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We present a fitter for 3D single-molecule localization of arbitrary, experimental 

point spread functions (PSFs) that reaches minimum uncertainty for EMCCD and 

sCMOS cameras, and achieves more than 105 fits/s. We provide tools to robustly model 

experimental PSFs and correct for depth induced aberrations, which allowed us to achieve 

an unprecedented 3D resolution with engineered astigmatic PSFs, and acquire high 

quality 3D superresolution images even on standard microscopes without 3D optics. 

 

As most biological structures have a three-dimensional (3D) organization, their comprehensive 

investigation by superresolution microscopy requires not only a high lateral, but also a high 

axial resolution. Therefore, several methods have been developed to extend single molecule 

localization microscopy (SMLM) to 3D. Most approaches extract the z-position from the shape 

of an engineered point spread function (PSF)1–3. However, these methods are prone to produce 

artifacts, which are often a consequence of a mismatch between the theoretical PSF model and 

the experimental PSF. Thus, an accurate PSF model is a prerequisite for accurate 3D 

localization of single molecules. Any analytical PSF model is an approximation at some level, 

even with a (computationally expensive) consideration of optics and sample induced 

aberrations. Therefore, approaches using an experimentally acquired PSF for single molecule 

localization have been developed, such as PSF correlation4, phase retrieval5,6, or interpolated 

PSFs7–11. The latter approach is especially promising, as it can model any experimental or 

theoretical PSF. However, at the moment, all these methods are either of limited accuracy, lack 

robustness or are rather slow, and the generation of an accurate PSF model is challenging. Thus, 

in contrast to simple Gaussian PSF approximations, experimental PSFs are rarely used for 

SMLM. 
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Experimental PSF models can be generated from a z-stack of beads of high signal to 

noise ratio. This is not trivial, as any imperfections easily lead to artifacts, often seen as 

deformations and stripes in the reconstructed images (Supplementary Fig. 1). Thus, we 

developed a simple tool to generate a robust and accurate PSF model from several bead stacks 

across different field of views, which avoids those artifacts by proper averaging and 

regularization (Supplementary Fig. 1, Online Methods).  

Most importantly, we implemented a robust fitting algorithm for cubic spline (cspline) 

interpolated PSF models. It reaches ultra-fast computational speeds by implementation on the 

graphics processing unit (GPU) (Fig. 1 a) and achieves the theoretical limit in localization 

precision, the Cramér-Rao lower bound (CRLB, Supplementary Fig. 2). Compared to a 

Gaussian PSF model, the spline-interpolated PSF model improved both the localization 

accuracy, as well as the localization precision, on simulated (Supplementary Fig. 3) and 

experimental (Supplementary Fig. 4) data. In addition, it allows for an accurate and precise 

determination of the number of photons per localization, which cannot be accurately recovered 

using a Gaussian PSF approximation (Supplementary Fig. 5). This is an important 

improvement for any kind of ratiometric superresolution imaging, where photon numbers in 

two channels are used to extract e.g. color12, polarization anisotropy13 or z-positions of single 

molecules14. 

The implementation of the fitting algorithm is based on maximum likelihood estimation 

(MLE) for the Gaussian PSF model15, which we extended to cspline-interpolated PSFs. For 

legacy, we also incorporated the standard Gaussian PSF model. Instead of the Newton method, 

we re-implemented the iterative procedure with the Levenberg-Marquardt (L-M) algorithm16 

(Online Methods), which converges more rapidly (Supplementary Fig. 6) and performs more 

robustly (Supplementary Fig. 7). Furthermore, we included the sCMOS noise model17 in our 

MLE fitter (Online Methods), thus enabling the use of increasingly popular sCMOS cameras 

for any PSF-engineering approach in 3D SMLM. Using simulated data, we could demonstrate 

that a fitting bias introduced by pixel-dependent readout noise was faithfully avoided 

(Supplementary Fig. 8).  

Next, we evaluated the speed of our implementation (Fig. 1a). The central processing 

unit (CPU) implementation reaches about 700 fits/s on a standard PC for a 13 × 13 fitting 

window. It is 3 – 30 fold  faster than previous fitters for experimental PSFs9,11 and can be used 

as a backup on computers without a CUDA-enabled GPU. Our GPU implementation is about 

100 times faster than the CPU implementation for all ROI sizes (Supplementary Fig. 9), and 

reaches 1.6 × 105 fits/s on a consumer graphics card (Fig. 1). We further compared the cspline 
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fit with the conventional elliptical Gaussian fit where the asymmetry of the Gaussian PSF is 

used to calculate 𝑧. Our cspline fit is faster than the previous fitter for a Gaussian PSF model 

for the EMCCD camera (Fig. 1a). By proper memory optimization (Online Methods), the 

correction of the readout noise for sCMOS data only decreases the fitting speed by less than 

15% and it is about one order of magnitude faster than the previous GPU implementation 

accounting for the sCMOS noise model17 (Fig. 1a and Supplementary Fig. 9).  

