SV types are not identified by SVclone’s classification framework,             
however, users may specify their own types if known. As more sophisticated methods for              
classifying complex SV events become available, this could be integrated into the algorithm             
framework. 
 
In cancers where copy-number neutral rearrangements are common, a significant portion of the             
clonal landscape has remained, until now, unexplored. Here we have demonstrated a pattern of              
subclonal variant enrichment that would otherwise go undetected if solely considering the            
clonality of SCNAs and SNVs. Analysing all variant classes and their respective clonality will              
ultimately be required to gain a more complete picture of the tumour heterogeneity landscape.              
We have presented the first integrated software package for modeling the cancer cell fraction of               
structural variation breakpoints using whole-genome sequencing data and have demonstrated its           
application in identifying novel patterns of subclonal variation. The software provides a useful             
additional type of analysis for subclonal quantification, for a more integrated approach to             
modeling tumour heterogeneity. 
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Methods: 

Code availability    

The SVclone software, user documentation, and example data can be downloaded from            
https://github.com/mcmero/SVclone. Links to all other source code, including figure generation,          
can be found in the Supplementary Information. 

 

Data input 

The SVclone algorithm requires at a minimum a list of SV breakpoints and associated tumour               
BAM file. SV breakpoints can be provided as a VCF or as a tab-delimited file of paired                 
single-nucleotide resolution break-ends. Using an SV caller with directionality of each break-end            
is recommended. The Socrates21 output format is natively supported and allows additional            
filtering by repeat type and average MAPQ. An associated paired-end, indexed whole-genome            
sequencing BAM file is required for SV. In the filter step, copy-number information can be               
added in Battenberg 15, ASCAT 22 or PCAWG consensus copy-number formats to aid in correcting             
VAFs. SNV input is also supported in multiple VCF formats (sanger, mutect, mutect call-stats              
and PCAWG consensus). Further details of input formats can be found in the repository              
README file.  

 

SV classification 

We employ a decision-tree based approach based on break-end directionality to classify SV             
events into six categories: inversions, deletions, tandem duplications, interspersed duplications          
and intra- and inter-chromosomal translocations. See Supplementary Figures 1 and 2 for the             
variant types we consider and their associated classification rules, and Supplementary           
Information 1.3.1 for further details.  

 

Calculating the number of reads supporting a SV 
Each SV considered by SVclone has two genomic locations, denoted here as break-ends. From              
the BAM file SVclone extracts reads that overlap each break-end and compiles separate counts              
for: split reads (soft-clipped reads that cross each break-end), spanning reads (read pairs that              
align either side of the break-end, that do not overlap the breaks) and normal reads (reads that                 
cross or span the break-ends but match the reference). Split reads for both break-end loci ( s j) are                 
summed with the spanning read counts ( c j) to obtain the total supporting read total for the SV                 
( bj). See Supplementary Figure 3 for how the different read types are counted. To offset               
aligner-specific behaviour which causes the number of supporting reads to be under-represented,            
each b j is subject to a linear adjustment factor that incorporates tumour purity. Adjustment is               
calculated as 1 + AFsupp· π ⍴ where π ⍴ is the tumour cell content (tumour purity) and AFsupp is set at                    
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0.12 by default (for data aligned using Bowtie223, if using BWA 24 we recommend setting this to                
0.2). This was inferred from simulations of 100bp short reads with a 300bp mean fragment size.                
Different adjustment values may be required for different read sizes, insert size distributions and              
aligners. 
 
Calculating the number of non-supporting reads 
For each SV, normal reads are counted at the break-ends resulting in two normal read count                
totals ( o l , ou). Only one of these ( o j) is required for CCF calculation. We choose the normal read                   
count that corresponds to the lowest total copy-number. By selecting the lower copy-number             
state, the copy-number search space (also known as multiplicity) SVclone must consider when             
calculating CCF is smaller (see below for details). In cases where one break-end has a clonal                
background copy-number state, and the other a subclonal state, we preferentially select the side              
with clonal copy-number. In the case where the SV results in a gain of DNA (interspersed and                 
tandem duplications), the normal read count must be adjusted. We consider the SV classification              
κ j for an SV j, where κj ∈ {DEL, DUP, INTDUP, INV, TRX, INTRX}. We define two subsets                  
κ gain = {DUP, INTDUP} where normal reads at the variant population's break-ends are unaffected              
at the variant allele, and κnon-gain ={DEL, INV, TRX } where the normal reads at the variant                
population's break ends are replaced by supporting reads. We compute an adjustment factor, 

