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Abstract 

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a 

significant proportion of common risk variation. Understanding the genetic factors underlying 

the specific symptoms of these disorders will be crucial for improving diagnosis, intervention 

and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and 

54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all 

cases to controls, of which 41 represented novel findings. Two genome-wide significant loci 

were identified when comparing SCZ to BD and a third was found when directly incorporating 

functional information. Regional joint association identified a genomic region of overlapping 

association in BD and SCZ with disease-independent causal variants indicating a fourth region 

contributing to differences between these disorders. Regional SNP-heritability analyses 

demonstrated that the estimated heritability of BD based on the SCZ GWS regions was 

significantly higher than that based on the average genomic region (91 regions, p = 1.2x10-6) 

while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we 

calculated polygenic risk scores and identified several significant correlations with: 1) SCZ 

subphenotypes: negative symptoms (SCZ, p=3.6x10-6) and manic symptoms (BD, p=2x10-5), 2) 

BD subphenotypes: psychotic features (SCZ p=1.2x10-10, BD p=5.3x10-5) and age of onset (SCZ 

p=7.9x10-4). Finally, we show that psychotic features in BD has significant SNP-heritability 

(h2
snp=0.15, SE=0.06), and a significant genetic correlation with SCZ (rg=0.34) in addition there 

is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those 

with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we 

have identified specific loci pointing to a potential role of 4 genes (DARS2, ARFGEF2, DCAKD 

and GATAD2A) that distinguish between BD and SCZ, providing an opportunity to understand 
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the biology contributing to clinical differences of these disorders. Our results provide the best 

evidence so far of genomic components distinguishing between BD and SCZ that contribute 

directly to specific symptom dimensions. 

 

Introduction 

Bipolar disorder (BD) and schizophrenia (SCZ) are severe psychiatric disorders and among the 

leading causes of disability worldwide1. Both disorders have significant genetic components with 

heritability estimates ranging from 60-80%2. A genetic-epidemiological genetic study 

demonstrated a substantial overlap between these two disorders with a genetic correlation from 

common variation near 0.6-0.7 and high relative risks (RR) among relatives of both BD and SCZ 

patients (RRs for parent/offspring: BD/BD: 6.4, BD/SCZ: 2.4; SCZ/BD: 5.2, SCZ/SCZ: 9.9)3. 

Despite shared genetics and symptomology, the current diagnostic systems4,5 represent BD and 

SCZ as distinct categorical entities differentiated on the basis of their clinical presentation, with 

BD characterized by predominant mood symptoms, mood-congruent delusions and an episodic 

disease course and SCZ considered a prototypical psychotic disorder. Further, premorbid 

cognitive impairment and reduced intelligence are more frequent and severe in SCZ than BD6. 

The genetic contributors to these phenotypic distinctions have yet to be elucidated and could aid 

in understanding the underlying biology of their unique clinical presentation. 

While the shared genetic component is large, studies to date have identified key genetic 

architecture differences between these two disorders. A polygenic risk score created from a case 

only SCZ vs BD genome-wide association study (GWAS) significantly correlated with SCZ vs 

BD diagnosis in an independent sample7, providing evidence that differences between the 

disorders also have a genetic basis. An enrichment of rare, moderate to highly penetrant copy 
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number variants (CNVs) and de novo CNVs are seen in SCZ patients8–12, while, the involvement 

of CNVs in BD is much less clear13. Although the role of de novo single nucleotide variants in 

BD and SCZ has been investigated in only a handful of studies so far, enrichment in pathways 

associated with the postsynaptic density has been reported for SCZ, but not BD14,15. Identifying 

disorder-specific variants or quantifying the contribution of variation to specific symptom 

dimensions remains an open question. For example, previous work by this group has 

demonstrated that SCZ patients with greater manic symptoms had higher polygenic risk for BD7.  

Here, we utilize the largest collection of genotyped samples of BD and SCZ along with 28 

subphenotypes to assess variants and genomic regions that contribute differentially to the 

disorders and to specific symptoms dimensions or subphenotypes within them. 