We next validated our cspline fitter on biological data using an experimental PSF model 

generated with the above-mentioned tool. We were able to easily resolve the hollow cylinder 

of immunolabeled microtubules with DNA-PAINT (Fig. 1b-d) and dSTORM (Supplementary 

Fig. 10). Additionally, we could visualize the precise 3D organization of clathrin-coated pits 

(Fig. 1e). Their spherical geometry makes them useful calibration standards to verify the 

accuracy of the z-calibration. To our knowledge, the achieved image quality and 3D resolution 

is unprecedented for PSF engineered 3D SMLM (Fig. 1, Supplementary Fig. 10 and 11) and 

only reached with a much more complex interference-based 4 Pi approach18. 

Most researchers use oil objectives for SMLM, because of their high collection 

efficiency, compatibility with total internal refraction excitation and simple implementation of 

focus stabilization. However, the refractive index mismatch between the glass and the sample 

leads to strong, mostly spherical aberrations when imaging above the coverslip inside the 

sample. These aberrations result in systematic errors in the z-localization, which can be 

substantial even for a moderate imaging depth of a few micrometers (Fig. 1f). We developed a 

simple software tool to correct for these systematic errors. Our approach is to take many z-

stacks of beads immobilized in a layer of gel above the coverslip and fit them with a PSF model 

of choice to obtain the fitted z-position in dependence on the objective position (Online 

Methods, Supplementary Fig. 12). In addition, we extract the absolute z-position of the beads 

above the coverslip by determining the slice in which the fitted z-position is zero. This allows 

us to calculate the difference between the true and the fitted z-position for many objective 

positions which we use to correct the measured z-positions in other measurements that use the 

same PSF model (Online Methods). Using this approach, we could correct for aberration 

induced fitting errors at a depth of 2 µm and fully recover the spherical geometry of clathrin-

coated pits (Fig. 1f). 

Most SMLM is performed using a standard microscope in a 2D configuration without 

any PSF modification. Here, a Gaussian PSF model is often employed and the fitted width of 

the Gaussian is used as an estimate of the z-position to filter out out-of-focus localizations. 

Recently, photometry was used to extract a measure for the fluorophores’ z-positions19, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/172643doi: bioRxiv preprint 

https://doi.org/10.1101/172643
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

showing that even simple 2D unmodified PSFs contain abundant information on the z-position 

of the fluorophore. However, the resolution at the focus has been very low and the symmetry 

of the unmodified PSF prevented distinguishing fluorophores above and below the focus. Thus, 

the focus had to be placed below the sample, restricting the measurement to the vicinity of the 

coverslip. In reality, an experimental unmodified PSF is not completely symmetric, but shows 

subtle differences between the upper and lower half, which can break the degeneracy. Here, we 

reasoned that by fitting with experimentally derived PSF models, we can exploit these 

differences to assign a fluorophore to the correct half of the PSF. To this end, we fit every single 

molecule image two times, once with a z starting parameter above the focus and a second time 

with a z starting parameter below the focus, and select the solution with the maximum likelihood. 

We found that the z-resolution for unmodified PSFs is comparable to that of astigmatic PSFs 

(Fig. 2a). Only close to the focal plane it is decreased, albeit much less than calculated from a 

theoretical PSF model20. 5% of misassignments lead to a faint mirror image (Fig. 2d), which 

for most practical applications is negligible. When we imaged the protein Nup107 in the nuclear 

pore complex, we could easily resolve the nucleoplasmic and cytoplasmic rings, which are 

axially spaced apart by only 53 nm21 (Fig. 2b-d). Thus, our new fitter enables high-resolution 

3D imaging directly on standard microscopes without any 3D optics. 

To summarize, we presented a robust single-molecule fitter for arbitrary PSF models 

using MLE with a noise model for both EMCCD and sCMOS cameras. This allowed us to 

achieve an unprecedented 3D resolution and image quality using engineered astigmatic PSFs 

or unmodified PSFs from a standard microscope. An optimized GPU implementation achieved 

a fitting rate of >105 fits/s, which is two orders of magnitude faster than a single threaded CPU 

implementation. As deformations of the PSF are included in the experimental PSF model, our 

fitter is robust with respect to aberrations, leading to a high accuracy even for objectives with a 

mediocre PSF or imperfect alignment of the microscope. Using a novel approach to correct for 

depth-induced aberrations, we could retain a high 3D resolution even several micrometers 

above the coverslip. The presented framework is not restricted to bead-stack based PSFs, but 

can be used in the same way to obtain and fit a spline-interpolation of an arbitrary analytical or 

phase retrieved PSF model, which can directly take into account aberrations. 