 AF norm =  1
|κ |gain

1
|κ |non−gain

∑
 

j:κ ∈κj gain
oj

∑
 

j:κ ∈κj non−gain
oj

 

 
If the tumour contains only SVs in κgain, we calculate an approximated AFnorm = 1 − π⍴ / nT where                    
π⍴ is the tumour content and nT the tumour ploidy. The normal read counts of all DNA-gain                 
events are then multiplied by this adjustment factor (o j = oj·AFnorm if κ j ∈ κgain), while events that                  
are not DNA-gains remain unadjusted. 
 
For a more detailed explanation of the read counting, see Supplementary Information 1.4. 

 
Filtering variants 
To obtain a high-confidence set of variants, we apply five filtering criteria: germline variant              
presence, SV size, minimum depth, minimum support and presence of a valid copy-number state              
(see Supplementary Information 1.5 for details).  
 

Assigning copy-number states to SVs 

We match SV break loci to the copy-number state of each locus before the SV takes place. To do                   
this, we use the SV directionality to determine the flanking copy-number state outside the SV, by                
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some offset (100kb by default to allow for segmentation noise). See Supplementary Table 2 for               
details. Optionally, if the SV does not fall within any CNA boundaries, the nearest bordering               
CNA state can be assigned (by default no state is matched to the break-end). For further details                 
see Supplementary Information 1.6. 

 
Clustering 
The clustering step of SVclone simultaneously computes SV CCFs and clusters SVs of similar              
CCF, based on purity, ploidy and copy-number status of the normal, reference and tumour              
populations. Clustering takes read counts and copy-number states as input and utilises a Bayesian              
Dirichlet Process mixture model, implemented using Markov-Chain Monte-Carlo (MCMC)         
sampling (through the PyMC package 25) in order to approximate posterior distributions for            
unknown parameters. The software determines the number of clusters dynamically and infers the             
most likely average CCF per cluster, as well as the multiplicity of each variant (the most likely                 
copy-number states for the tumour’s reference and variant populations, and the most likely allele              
proportion the variant occurs on). Supplementary Figure S.5 shows the model implementation in             
graphical model form. Our model relies on the infinite sites assumption 26,27, which states that the               
same event does not occur twice, independently at the same locus, in descendent populations.              
We also assume that an SV always occurs on either the major or minor allele, but never on both.  
 
A detailed description of the model can be found in the Supplementary Information 1.7,              
however, here we highlight the key components. We model the probability of sampling a variant               
read given variant locus j as coming from a binomial distribution with trials dj (read depth bj + o j)                   
and probability pj, 
 

bj|dj, pj ∼ Binomial(dj, pj)  
 
where bj = s j + d j, ( sj is the number of split reads and d j the number of discordant reads), and oj                      
the number of normal reads. In order to calculate pj we require the tumour purity estimate π⍴ and                  
the subclonal copy-number fraction (φ jbb), both of which are specified by the user, along with the                
unknown parameters cluster CCF mean ( φ j), the proportion of alleles the variant lies on ( μ j), and                
the total copy-number of the normal (n jN), the reference (njR) and the variant (njV) populations: 
 