 

Methods 

Sample Description 

SCZ samples are those analyzed previously16. BD samples are the newest collection from 

Psychiatric Genomics Consortium Bipolar Disorder Working Group (Stahl et al. submitted). To 

ensure independence of the data sets, individuals were excluded until no individual showed a 

relatedness (pihat) value greater than 0.2 to any other individual in the collection, while 

preferentially keeping the case over the control for case-control related pairs. In total 2,181 BD 

cases, 1,604 SCZ cases and 27,308 controls were removed (most of which were previously 

known), leaving 20,129 BD cases 33,426 SCZ cases and 54,065 controls for the final meta-

analysis. 
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For analyses directly comparing BD and SCZ, we matched cases from both phenotypes on 

genotyping platform and ancestry, resulting in 15,270 BD cases versus 23,585 SCZ cases. In 

other words, we were able to match 76% of BD cases and 71% of SCZ cases. 

 

Sub-phenotype description 

BD sub-phenotypes were collected by each study site using a combination of diagnostic 

instruments, case records and participant interviews. Ascertainment details for each study site are 

described in the supplementary data of the PGC Bipolar Working Group paper (Stahl et al. 

submitted). The selection of phenotypes for collection by this group was determined by literature 

searches in order to determine phenotypes with prior evidence for heritability. It was further 

refined dependent on the availability of phenotype data across a range of study sites and the 

consistency by which the phenotypes were defined. Schizophrenia subphenotypes are the same 

as described previously but in a larger proportion of patients7. 

 

Quality Control, Imputation, Association Analysis and Polygenic Risk Scoring 

Quality control and imputation were performed on each of the study cohort datasets (n=81), 

according to standards established by the Psychiatric Genomics Consortium (PGC). The quality 

control parameters for retaining SNPs and subjects were: SNP missingness < 0.05 (before 

sample removal); subject missingness (p < 0.02); autosomal heterozygosity deviation (| Fhet | < 

0.2); SNP missingness < 0.02 (after sample removal); difference in SNP missingness between 

cases and controls < 0.02; and SNP Hardy-Weinberg equilibrium (p > 10−6 in controls or p > 

10−10 in cases). Genotype imputation was performed using the pre-phasing/imputation stepwise 

approach implemented in IMPUTE217 / SHAPEIT18 (chunk size of 3 Mb and default 
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parameters). The imputation reference set consisted of 2,186 phased haplotypes from the full 

1000 Genomes Project dataset (August 2012, 30,069,288 variants, release “v3.macGT1”). After 

imputation, we used the best guess genotypes, for further robust relatedness testing and 

population structure analysis. Here we required very high imputation quality (INFO > 0.8) and 

low missingness (<1%) for further quality control. After linkage disequilibrium (LD) pruning (r2 

< 0.02) and frequency filtering (MAF > 0.05), there were 14,473 autosomal SNPs in the data set. 

Relatedness testing was done with PLINK19 and pairs of subjects with pihat > 0.2 were identified 

and one member of each pair removed at random after preferentially retaining cases over 

controls. Principal component estimation was done with the same collection of autosomal SNPs. 

We tested the first 20 principal components for phenotype association (using logistic regression 

with study indicator variables included as covariates) and evaluated their impact on the genome-

wide test statistics using λ. Thirteen principal components namely 1,2,3,4,5,6,7,8,10,12,15,18,20 

were included in all association analyses (λ=1.45).  Analytical steps were repeated for SCZ vs 

BD analysis. 

We performed four main association analyses, i.e. (i) GWAS of BD and SCZ as a single 

combined case phenotype, as well as disorder-specific GWAS using independent control sets in 

(ii) BD cases vs BD controls and (iii) SCZ cases vs SCZ controls, and (iv) association analysis of 

SCZ cases vs BD cases. 