We provide our CPU based C-code and the GPU based CUDA-code as open-source to 

the community (github.com/jries/fit3Dcspline.git), which can be easily incorporated in any 

programming language, and thus will greatly improve speed and accuracy of any single-

molecule fitting software. 
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Figures

 
Figure 1. (a) Performance of our L-M implementation of a single-molecule fitter using cspline-

interpolated experimental PSFs in comparison to a Newton implementation of a Gaussian PSF 

model for EMCCD15 and sCMOS17 cameras. Fits/s were measured on a i7-5930 CPU and a 

GTX1070 consumer graphics card. (b) Microtubules, labeled with a- and b-tubulin primary, 

and DNA-coupled secondary antibodies, and imaged using the DNA-PAINT22 approach. The 

localizations are color coded according to their z-positions. Corresponding localization 

precisions and profiles can be found in Supplementary Fig. 11. (c, d) side-view reconstructions 

along the lines denoted in (b) clearly reveal the hollow, cylinder-shaped structure of the 

immunolabeled microtubules. (e) Clathrin-coated pits, close to the coverslip, immunolabeled 

with Alexa Fluor 647 conjugated antibodies and measured using the dSTORM method23. (f) 
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Clathrin-coated pits on the upper cell membrane, imaged 2 µm above the coverslip using an oil 

objective, show deformations in the side-view reconstructions. After correction of aberration-

induced artifacts the spherical shape of the pits is recovered. Width of the line profiles: 150 nm 

(c 1, d 4, 6), 200 nm (d 2, 5, 7), 30 nm (d 3), 50 nm (e, f). Scale bars: 1 µm (b, e, f) and 100 

nm (c, d, and x-z reconstructions in e and f).  

 

 

 

 

 
Figure 2. The cspline fit extracts accurate 3D positions from a simple 2D dataset with an 

unmodified PSF. (a) Localization precision in x, y and z for an astigmatic 3D and an 

unmodified PSF. Calculated on simulated data with 5000 photons/localization and 10 

background photons/pixel. Lines represent the corresponding CRLB. (b) dSTORM of Nup107-

SNAP labeled with BG-AF647, imaged with a standard microscope without 3D optics, 

overview image. (c) Top view reconstruction of the region denoted in (b). (d) Side view 

reconstruction of the region denoted in (c). The nucleoplasmic and cytoplasmic rings of the 

nuclear pore complex, spaced 53 nm apart, can be easily resolved. Corresponding localization 

precisions and profiles can be found in Supplementary Fig. 11. Scale bars: 1 µm.  
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ONLINE METHODS 
Robust averaging of experimental bead stacks 
Stacks of beads, immobilized on a coverslip, were acquired in a range of ±1000 nm with respect 
to the coverslip. A spacing in z between 10 nm and 50 nm works well. Beads in each stack were 
segmented in a maximum intensity projected image by maximum finding and thresholding. Sub 
regions around each bead location were cropped. Next, we aligned each bead stack in 3D using 
an approach similar to single-particle averaging. To this end, the first bead is registered to the 
average of all bead stacks, the second bead is registered to the first bead and all remaining beads 
are registered to the average of the previously registered beads with sub-pixel accuracy by 3D 
cross-correlation of the central part of the stacks. We scaled up the central part of the cross-
correlation by a factor of 20 by cubic spline interpolation and determined the x, y, and z shifts 
from the position of the maximum24. The bead stacks were shifted using cubic spline 
interpolation. Iteratively, bead stacks which showed a large dissimilarity from the average were 
identified based on the maximum value of the cross-correlation and the mean square error and 
excluded from the average. To eliminate the background, the minimum value of the bead stack 
was subtracted and the amplitude was normalized by the total (summed up) intensity of the 
central slice. We further regularized the bead stack by smoothing it in the z-direction with a 
smoothing B-spline25. 

For astigmatic PSFs, we alternatively provide an option to register the beads in 𝑧 based on 
the elliptical Gaussian fit. To this end, we determined for each bead the z-position where 𝜎$(𝑧) 
and 𝜎'(𝑧) of the PSF are equal. This value was used for 𝑧-registration and 𝑥 and 𝑦 registration 
were performed as described above with a 2D cross-correlation. 