·μjpj =
π φ n⍴ j j

V

n (1 − π )+π n φ +π n (1−φ )j
N

⍴ ⍴ j
V

j
bb

⍴ j
R

j
bb  

 
We use MCMC to compute the posterior distribution for φj (see below). For, μj, at each iteration                 
of the MCMC we compute the binomial probability for values of μj ranging from 1 to the major                  
allele copy-number over the total variant copy-number ( 1 .. n VjA ) / nVj. and select the value                 
resulting in the pj with the highest binomial probability.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172486doi: bioRxiv preprint 

https://doi.org/10.1101/172486
http://creativecommons.org/licenses/by/4.0/


9 

 
For detailed information on how njN, n jR, njV are computed, see Supplementary Information 1.7.2,              
Here specify the posterior for φ j. In order to avoid fixing the number of subclonal clusters                
a-priori, we implement a flat Dirichlet Process (DP) with an upper bound K on the number of                 
clusters. Hence, φ j is constrained by taking on one of K values; φ j ∈ φ 1..φ K. The categorical                 
variable zj takes on values corresponding to the K clusters; z ∈ 1, .., K . Hence the generative DP                   
model is defined as: 
 

α ∼ Gamma(a = 0.1, b = 0.5)    a = shape, b = rate 
H|α ∼ Beta(1, α);    p|H ∼ DP( H);    z j| ψ ∼ Categorical(ψ) 

 
φ’s prior (φ 0) is defined as the minimum expected prevalence of its associated population, i.e. the 
minimum φ that can be detected, given that the expected population is present with 1 supporting 
read on average. The default maximum of φ is defined as 1 (by default). 
 

φ 0| π⍴, nT, λ ∼ Uniform(υ , 1);      υ =  ( λ 

π n⍴ T )  −1  

 
where  λ = average depth of coverage.  
 
After the MCMC is complete each variant’s cluster is based on the cluster membership mode 
across all (post burn-in) iterations. Each cluster’s mean CCF is taken as the average of the post 
burn-in trace values. Clusters which have no variants assigned are discarded. In addition to the 
cluster CCF mean, we also provide the post burn-in CCF trace per variant, and a variant CCF 
calculated from the adjusted VAF (see Supplementary Information 1.7.7). The MCMC is 
typically run multiple times with a BIC-like fit metric for calculating the model goodness of fit 
per run (see Supplementary Information 1.7.6).  
 
Recommended clustering parameters 
We recommend using at least 25,000 iterations with 12,500 burn-in, with shape 0.1 and rate 0.5 
(for SV data) with 8 runs per sample (default parameters). We recommend lowering the rate 
parameter to 0.1 when clustering larger numbers of variants (>1000), such as when clustering 
SNVs. By default, variants are initialised to a single cluster with a clonal CCF. See 
Supplementary Information 1.7.4 for SVclone’s dynamic initialisation option that pre-clusters 
data to reduce iterations. 
 
Post-assignment of variants to clusters 
SVclone allows variants filtered out during the filter step, or not present in the clustering step 
due to subsampling, to be retroactively assigned to the most likely cluster based on their normal 
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and supporting read counts, and their copy-number state. Multiplicity is selected based on the 
most likely copy-number combination assuming a clonal (φ = 1) state. The most likely cluster 
from the clustering results is then selected: 
 

φ j = arg max L(bj | dj, pj) 
       φ1..K 

SV simulation 

SVs were simulated with the same tool used to assess the Socrates SV caller 21, with minor                
adjustments. SVs size was randomly chosen among the size categories 300-1 kb, 2 kb - 10 kb                 
and 20 kb - 100 kb with equal probability for each category. We simulated chromosome 12 with                 
100 bp paired-end reads with 300 bp insert size (standard deviation = 20 bp), with an SV at every                   
100kb interval. Samples containing only deletions, translocations, inversions and duplications          
were generated at the tumour purity levels of 100%, 80%, 60%, 40% and 20%. The SV events                 
were assumed to always occur in a heterozygous fashion, hence the "true" VAF was always               
considered to be half of the simulated purity value. To achieve the effect of differing purities,                
simulated normal reads were mixed with tumour samples with coverage equivalent to (λ · (1 −                
π0)) / 2 and normal read coverage of (λ · π0 ) / 2. We ran simulations at 50x coverage, typical for                      
WGS data by simulating (500 L / 300) total reads per simulation where L is the chromosome                
length (post rearrangement) and 300 the fragment length. These data were run through SVclone’s              
annotate (inferring directions), count and filter steps. Adjusted VAFs were used to test the              
concordance with expected VAF. 