 

Summary-data-based Mendelian Randomization (SMR)20  

We used SMR as a statistical fine-mapping tool applied to the SCZ vs BD GWAS results to 

identify loci with strong evidence of causality via gene expression. SMR analysis is limited to 

significant (FDR < 0.05) cis SNP-expression quantitative trait loci (eQTLs) with MAF > 0.01. 
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eQTLs passing these thresholds were combined with GWAS results in the SMR test, with 

significance (pSMR) reported at a Bonferroni-corrected threshold for each eQTL data set. The 

eQTL architecture may differ between genes. Through LD, many SNPs can generate significant 

associations with the same gene, but in some instances multiple SNPs may be independently 

associated with the expression of a gene. After identification of significant SNP-expression-trait 

association through the SMR test, a follow-up heterogeneity test aims to prioritize variants by 

excluding regions for which there is conservative evidence for multiple causal loci (pHET < 0.05). 

SMR analyses were conducted using eQTL data from whole peripheral blood21, dorsolateral 

prefrontal cortex generated by the CommonMind Consortium8, and 11 brain sub-regions from 

the GTEx consortium22.  

 

Regional joint GWAS  

Summary statistic Z-scores were calculated for each marker in each of the four main GWAS 

results, using the logistic regression coefficient and its standard error. Rare SNPs (MAF < 0.01), 

and SNPs with a low INFO score (< 0.3) in either dataset were removed. The causal variant 

relationships between SCZ and BD were investigated using the Bayesian method software pw-

gwas (v0.2.1), with quasi-independent regions determined by estimate LD blocks in an analysis 

of European individuals (n=1,702)23,24. Briefly, pw-gwas takes a Bayesian approach to determine 

the probability of five independent models of association. (1) There is no causal variant in BD or 

SCZ; (2) a causal variant in BD, but not SCZ (3); a causal variant in SCZ, but not BD; (4) a 

shared causal variant influencing both BD and SCZ; (5) two causal variants where one influences 

BD, and one influences SCZ. The posterior probability of each model is calculated using model 
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priors, estimated empirically within pw-gwas. Regions were considered to support a particular 

model when the posterior probability of the model was greater than 0.5.  

 

Regional SNP-heritability estimation 

We calculated local SNP-heritability independently for SCZ and BD using the Heritability 

Estimator from Summary Statistics (HESS) software25 for each of the independent regions 

defined above. The sum of these regional estimates is the total SNP-heritability of the trait. To 

calculate local SNP-heritability HESS requires reference LD matrices representative of the 

population from which the GWAS samples were drawn. We utilized the 1000 genomes European 

individuals as the reference panel26. Unlike pw-gwas23, HESS does not assume that only one 

causal variant can be present in each region. 

 

Results 

 

GWAS 

We performed association analysis of BD and SCZ as a combined phenotype, totaling 53,555 

cases (20,129 BD, 33,426 SCZ) and 54,065 controls on 15.5 million dosages imputed from 1000 

genomes phase 326. Logistic regression was performed controlling for 13 components of 

ancestry, study sites and genotyping platform. One hundred and fourteen regions contained at 

least one variant for which the p-value was lower than our genome-wide significance (GWS) 

threshold of p < 5x10-8. Among these 114 loci, 41 had non-overlapping LD regions (r2 > 0.6) 

with the largest and most recently performed single disease GWAS of SCZ16 and BD (Stahl et al. 

submitted). Establishing independent controls (see Methods) allowed us to perform disorder-
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specific GWAS in 20,129 BD cases vs 21,524 BD controls and 33,426 SCZ cases and 32,541 

SCZ controls. Using these results, we compared effect sizes of these 114 loci across each 

disorder independently (Figure 1a) showing that subsets of variants have larger effects in SCZ vs 

BD or vice versa. 

 

To identify loci with divergent effects on BD and SCZ, we performed an association analysis on 

23,585 SCZ cases and 15,270 BD cases matched for shared ancestry and genotyping platform 

(see Methods, Figure 1b Supplementary Figures 1-5, Supplementary Table 1). Two genome-

wide significant loci were identified, the most significant of which was rs56355601 located on 

chromosome 1 at position 173,811,455 within an intron of DARS2. The second most significant 

locus was a four base indel on chromosome 20 at position 47638976 in an intron of ARFGEF2. 