 
Calculation of cspline-interpolated PSFs  
Spline functions are piecewise polynomials for which high order derivatives are continuous at 
the knots, where the pieces connect. Cubic splines are the most commonly used splines, e.g. in 
computer graphics, geometric modeling, etc. Recently, this type of approximation theory has 
also been used for single molecule localization9–11. We implemented the cspline interpolation 
both in terms of cubic splines and cubic B-splines. A B-spline interpolation is generally less 
memory intensive since only one B-spline coefficient is needed in each spline interval. In 
comparison, (𝑑 + 1)- coefficients are required in each spline interval for spline polynomials, 
where 𝑑 is the spline degree and 𝑛 is the dimension. However, our implementation of a 3D fit 
based on cubic splines is about 2.5 times faster than the cubic B-spline form due to the fact that 
cubic splines are more explicit and less calculations are needed to calculate spline values and 
derivatives. Therefore, the software used in this work is based on cubic splines with 64 
coefficients in each voxel of the 3D PSF stack.  

Similar to Ref. 11, the 3D PSF is described by a three dimensional cubic spline for voxel 
(𝑖, 𝑗, 𝑘) as follows: 

𝑓4,5,6 𝑥, 𝑦, 𝑧 = 𝑎4,5,6,9,-,:
𝑥 − 𝑥4
∆𝑥

9 𝑦 − 𝑦5
∆𝑦

- 𝑧 − 𝑧6
∆𝑧

:
		

>

:?@

>

-?@

>

9?@

, 𝑥, 𝑦, 𝑧 ∈ ℜ>, 

where ∆𝑥  and ∆𝑦  is the pixel size of the PSF in the object space in 𝑥  and 𝑦  directions, 
respectively. ∆𝑧 is the step size in the objective space in 𝑧 direction. 𝑥4, 𝑦5 and 𝑧6 are the start 
positions of voxel (𝑖, 𝑗, 𝑘) in 𝑥, 𝑦 and 𝑧 directions, respectively.  
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In order to calculate the cspline coefficients, the 3D PSF stack was firstly built by averaging 
the bead stacks from different fields of view by 3D cross correlation and by regularization, as 
described above. The spline coefficients were built based on the averaged and smoothed 3D 
PSF stack. As 64 cspline coefficients are required to describe each voxel, we up sampled (cubic 
spline interpolation) each voxel 3 times in 𝑥 , 𝑦  and 𝑧  directions, respectively. The 64 up 
sampled coordinates (including boundary of neighboring voxels) were used to calculate the 64 
cspline coefficients.  

 
z-calibration of astigmatic Gaussian PSF models 
Our PSF calibration tool also allows extracting	𝑧-positions using two widely used algorithms: 
a) calculate the z-positions directly from the calibrated 𝜎$(𝑧)  and 𝜎'(𝑧)  returned by the 
elliptical Gaussian fit; b) determine the z-positions by directly fitting the single molecules with 
the calibrated astigmatic Gaussian PSF model26. 

For both calibrations, the bead stacks are fitted with an elliptical Gaussian PSF model and 
shifted in 𝑧 according to their true z-positions where 𝜎$ 𝑧 == 𝜎'(𝑧). The outliers are removed 
based on the root mean error of 𝜎$(𝑧) and 𝜎'(𝑧) with respect to the average curves. 

For algorithm a), we calculate 𝑑𝜎C(𝑧) = 𝜎$ 𝑧 C − 𝜎' 𝑧 C and interpolate the functional 
relationship 𝑧(𝑑𝜎C) by a smoothing cubic B-spline. This B-spline interpolation is then used to 
directly read out 𝑧 from 𝑑𝜎C. 

For algorithm b), 𝜎$(𝑧) and 𝜎'(𝑧) are fitted with a polynomial approximation for the 
astigmatic Gaussian model: 

𝜎$ 𝑧 = 𝜎@$ 1 +
𝑧 − 𝛾
𝑑

C
+ 𝐴$

𝑧 − 𝛾
𝑑

>
+ 𝐵$

𝑧 − 𝛾
𝑑

G
, 

𝜎' 𝑧 = 𝜎@' 1 +
𝑧 − 𝛾
𝑑

C
+ 𝐴'

𝑧 − 𝛾
𝑑

>
+ 𝐵'

𝑧 − 𝛾
𝑑

G
. 

The parameters 𝜎@$, 𝐴$, 𝐵$, 𝜎@', 𝐴', 𝐵', 𝛾 and 𝑑 are input parameters for the Gaussian fitter, 
which directly returns the z-coordinates of the fluorophores. We follow the formula in Ref. 15 
to calculate the derivatives of the parameters. However, the iterative process was re-
implemented using the L-M algorithm. 