 

Prostate sample mixing 

The metastatic samples bM (A) and gM (B) from Patient 001, Hong et al. were chosen due to                  
their similar coverage (51.5x and 58.9x) and purity (49% and 46%). Previous analysis by Hong               
et al. showed that these metastases shared a common ancestral clone, had no evidence of               
subclonality, and contained a number of private SVs and SNVs. Mixing two clonal metastases              
from the same patient has many advantages over spike-in approaches including: realistic            
sequencing noise; realistic subclonal mixing of SVs, SCNAs and SNVs; and a natural branching              
clonal architecture with both clonal and subclonal mutations present. We generated a total of              
nine samples with subclonal mixes of reads sampled at percentages 10:90; 20:80; 30:70; 40:60;              
50:50; 60:40; 70:30; 80:20; and 90:10; for metastasis A and B, respectively. Three clusters are               
expected to be revealed upon mixing: shared variants present at 100% CCF, one cluster at bM’s                
mixture frequency and one cluster at gM’s mixture frequency. 

These in-silico mixes were created using the subsample and merge functions from SAMtools             
v1.228. Copy-numbers were obtained from Battenberg 16 on each merged sample with default            
parameters. To construct the breakpoint list for input into SVclone’s annotate step, Socrates21             
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was run on the individual bM and gM samples, then run through SVclone’s annotate and count                
steps (using Socrates’ directions, filtered on simple and satellite repeats using the repeat-masker             
track (repeatmasker.org) and a minimum average MAPQ of 20). The resulting bM and gM SVs               
were then merged and filtered against the germline. Copy-numbers were matched using            
corresponding Battenberg subclonal copy-number output. The merged SV list was used as the set              
of SV calls for the annotate step for each mix. Clustering was performed across 16 runs with                 
25,000 iterations, 12,500 burn-in and otherwise default parameters. 

The reference and variant alleles were counted at each of the 9811 SNVs across the different                
mixture proportion BAM files (Mutect variant calls from Hong et al. were used with alleles               
recounted using Samtool’s mpileup and pileup2base (https://github.com/riverlee/pileup2base).       
Corresponding Battenberg copy-numbers were matched at each locus, filtering out any variants            
in regions of subclonal copy-number (PyClone does not support subclonal copy-number           
handling). For both variant types, we filtered out any clusters that had variant proportions under               
5%. Cluster CCFs were derived from the mean φ trace per cluster. We subsampled 5000 variants                
from the resulting SNV output per mixture and ran these variants through the PyClone algorithm.               
See Supplementary Figure 4 for full visualisation of the results. See Supplementary Information             
1.10 for further details.  

 
Analysis of ICGC/TCGA pan-cancer samples 
We utilised the pan-cancer analysis of whole genomes (PCAWG) October 12th 2016 consensus             
SNV call set, the v1.6 consensus SVs and the high-confidence 3∗ annotated copy-number             
consensus calls (9 th of January 2017) using segments with levels a-d as input. For a detailed                
explanation on how these were generated see the PCAWG-11 heterogeneity manuscript Dentro            
et al., in preparation. Annotate and count were run using each sample’s associated mini-bam.              
Consensus purity and ploidy estimates (January 9th 2017) were used. Samples were run for 8               
runs, with 25,000 iterations with 12,500 burn-in using a rate parameter of 0.1 (on the DP’s                
Gamma prior) and otherwise default parameters. SNVs were sub-sampled to 5000 variants, with             
remaining SNVs post-assigned. SVclone’s custom BIC metric was used to select the best run in               
each case. Variants falling into clusters with CCF above 0.9 were considered clonal, otherwise              
subclonal. 