For both variants, the minor allele frequency was higher in BD cases than SCZ cases and 

disease-specific GWAS showed opposite directions of effect. We sought to identify additional 

disease specific loci by incorporating expression information with association results to perform 

fine-mapping and identify novel variants27–30. Here, we applied the summary-data-based 

Mendelian randomization (SMR) method20 (see Methods) utilizing the cis-QTLs derived from 

peripheral blood21, human dorsolateral prefrontal cortex (DLPFC)31 from the Common Mind 

Consortium and 11 brain regions from the GTEx consortium22. We identified one SNP-probe 

combination that surpassed the threshold for genome-wide significance in blood but was also the 

most significant finding in brain. We found that SNP rs4793172 in gene DCAKD is associated 

with SCZ vs BD analysis (pGWAS = 2.8x10-6) and is an eQTL for probe ILMN 1811648 (peQTL = 

2.9x10-168), resulting in pSMR = 4.1x10-6 in blood (peQTL = 2.9x10-25, pSMR = 2.0x10-5 in DLFC, 

and peQTL = 4.6x10-15, pSMR = 6.0x10-5 in GTEx cerebellar hemisphere) (Supplementary Table 2, 
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Supplementary Figure 6) and shows no evidence of heterogeneity (pHET =0.66) which implies 

only a single causal variant in the region. 

 

Regional joint association 

We expanded our efforts to identify disorder specific genomic regions by jointly analyzing 

independent GWAS results from BD and SCZ23. Among 1,702 regions genome-wide (see 

Methods), 223 had a posterior probability of greater than 0.5 of having a causal variant in at least 

one disorder. Of these, 132 best fit the model of a shared causal variant influencing both BD and 

SCZ, 88 were most likely specific to SCZ, 3 demonstrated evidence of two independent variants  

(with one impacting each of the two disorders) and zero were BD specific. Of note, the data 

estimated prior probability of having a BD specific region was 0.1% compared to 15% for SCZ, 

potentially a result of increased power from the larger SCZ sample size.   

The 114 GWS SNPs from the combined BD and SCZ GWAS localized into 99 independent 

regions, of which 78 (79%) were shared with a posterior probability of greater than 0.5. Sixty 

regions had at least one GWS SNP in the independent SCZ GWAS, of which 30 (50%) are 

shared and 8 regions contained a GWS SNP in the independent BD GWAS, of which 6 (75%) 

are shared using the same definition. For the three regions showing evidence for independent 

variants, two had highly non-overlapping association signals in the same region stemming from 

independent variants. The third, on chromosome 19 presented a different scenario where 

association signals were overlapping (Supplementary Figure 7). The most significant variant in 

BD was rs111444407 (chr19:19358207, p = 8.67x10-10) and for SCZ was rs2315283 

(chr19:19480575, p=4.41x10-7). After conditioning on the most significant variant in the other 

disorder, the association signals of the most significant variant in BD and SCZ were largely 
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unchanged (BD rs111444407 =1.3x10-9, SCZ rs2315283 p=6.7x10-5). We further calculated the 

probability of each variant in the region being causal for both BD and SCZ32 and found no 

correlation (r= -0.00016). The most significant variants had the highest posterior probability of 

being causal (SCZ: rs2315283, prob = 0.02, BD: rs111444407, prob = 0.16). Both variants most 

significantly regulate the expression of GATAD2A in brain31 but in opposite directions 

(rs111444407 peQTL = 6x10-15, beta = 0.105; rs2315283 peQTL = 1.5x10-28, beta = -0.11).  

 

Regional SNP-heritability estimation 

Across the genome, regional SNP-heritabilities (h2
snp) were estimated separately for SCZ and 

BD25 and were found to be moderately correlated (r=0.25). We next defined risk regions as those 

containing the most associated SNP for each GWS locus. In total, there were 101 SCZ risk 

regions from the 105 autosomal GWS loci reported previously16 and 29 BD risk regions from 30 