 
Newton and Levenberg-Marquat iterative schemes for MLE  
Maximum likelihood estimation is the method of choice for fitting data with Poisson statistics27. 
The objective function for MLE is given by16:  

𝜒mleC = 2 𝜇6 − 𝑥6 − 𝑥6ln(𝜇6 𝑥6)
6,$PQ@6

, 

where 𝜇6 is the expected number of photons in pixel 𝑘 from the model PSF function, 𝑥6 is the 
measured number of photons. By minimizing 𝜒mleC , we obtain the maximum likelihood for the 
Poisson process.  

Methods for nonlinear optimization are usually iterative. For Newton iterative schemes, 
the search direction Δ𝜃4 of each iteration is given by15  
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𝜕C𝜒mleC

𝜕𝜃4C
Δ𝜃4 = −

𝜕𝜒mleC

𝜕𝜃4
, 

where 𝜃4 is the 𝑖-th free fit parameter. However, computing the second derivatives is often quite 
difficult and can be destabilizing when the model fits badly or outlier points are contaminated 
that are unlikely to be compensated28.  

An alternative method is the L-M algorithm. The L-M algorithm is often used for least 
square fitting as it is quick and robust. With relatively simple modifications16, the L-M 
algorithm has also been used to minimize 𝜒mleC . In the L-M algorithm, the second derivatives 
term are neglected and only the first derivatives are used. In the L-M algorithm, the update Δ𝜃4 
is given by 

𝐻4,5 + 𝜆𝐼 Δ𝜃4 = 𝐽5, 
where, 𝐻4,5 is the Hessian matrix without the second partial derivatives term, defined as 𝐻4,5 =

YZP
Y[\

YZP
Y[]

$P
ZP^6  , 𝐽5 is the Jacobian matrix defined as 𝐽5 =

YZP
Y[]

($P_ZP)
ZP6 , 𝜆 is the damping factor, 

𝐼 is a diagonal matrix equal to the diagonal elements of the Hessian matrix. This method is more 
robust since a damping factor is introduced and the second derivatives do not contribute. This 
damping factor is increased (multiplied by 10 in this work) if an iteration step does not decrease 
𝜒mleC  or 𝐻4,5 is not positive definite.  

 
GPU Implementation 
This GPU implementation of the iterative method follows the framework developed for fitting 
a Gaussian PSF model using a GPU15. Unlike previous work for EMCCD and sCMOS noise 
models15,17, where the shared memory was used to store the molecule candidate data and 
readout noise map, we kept the data in the GPU global memory. Each thread is pointed to each 
molecule candidate and performs all the computations for each molecule candidate. No thread 
synchronization is required. 64 threads per block were used. The overall speed is about 1.2 
times (small window size) to 10.6 times (large window size) faster (Supplementary Fig. 9) 
than for the original code where shared memory was employed for the sCMOS noise model. 
We assume that this is due to the compiler optimization where more registers are used and the 
time for copying data from the global to the shared memory is saved. Both, the CPU based C-
code and the GPU based CUDA-code were compiled using Microsoft Visual Studio 2010. The 
software was called via Matlab (Mathworks) mex files. It was run on a personal computer using 
an Intel(R) Core(TM) i7-5930 processor clocked at 3.50 GHz with 64 GB memory. An NVIDIA 
GeForce GTX 1070 graphics card with 8.0 GB memory was used for GPU based computation. 

 
MLE fit using an sCMOS camera noise model  
sCMOS cameras have become more and more attractive for localization microscopy due to 
their fast data acquisition even for large fields of view, low readout noise and relatively low 
price. However, their intrinsic pixel-dependent gain, offset and readout noise can create a 
localization bias, which has to be corrected when localizing the single molecule17.  Gain 𝑔6 and 
offset 𝑜6 in pixel 𝑘 can be taken into account when converting the camera image 𝐼6ADU in analog 
digital units (ADU) into photons: 

𝐼6P = 𝐼6ADU − 𝑜6 /𝑔6. 
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The readout noise, however, has to be taken into account during the fitting in the noise model 
and can be calculated from many dark camera images as the pixel-wise variance. Here, we use 
the same model as proposed by Huang, et al.17 which approximates the normal distributed 
readout noise (𝑣𝑎𝑟6, in units of photoelectrons)  with a Poisson distribution. By adding a pixel-
dependent constant, 𝑣𝑎𝑟6, to the measured photoelectrons, one can expect the new value to 
approximate a Poisson distribution with a mean of 𝑢6 + 𝑣𝑎𝑟6. Here, 𝑢6 is the expected photon 
number in pixel 𝑘 of the PSF model function. Therefore, in comparison to the conventional 
MLE fit for EMCCD data, only one more parameter, 𝑣𝑎𝑟6, is required for sCMOS data. Also 
𝑣𝑎𝑟6 is only kept in the global memory of the GPU. Compared to the EMCCD noise model, 
the speed performance of the algorithm was only reduced by less than 15% by additionally 
accounting for the pixel dependent readout noise (Supplementary Fig. 9).  