 
We tested the PCAWG samples for the enrichment of balanced rearrangements in subclones             
(inversions and inter-chromosomal translocation) using a hyper-geometric test, with the          
alternative hypothesis of P(X ≥ x) where x = ∑Lj=1 = 1[κj = κinv]. P-values were corrected using                  
false discovery rate (FDR). Survival analysis was undertaken using the survival CRAN package             
(cran.r-project.org/package=survival). Hazard ratios were calculated using the Cox proportional         
hazards regression model, stratified by tumour histology type. We used a hyper-geometric test to              
determine whether any ICGC/TCGA contributors were over-represented for each histology type           
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and found no evidence of any significant over-representation (FDR < 0.05). For the clustering of               
breakpoints criteria, SVs were tested on a per-chromosome basis (inter-chromosomal SVs were            
removed). Ability to walk each derivative chromosome was tested using criteria for            
chromothripsis tests A and F 29. Chromosomes were only tested if they contained at least 4 clonal                
and 4 subclonal rearrangements per chromosome.  
 
SVclone software features 
SVclone is a modular, flexible and customisable piece of software with over 70 adjustable              
parameters. The following provides an outline of features: 

● SV annotation 
○ Classification of event type 
○ Inference of SV direction 
○ Support for Socrates, GRIDSS and PCAWG consensus SV formats 

● SV VAF calculation 
○ Normal supporting spanning and split read counts 
○ Break-end matching to background copy-number (given SCNA states in         

Battenberg, ASCAT or PCAWG consensus formats) 
○ Selection of break-end side for normal read count 

● Filtering and adjustment 
○ Filtering criteria include germline presence, SV size, read count (depth, minimum           

split and spanning reads), overlap of bed regions to exclude and background            
copy-number state (optionally filter subclonal states or non copy-number neutral) 

○ Correction of DNA-gain normal reads via adjustment factor 
○ Correction of supporting reads by scalable factor 
○ Support for SNVs in mutect, mutect callstats, sanger and PCAWG consensus           

formats 
● Clustering 

○ Support for SVs and SNVs (option to cocluster, or cluster separately) 
○ SNVs may be subsampled 
○ Automatically infer a fixed alpha based on number of variants 
○ Inference of cluster number 
○ Cluster number initialisation based on power to detect (can also be manually set) 
○ Clusters can be merged based on confidence interval range 
○ Increase multiplicity search space to consider more copy-number combinations 
○ Model for estimating most likely SCNA states for variant and reference           

populations 
■ Option to weight clonal copy-number states more strongly 

○ Correction for CCF traces due to label switching 
○ Calculation of fit metric for selecting best run 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/172486doi: bioRxiv preprint 

https://doi.org/10.1101/172486
http://creativecommons.org/licenses/by/4.0/


13 

● Post-assignment 
○ Filter out small clusters 
○ Variants can be (re)assigned to their most likely cluster. These may be: 

■ variants from filtered out clusters 
■ variants used in the cluster step 
■ variants not used in the cluster step 

● Post run metrics (See Supplementary Figure 5 for summary of output plots) 
○ Circos plots (including SVs, copy-number and SNV density) 
○ Overview plot of clustering results and model fit across runs 
○ Histogram plots per run (VAFs and CCFs by cluster and variant type) 
○ Coclustering matrix output 
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Figures: 

 
Fig. 1. A) Flow-chart of the SVclone pipeline. B) Schematic showing adjustments required for 
different classes of rearrangements. C) Effect of adjusting raw VAFs at purity levels at 20% to 
100% in 20% increments, where the expected VAF is half the purity level (black line). D) 
Schematic illustrating subsampling and merging process to create in-silico mixtures of real 
tumour samples. E) Example results from the 40:60 mixture (blue lines are the cluster mean 
CCFs). PyClone comparison shows circle size representing the proportion of variants belonging 
to cluster, while circle centre represents cluster CCF. 
 
 
Fig. 2. A) 2D density plot for PCAWG samples with at least 20 samples per category (n=1,772) 
(a variant under 0.9 CCF was considered subclonal). B) Survival curve comparing SCNR 
phenotype, SV-enriched and all other PCAWG samples. C) Circos plots for example SCNR 
phenotype tumour (Liver Hepatocellular carcinoma, tumour WGS aliquot 
2bff30d5-be79-4686-8164-7a7d9619d3c0). D) CCF histogram of sample’s variants. D)  CCF 
histogram of SV categories in subclonal cluster. E) CCF histogram of clonal SVs. 
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