GWS loci reported in a companion paper (Stahl et al. submitted). Ten regions were risk regions 

for both BD and SCZ comprising 33% of BD risk regions and 10% of SCZ risk regions. We 

further stratified regional h2
snp by whether a region was a risk region in one disorder, none or 

both (Figure 2). Since the discovery data for the regions overlapped with the data used for the 

heritability estimation, we expected within-disorder analyses to show significant results. In risk 

regions specific to SCZ (n=91) there was a significant increase in regional h2
snp in SCZ, as 

expected (p = 1.1x10-22), but also in BD (p = 1.2x10-6). In risk regions specific to BD (n=19), 

significantly increased regional h2
snp was observed in BD, as expected (p = 0.0007), but not in 

SCZ (p = 0.89). Risk regions shared by both disorders had significantly higher h2
snp in both 

disorders, as expected (BD p = 5.3x10-5, SCZ p = 0.006), compared to non-risk regions. 

However, we observed a significant increase in BD h2
snp in shared risk regions compared to BD 
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risk regions (BD p = 0.003) but not SCZ h2
snp for shared risk regions compared to SCZ risk 

regions (p = 0.62). Using a less stringent p-value threshold for defining risk regions (p < 5x10-6), 

thereby substantially increasing the number of regions, resulted in similar results (Supplementary 

Figure 8). Seven regions contributed to substantially higher h2
snp in SCZ compared to BD but no 

region showed the inverse pattern. Of these regions, all but one was in the major 

histocompatibility region (MHC), the sole novel region was chr10:104380410-106695047 with 

regional h2
snp= 0.0019 in SCZ and h2

snp=0.00063 in BD.  

 

Polygenic dissection of subphenotypes 

Subphenotypes were collected for a subset of patients in both BD and SCZ (see Methods). For 

SCZ, we had clinical quantitative measurements of manic, depressive, positive and negative 

symptoms generated from factor analysis of multiple instruments as described previously7 but in 

larger sample sizes (n=6908, 6907, 8259, 8355 respectively). For BD, 24 subphenotypes were 

collected among nearly 13,000 cases in distinct categories including comorbidities, clinical 

information such as rapid cycling and psychotic features as well as additional disease course data 

such as age of onset and number of hospitalizations. For each BD and SCZ patient, we calculated 

a polygenic risk score (PRS) using all SNPs, from each of the four main GWAS analyses 

(BD+SCZ, BD, SCZ and SCZvsBD). We then used regression analysis including principal 

components and site to assess the relationship between each subphenotype and the 4 PRS. We 

applied a significance cutoff of p < 0.0004 based on Bonferroni correction for 112 tests. In total, 

we identified 6 significant results after correction (Figure 3, Table 1). For BD PRS we see a 

significant positive correlation between PRS and manic symptoms in SCZ cases as seen 

previously7 (p=2x10-5, t=4.26) and psychotic features in BD patients (p=5.3x10-5, t=4.04). For 
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SCZ PRS, we see a significant increase in PRS for BD cases with versus without psychotic 

features (p=1.2x10-10, t=6.45) and negative symptoms in SCZ patients (p=3.60x10-6, t=4.64). As 

with the SCZ PRS, BD+SCZ PRS is also significantly associated with psychotic features in BD 

(p=7.9x10-13, t=7.17) and negative symptoms in SCZ (p=1.5x10-5, t=4.33). While not surpassing 

conservative correction, the next two most significant results are both indicative of a more severe 

course in BD: increased BD+SCZ PRS with increased numbers of hospitalizations in BD cases 

(p=4.2x10-4, t=3.53) and increased SCZ PRS with earlier onset of BD (p=7.9x10-4, t=-3.36). We 

assessed the role of BD subtype on correlation between SCZ PRS and psychotic features and 

identified significant correlation when restricted to only BD type I cases (BDI: 3,763 with 

psychosis, 2,629 without, p=1.55x10-5, Supplementary Table 3). 