 
Correction of depth-induced localization errors 
Local squeezing or expansion in 𝑧 are often observed in the reconstructed images when imaging 
deep in the cell. A common cause are depth-induced aberrations in conjunction with a bead 
calibration on a coverslip, which lead to a mismatch between PSF model and real PSF. 
However, it is a cumbersome procedure to experimentally measure the depth-dependent PSF, 
e.g. using an optical trap29. Therefore, we adopted a different strategy in which we use the 
imperfect PSF model for fitting, determine the fitting errors and correct for them in a post-
processing step. 

To calibrate the magnitude of z-localization errors for a specific PSF model in dependence 
on the imaging depth, we embedded fluorescent beads in a layer of agarose gel above the 
coverslip and acquired z-stacks at many sample positions in a range from 1 µm below to 3 µm 
above the coverslip with a spacing of typically 20 nm to 50 nm. Next, we determined the 
nominal z-position of each bead in the stack from the coverslip. As an estimate for the true z-
position of a bead, we chose the frame in the stack for which the fitter returned a z-position of 
zero. By interpolation, we could achieve this with an accuracy better than the distance of the 
calibration planes. This measure for the z-position of a bead is certainly a good choice for 
astigmatism based 3D SMLM: as depth-induced aberrations are mostly symmetric, they do not 
change the asymmetry of the PSF dramatically. Thus, the focal plane, in which a bead appears 
symmetric is largely independent on the aberrations and thus can be defined as its nominal 
position. For more complex PSFs, this choice is still a good approximation. The position of the 
coverslip was determined from the positions of the lowest beads. 

Each frame in the stack corresponds to a different focal plane. With the nominal z-position 
obtained above, we can determine the z-position of each bead at each frame (focal plane) and 
compared it with the fitted z-position. As we take into account many bead stacks, we can 
determine this z-correction for many combinations of fitted z-positions and focal plane positions 
(Supplementary Fig. 12b). We performed a robust interpolation of these data with a smoothed 
cubic B-spline by iteratively removing outliers with a too large distance from the smoothed 
surface, until no outliers were present any longer.  

To correct fitted z-positions in an SMLM experiment, one needs to determine the 
approximate focal position above the coverslip. This can be achieved for instance by focusing 
first on dyes unspecifically bound to the glass or residual fluorescence on the glass surface, 
before focusing to the area of interest and reading out the difference in objective depth. Once 
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we know the objective depth, the interpolated z-correction function directly returns the z-
correction from the focal plane position and the fitted z-values. 

Supplementary Fig. 12c shows a validation of this approach on beads. The left panel 
shows the fitted z-positions in dependence on their nominal distance from the focal plane, and 
for many beads these are not equal (root mean square (rms) error 148 nm, Pearson correlation 
coefficient c=0.9848). The right panel shows the corrected z-positions, which now show a very 
high correlation with the true relative positions (rms error 18 nm, Pearson correlation coefficient 
c=0.9993). 
This correction for depth-dependent axial distortions complements previous work correcting 
for depth-dependent lateral distortions30. However, when using an experimental PSF, such 
lateral corrections are usually not required, as the PSF model takes into account any asymmetry. 
 
3D Fitting of SMLM data acquired with standard microscopes without 3D optics 
As our code includes fitting with arbitrary PSFs, it is directly applicable on 2D data, acquired 
with an unmodified PSF in a standard microscope. A model for the unmodified PSF can be 
calculated directly from bead stacks, in an anologous way to engineered PSFs. However, the 
unmodified PSF has a high symmetry with respect to the focal plane (Supplementary Figure 
13), making it difficult for an iterative fitting procedure to converge through the focal plane. To 
overcome this problem, we fit  every localization twice: once with a starting parameter for the 
z-position 500 nm above the focal plane, and once with a starting parameter 500 nm below the 
focal plane. The maximum likelihood is then used to select the better fit. As a real PSF is not 
completely symmetric31, this breaks the degeneracy previously encountered when extracting z-
positions in 2D data sets from only a single photometry or PSF size parameter19. 

Due to the rather large size of the calibration bead (100 nm) and small inaccuracies during 
the averaging of many bead stacks, the cspline PSF model is slightly blurred compared to a 
single-molecule PSF. This had no apparent effect on 3D data, but in 2D data it lead to an 
accumulation of fitted localizations at the focal plane. To overcome this problem, we filtered 
the raw images with a Gaussian kernel (standard deviation 𝜎 < 0.5 pixels), thus applying the 
blur in the PSF model to the data. To find the right 𝜎, we fitted a subset of the data with sevaral 
values for 𝜎  = 0, 0.1, …, 0.5 and selected the 𝜎  value for which we found neither an 
accumulation nor a depletion of localizations around the focal plane.  
 
Post processing 
As the positions used above are all based on the objective positions, which differ from the true 
absolute positions due to refractive index mismatch, we further multiply the z-positions with a 
refractive index mismatch factor of 0.751. Then, x, y, and z-positions were corrected for residual 
drift by a custom algorithm based on redundant cross-correlation. Localizations persistent in 
consecutive frames were grouped into one localization, and superresolution images were 
constructed with every localization rendered as a 2D elliptical Gaussian with a width 
proportional to the localization precision. 

 
Sample preparation of clathrin-coated pits in SK-MEL-2 cells  
All samples were imaged on round 24 mm high precision glass coverslips No. 1.5H (117640, 
Marienfeld, Lauda-Königshofen, Germany). Coverslips were cleaned overnight in a 1:1 
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mixture of concentrated HCl and methanol, rinsed with millipore water until neutral, dried and 
UV sterilized in a standard cell culture hood.  

SK-MEL-2 cells (kind gift from David Drubin, described in Ref. 32) were cultured under 
adherent conditions in DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-
12) with GlutaMAX and phenol red (ThermoFisher 10565018) supplemented with 10% [v/v] 
FBS, ZellShield™ (Biochrom AG, Berlin, Germany), and 30 mM HEPES at 37°C, 5% CO2 
and 100% humidity. Cells were fixed using 3% [w/v] paraformaldehyde (PFA) in cytoskeleton 
buffer (CB; 10 mM MES pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM D-glucose, 5 mM MgCl2, 
described in Ref. 33) for 20 minutes. Fixation was stopped by incubation in 0.1% [w/v] NaBH4 
for 7 minutes. The sample was washed with PBS three times, and subsequently permeabilized 
using 0.01% [w/v] digitonin (Sigma-Aldrich, St. Louis, MO, USA) in PBS for 15 minutes. After 
washing twice with PBS, the sample was blocked with 2% [w/v] BSA in PBS for 60 minutes, 
washed again with PBS, and stained for 3-12 hours with anti-clathrin light chain (sc-28276, 
Santa Cruz Biotechnology, Dallas, TX, USA, diluted 1:300) and anti-clathrin heavy chain 
rabbit polyclonal antibodies (ab21679, Abcam, Cambridge, UK, diluted 1:500) in 1% [w/v] 
BSA in PBS. The sample was washed with PBS three times, and incubated with a donkey anti-
rabbit secondary antibody (711-005-152, Jackson ImmunoResarch, West Grove, PA, USA), 
which was previously conjugated with Alexa Fluor 647-NHS at an average degree of labeling 
of 1.5, for 4 hours. Finally, the sample was washed three times with PBS prior to imaging.  

For dSTORM imaging, coverslips were mounted in 500 µL blinking buffer (50 mM Tris 
pH 8, 10 mM NaCl, 10% [w/v] D-glucose, 35 mM 2-mercaptoethylamine (MEA), 500 µg/mL 
GLOX, 40 µg/mL catalase, 2 mM COT).  

 
Sample preparation for imaging of the nuclear pore complex and microtubules 
Wildtype U-2 OS and genome-edited U-2 OS cells that express Nup107-SNAP (as previously 
described in Ref. 34) were cultured under adherent conditions in Dulbecco’s Modified Eagle 
Medium (DMEM, high glucose, w/o phenol red) supplemented with 10% [v/v] FBS, 2 mM L-
glutamine, non-essential amino acids, ZellShield™ (Biochrom AG, Berlin, Germany) at 37°C, 
5% CO2 and 100% humidity. All incubations were carried out at room temperature. For nuclear 
pore staining, the coverslips were rinsed twice with PBS and prefixed with 2.4% [w/v] PFA in 
PBS for 30 seconds. Cells were permeabilized with 0.4% [v/v] Triton X-100 in PBS for 3 
minutes and afterwards fixed with 2.4% [w/v] PFA in PBS for 30 minutes. Subsequently, the 
fixation reaction was quenched by incubation in 100 mM NH4Cl in PBS for 5 minutes. After 
washing twice with PBS, the samples were blocked with Image-iT™ FX Signal Enhancer 
(ThermoFisher Scientific, Waltham, MA, USA) for 30 minutes. The coverslips were incubated 
in staining solution (1 µM benzylguanine Alexa Fluor 647 (S9136S, NEB, Ipswich, MA, USA); 
1 mM DTT; 1% [w/v] BSA; in PBS) for 50 minutes in the dark. After rinsing three times with 
PBS and washing three times with PBS for 5 minutes, the sample was mounted for imaging. 