 

For all 8 quantitative subphenotypes and 9 binary subphenotypes having at least 1,000 cases, we 

performed a GWAS within cases to calculate heritability and genetic correlation with BD and 

SCZ. Only two subphenotypes had significant h2
snp estimates using LD-score regression33, 

psychotic features in BD (h2
snp=0.15, SE=0.06) and suicide attempt (h2

snp=0.25, SE=0.1). Only 

psychotic features demonstrated significant genetic correlation with SCZ (rg=0.34, SE=0.13, 

p=0.009). While the genetic correlation demonstrates a genome-wide relationship between 

common variants contributing to SCZ and those contributing to psychotic features in BD cases, 

we sought to assess whether this could be demonstrated among the most significantly associated 

SCZ loci. Of the 105 autosomal genome-wide significant SCZ loci previously published16, 60 

out of 100 variants in our dataset after QC demonstrated the same direction of effect for 

psychotic features in BD (p=0.028, one-sided binomial-test). 

 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173435doi: bioRxiv preprint 

https://doi.org/10.1101/173435
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 

Here we present a genetic dissection of bipolar disorder and schizophrenia from over 100,000 

genotyped subjects. As previously shown34, we found an extensive degree of genetic sharing 

between these two disorders. We identified 114 genome-wide significant loci contributing to 

both disorders of which 37 are novel to this analysis. Despite the high degree of sharing, we 

identified several loci that significantly differentiated between the two disorders, having opposite 

directions of effect, and polygenic components that significantly correlated from one disorder to 

symptoms of the other. 

 

Two GWS loci were identified from the case only SCZ versus BD analysis providing 

opportunities to inform the underlying biological distinctions between BD and SCZ. The most 

significant locus is in DARS2 (coding for the mitochondrial Aspartate-tRNA ligase) which is 

highly expressed in the brain and significantly regulated by the most significant SNP rs56355601 

(peQTL=2.5x10-11). Homozygous mutations in DARS2 are responsible for leukoencephalopathy 

with brainstem and spinal cord involvement and lactate elevation (LBSL), which was 

characterized by neurological symptoms such as psychomotor developmental delay, cerebellar 

ataxia and delayed mental development35. Interestingly, based on methylation analysis from the 

prefrontal cortex of stress models (rats and monkeys) and from peripheral samples (in monkeys 

and human newborns), DARS2, among others, has been suggested as a potential molecular 

marker of early-life stress and vulnerability to psychiatric disorders36. The second most 

significant locus maps to ARFGEF2, which codes for ADP Ribosylation Factor Guanine 

Nucleotide Exchange Factor 2 (also known as BIG2), a protein involved in vesicular trafficking 

from the trans-Golgi network. Mutations in ARFGEF2 have been shown to underlie an 
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autosomal recessive condition characterized by microcephaly and periventricular heterotopia, a 

disorder caused by abnormal neural proliferation and migration37. Although not genome-wide 

significant, the third most significant locus implicates ARNTL (Aryl Hydrocarbon Receptor 

Nuclear Translocator Like), which is a core component of the circadian clock. ARNTL has been 

previously hypothesized for relevance in bipolar disorder,38 although human genetic evidence is 

limited39. Incorporating transcriptional data identified a third genome-wide significant finding in 

DCAKD. The gene codes for Dephospho-CoA Kinase Domain Containing, a member of the 

human postsynaptic density proteome from human neocortex40. In the mouse cortical 

synaptoproteome DCAKD has been found to be among the proteins with the highest changes 

between juvenile postnatal days and adult stage, which suggests a putative role in brain 

development41,42.   

  

We further assessed the contribution of regions of the genome to each disorder through joint 

regional association and regional heritability estimation. These results point to two additional 

loci that may contribute differentially to liability to BD and SCZ. The region on chr19 shows 

overlapping association peaks that are driven by independent causal variants for each disorder. 

Both variants significantly regulate the same gene GATAD2A but in opposite directions. 

GATAD2A is a transcriptional repressor, which is targeted by MBD2 and is involved in 

methylation-dependent gene silencing. The protein is part of the large NuRD (nucleosome 

remodeling and deacetylase) complex, for which also HDAC1/2 are essential components. NurD 

complex proteins have been associated to autism43. Their members, including GATAD2A, display 

preferential expression in fetal brain development43 and in recent work has been implicated in 

SCZ through open chromatin44. Further, p66a (mouse GATAD2A) was recently shown to 
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participate in memory preservation through long-lasting histone modification in hippocampal 

memory-activated neurons45. The region on chromosome 10 appears to be shared across both 

disorders; however, there are additional independent contributing variants to SCZ and not BD, 

indicating another region of interest, although biological interpretation remains unknown. 