For microtubule staining, wildtype U-2 OS cells were prefixed for 2 minutes with 0.3% 
[v/v] glutaraldehyde in CB + 0.25% [v/v] Triton X-100 and fixed with 2% [v/v] glutaraldehyde 
in CB for 10 minutes. Fluorescent background was reduced by incubation with 0.1% [w/v] 
NaBH4 in PBS for 7 minutes. After 3 washes with PBS, microtubules were stained using anti 
alpha-tubulin antibody (MS581, NeoMarkers, Fremont, CA, USA) 1:300 in PBS + 2% [w/v] 
BSA for 2 h and anti-mouse Alexa Fluor 647 (A21236, Invitrogen, Carlsbad, CA, USA) 1:300 
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in PBS + 2% [w/v] BSA for 2h. After 3 washes with PBS samples were imaged in a blinking 
buffer as described above, but with pyranose oxidase instead of glucose oxidase.  

For DNA-PAINT imaging, microtubules were labelled with anti alpha-tubulin antibodies 
(MS581, NeoMarkers, and T6074, Sigma-Aldrich, St. Louis, MO, USA) and anti beta-tubulin 
antibody (T5293, Sigma-Aldrich) each 1:300 diluted in PBS with 2% [w/v] BSA, for 2 hours. 
After 3 washes with PBS, samples were incubated with a DNA labelled anti-mouse secondary 
antibody overnight (docking strand sequence: 5’-TT ATA CAT CTA-3’) and imaged after 5 
washes with PBS using 50 pM of complementary Atto-655 labelled DNA imager strand (5’-C 
TAG ATG TAT-3’-Atto655) in PAINT buffer (PBS, 500 mM NaCl, 40 mM Tris, pH 8.0). 

 
Embedding of fluorescent beads in agarose gels for calibration measurements 
We prepared a 1% [w/v] solution of low melting point agarose (A9414, Sigma-Aldrich) in H2O, 
heated it up to completely dissolve the agarose, and let it cool down to ~40 °C. We then 
vigorously vortexed the stock solution of TetraSpeck fluorescent beads (T7279, ThermoFisher 
Scientific), and added 2.5 µL to 400 µL of the agarose solution, and vortexed again. We then 
added a 50 µL drop onto a coverslip. After a few minutes, we mounted the sample in H2O, and 
imaged the ~1 mm thick gel that contained immobilized fluorescent beads throughout. 

 
Microscopy 
SMLM image acquisition was performed at room temperature (24 °C) on a customized 
microscope35 equipped with a high NA oil immersion objective (160x, 1.43-NA oil immersion, 
Leica, Wetzlar, Germany). We employed a laser combiner (LightHub®, Omicron-Laserage 
Laserprodukte, Dudenhofen, Germany) with Luxx 405, 488 and 638, Cobolt 561 lasers. The 
lasers were triggered using a FPGA (Mojo, Embedded Micro, Denver, CO, USA) allowing 
microsecond pulsing control of lasers. After passing through a speckle reducer (LSR-3005-17S-
VIS, Optotune, Dietikon, Switzerland), the laser is then guided through a multimode fiber 
(M105L02S-A, Thorlabs, Newton, NJ, USA). The output of the fiber is first magnified by an 
achromatic lens and then imaged into the sample35. A laser clean-up filter (390/482/563/640 
HC Quad, AHF, Tübingen, Germany) is placed in the beam path to remove fiber generated 
fluorescence. A close-loop focus lock system was implemented using the signal of a near 
infrared laser reflected by the coverslip and its detection by a quadrant photodiode. The focus 
can be stabilized within ±10 nm over several hours36. The fluorescence emission was filtered 
by a bandpass filter (700/100, AHF) and recorded by an EMCCD camera (Evolve512D, 
Photometrics, Tucson, AZ, USA). Typically, we acquire 100,000 – 300,000 frames with 15 ms 
exposure time (100 ms for DNA-PAINT) and laser power densities of ~15 kW/cm2. The pulse 
length of the 405 nm laser is automatically adjusted to retain a constant number of localizations 
per frame.  
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