 

More broadly, SNP-heritability appears to be consistently shared across regions and 

chromosomes between these two disorders. Regions with GWS loci often explain higher 

proportions of heritability as expected. When looking at the effect on heritability of the presence 

of a GWS locus in the other disorder, we identified a significant increase in BD heritability for 

regions containing a GWS locus for SCZ but no significant increase in SCZ heritability in 

regions having a BD one. This result suggests a directionality to the genetic sharing of these 

disorders with a larger proportion of BD loci being specific to BD. However, we cannot exclude 

that the asymmetry of results may reflect less power of discovery for BD than SCZ. The degree 

to which power and subphenotypes contribute to this result requires further examination. 

 

We have now identified multiple genomic signatures that correlate between one disorder and a 

clinical symptom in the other disorder, demonstrating that there are genetic components 

underlying particular symptom dimensions within these disorders. As previously shown, we find 

a significant positive correlation between PRS of BD and manic symptoms in SCZ. We also 

demonstrate that BD cases with psychotic features carry a significantly higher SCZ PRS than BD 

cases without psychotic features and this result is not driven by schizoaffective BD subtype. 

Further, we show evidence that increased PRS is associated with more severe illness. This is true 

for BD with psychotic features having increased SCZ PRS, earlier onset BD having higher SCZ 
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PRS and cases with higher BD+SCZ PRS having a larger number of hospitalizations. We 

demonstrated that psychotic features within BD is an independently heritable trait and that GWS 

loci for SCZ have a consistent direction of effect in psychotic features in BD, demonstrating the 

potential to study psychosis more directly to identify variants contributing to that symptom 

dimension. All in all, this work illustrates the utility of genetic data to dissect symptom 

heterogeneity among correlated disorders and suggests that further work could potentially aid in 

defining subgroups of patients for more personalized treatment. 
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Figures 

a. 

 

b. 

Figure 1. a) Odds ratios (OR) from independent data sets of BD (blue) and SCZ (red) for each of 

the 114 genome-wide significant variants in the BD and SCZ vs controls GWAS. b) Manhattan 

plot for SCZ vs BD GWAS. 
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Figure 2. Regional SNP-heritability estimates for SCZ and BD stratified by whether the region 

contains the most significant variant in a genome-wide significant locus in BD, SCZ, neither or 

both. 
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Figure 3. Effect size (calculated by dividing regression estimate by standard error) from 

regression analysis including ancestry covariates for each subphenotype and PRS for BD (x-axis) 

and SCZ (y-axis). Point size represents –log10(p-value) with SCZ (red) and BD (blue). 

Numbered subphenotypes are 1) comorbid migraine, 2) panic attacks 3) suicide attempt 4) mixed 

states 5) rapid cycling 6) comorbid eating disorder 7) comorbid OCD 8) year of birth 9) suicide 

ideation 10) panic disorder 11) number of suicide attempts 12) depressive symptoms (SCZ) 13) 
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episodes depressive 14) episodes total 15) positive symptoms (SCZ) 16) irritable mania 17) age 

of onset depression 18) family history 19) episodes mixed mania 20) unipolar mania 21) alcohol 

substance dependence 22) age of onset mania 23) age at interview 24) number of 

hospitalizations. All subphenotypes are in BD except those labeled (SCZ). 

 

Table 1. Polygenic scoring results of all four GWAS phenotypes (BD+SCZ vs controls, BD vs 

controls, SCZ vs controls and SCZ vs BD) and 24 subphenotypes from BD and 4 subphenotypes 

from SCZ, rows without case/control counts are quantitative measures. Significance and effects 

are from regression analysis of subphenotype on PRS including ancestry and site as covariates. 

Effect is the regression estimate divided by the standard error. 

 

Subphenotype N Cases Controls BP+SCZ BP SCZ SCZvsBD BP+SCZ BP SCZ SCZvsBD
psychosis 8131 4632 3499 7.9E-13 5.3E-05 1.2E-10 5.8E-01 7.17 4.04 6.45 0.55
suicide ideation 5399 3801 1598 7.8E-01 1.8E-01 8.7E-01 1.7E-01 -0.28 -1.35 0.16 1.37
family history 4971 2730 2241 6.1E-02 2.8E-01 2.6E-01 6.9E-01 1.87 1.09 1.13 -0.39
irritable mania 4230 2401 1829 3.8E-01 4.1E-01 7.1E-01 1.0E-01 0.88 0.83 0.38 -1.63
rapid cycling 5214 1744 3470 7.9E-03 5.1E-02 5.5E-02 3.1E-01 -2.66 -1.95 -1.92 1.01
alcohol substance dependence 5440 1494 3946 4.5E-01 2.1E-01 2.8E-02 1.7E-01 -0.75 1.25 -2.20 -1.36
panic disorder 4647 863 3784 2.8E-01 1.8E-01 6.3E-01 4.0E-01 -1.07 -1.33 -0.49 0.83
panic attacks 3976 851 3125 1.3E-01 1.1E-02 9.0E-01 4.7E-02 -1.50 -2.56 0.13 1.98
mixed states 4044 826 3218 1.0E-01 4.2E-02 4.8E-01 6.0E-02 -1.64 -2.03 -0.71 1.88
unipolar mania 4863 461 4402 2.4E-02 2.5E-01 4.3E-01 6.1E-01 2.26 1.14 0.78 0.51
comorbid migraine 2652 410 2242 1.3E-02 1.2E-03 7.2E-01 4.4E-01 -2.48 -3.23 -0.36 0.77
comorbid OCD 4215 386 3829 9.7E-01 1.0E-01 3.1E-01 1.9E-01 -0.04 -1.64 1.02 1.30
comorbid eating disorder 3839 331 3508 2.1E-01 6.7E-02 8.1E-01 6.3E-01 -1.25 -1.83 0.24 0.48
age of onset 8610 6.2E-03 9.3E-01 7.9E-04 6.2E-01 -2.74 0.09 -3.36 -0.50
age at interview 8062 5.9E-01 1.9E-02 5.7E-01 4.4E-01 0.54 2.35 -0.57 -0.78
episodes mixed mania 6587 6.3E-01 2.6E-01 5.6E-01 3.2E-01 -0.48 1.13 -0.58 -1.00
suicide attempt 6308 1.2E-01 1.4E-02 5.3E-01 2.8E-01 -1.54 -2.45 -0.63 1.09
episodes depressive 6252 7.4E-03 7.6E-01 1.6E-02 9.6E-01 -2.68 -0.31 -2.42 -0.05
episodes total 5958 1.3E-01 8.9E-01 2.6E-01 3.9E-01 -1.51 -0.14 -1.13 -0.87
year of birth 5317 1.7E-01 1.3E-01 4.0E-02 3.6E-02 1.39 -1.53 2.05 2.10
number of suicide attempts 5015 6.2E-02 1.9E-01 2.7E-01 4.9E-01 -1.87 -1.30 -1.10 -0.69
number of hospitalizations 3944 4.2E-04 1.5E-02 2.5E-02 7.4E-01 3.53 2.43 2.25 -0.33
age of onset depression 3467 2.3E-01 4.0E-01 7.2E-02 2.2E-01 -1.19 0.83 -1.80 1.24
age of onset mania 3395 2.5E-01 6.1E-02 1.9E-02 2.2E-01 -1.14 1.87 -2.35 -1.23
Manic 6908 2.4E-02 2.0E-05 9.9E-01 3.5E-02 2.26 4.26 0.01 -2.10
Depressive 6907 9.0E-01 5.7E-01 7.4E-01 1.8E-01 0.13 -0.57 -0.33 -1.36
Negative 8355 1.5E-05 2.9E-01 3.6E-06 2.1E-02 4.33 1.06 4.64 2.31
Positive 8259 4.1E-01 9.9E-01 3.7E-01 5.1E-01 0.82 0.01 0.89 0.65

Effect

SCZ	

BD

P-value
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