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ABSTRACT 

The loading of small RNA (sRNA) into Argonaute (AGO) complexes is a crucial step in all regulatory 

pathways identified so far in plants that depend on such non-coding sequences. Important 

transcriptional and post-transcriptional silencing mechanisms can be activated depending on the 

specific AGO protein to which sRNA bind. It is known that sRNA-AGO associations are at least partly 

encoded in the sRNA primary structure, but the sequence features that drive this association have not 

been fully explored. Here we train support vector machines (SVM) on sRNA sequencing data 

obtained from AGO-immunoprecipitation experiments to identify features that determine sRNA affinity 

to specific AGOs. Our SVM reveal that AGO affinity is strongly determined by complex k-mers in the 

5’ and 3’ ends of sRNA, in addition to well-known features such as sRNA length and the base 

composition of the first nucleotide.  Moreover, we find that these k-mers tend to overlap known 

transcription factor (TF) binding motifs, thus highlighting a close interplay between TF and sRNA-

mediated transcriptional regulation.  We embedded the learned SVM in a computational pipeline that 

can be used for de novo functional classification of sRNA sequences. This tool, called SAILS, is 

provided as a web portal accessible at http://sails.eu.nu. 

INTRODUCTION 

The small RNA (sRNA) is a class of non-coding RNA with significant roles in developmental biology, 

physiology, pathogen interactions, and more recently in genome stability and transposable element 

control (1). Plants have two major classes of sRNA: the micro-RNA (miRNA), which is processed from 

imperfectly self-folded hairpin precursors derived from miRNA genes (2); and the small-interfering 

RNA (siRNA) that is produced from double-stranded RNA duplexes (3) (Fig. 1). siRNAs can be further 

divided into three major groups: secondary siRNA such as trans-acting (ta)-siRNAs, which are 

promoted by miRNA cleavage of messenger RNA; natural antisense transcript (nat)-siRNAs derived 

from the overlapping regions of antisense transcript pairs naturally present in the genome; and 

heterochromatin-associated (hc)-siRNAs, mostly generated from transposons, heterochromatic and 

repetitive genomic regions and involved in DNA methylation and heterochromatin formation.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2017. ; https://doi.org/10.1101/173575doi: bioRxiv preprint 

https://doi.org/10.1101/173575


Apart from their biogenesis, the mode of action of a given sRNA is tightly related with the Argonaute 

protein to which it can bind (4). Argonautes form the core of all sRNA-guided silencing complexes 

identified so far. Once loaded into Argonaute, sRNA guide the silencing machinery to targets through 

base pairing principles. Argonautes are highly conserved proteins with family members in most 

eukaryotes (4-6). Although there are two main subfamilies of Argonautes in eukaryotes: AGO and 

PIWI; only AGO proteins can be found in plants. Also in plants, AGOs can be grouped into three 

phylogenetic clades with a highly variable number of elements from species to species (5) (Fig. 2). 

Arabidopsis has ten members with specialized or redundant functions among them: AGO1, AGO5 

and AGO10 in the first clade; AGO2, AGO3 and AGO7 form the second clade; and the third clade is 

composed by AGO4, AGO6, AGO8 and AGO9 (4). Members of the first and second clade are 

involved in post-transcriptional silencing (PTS) by inhibiting translation or by promoting messenger 

RNA cleavage, and AGOs in the third clade are chromatin modifiers that induce transcriptional 

silencing (TS) via mechanisms such as DNA methylation (7-9). Understanding the mechanisms that 

determine the loading of sRNA to specific AGOs is essential for predicting their biological function, 

and for identifying their putative silencing targets. 

High throughput sequencing in combination with immunoprecipitation (IP) techniques have made 

possible to determine the sequences of sRNA that are bound to different AGO families. AGO-IP 

experiments have been performed for AGO1, AGO2, AGO4, AGO5, AGO6, AGO7, AGO9 and 

AGO10. The low expression level of AGOs 3 and 8 suggests that they may not be functionally 

relevant. Previous analyses have shown that AGO-sRNA associations are partly determined by the 5’ 

terminus and the length of a sRNA sequence (10, 11). Sequences of approximately 21 nucleotides (nt) 

tend to be involved in PTS, while 24 nt sRNAs are characteristic of TS. Although sequence length has 

been widely used as a way to infer the silencing pathway a given sRNA is most likely implicated in, by 

itself it is an inaccurate predictor since many sequencing products can lack other structural features 

known to enable AGO loading (10-13). Contrary to animals and flies, in plants the 5’ nucleotide is also 

recognized as a strong indicator of AGO sorting. Enrichment for sequences starting with pyrimidines 

are frequent in AGOs from the first clade (AGO1/10: uridine and AGO5: cytosine), adenosine 

dominates the third clade (AGO4/6/9) as well as AGO2 from the second clade. Furthermore, direct 

experimental evidence show that mutating the 5’ nucleotide of a sRNA can redirect its AGO 

destination (14); however, other relevant features, such as sequence motifs encoded by the primary 

structure appear to play a role (7, 15-18). 

While sRNA that participate in PTS have been intensively studied, leading to the discovery of many 

structural features that influence activation, much less is known about AGO-associated hc-sRNA in 

transcriptional silencing. Indeed, most studies that use hc-sRNAs give a strong emphasis to sequence 

length ignoring other important aspects of the sRNA sequence that promote an active role in genomic 

regulation. Studying AGO-bound sRNA is a starting point to fill this gap and to improve our 

understanding on the relationship between the structure and function of sRNA in plants. Here we train 

support vector machines (SVM) on sRNA sequencing data obtained from AGO-IP experiments to 

identify features that determine sRNA affinity to specific AGOs. Our SVM reveal that AGO affinity is 

strongly determined by complex k-mers in the 5’ and 3’ ends of sRNA, in addition to well-known 
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features such as sRNA length and the base composition of the first nucleotide.  Moreover, we find 

that these k-mers tend to overlap known transcription factor (TF) binding motifs, thus highlighting a 

close interplay between TF and sRNA-mediated transcriptional regulation.  We incorporated the 

learned SVM in an online computational pipeline that can be used for de novo sRNA functional 

classification. The classification pipeline is suitable for individual sRNA but also for high-throughput 

sRNA-seq datasets. 

MATERIAL AND METHODS 

Data sets 

Table 1 summarizes the A. thaliana deep-sequencing sRNA libraries used in this study. For SVM 

model training and testing we used one Col-0 wild-type sRNA library as well as eight AGO-IP 

datasets. SVM model validation was afterwards performed on additional AGO-IP data from different 

tissues and from pathogen infected plants, in addition to a set of putative ta-siRNAs from several plant 

species. All sRNA-seq datasets were pre-processed and mapped to the Col-0 A. thaliana reference 

genome. Reads with at least one perfect match were collapsed into unique sRNA sequences and 

single copy sRNAs were removed. sRNA sequences in the genome-wide library that were not present 

in any of the AGO-IP sets, were isolated as a new group named “noAGO”. The “noAGO” set was 

used in the SVM training in combination with AGO-IP data to learn discriminative rules to identify 

sequences with low potential to load to an AGO and therefore with small chance of becoming 

functional sRNAs. 

Learning procedure 

We developed a supervised machine learning approach rooted in the Support Vector Machine (SVM) 

algorithm to learn classifiers capable of determining AGO-sRNA affinity from the sRNA sequences 

alone (Supplementary Notes). Briefly, the complete inference system comprises 3 layers (Figure 3A): 

layer 1 includes a binary SVM model that filters out sequences that do not show strong evidence for 

binding to any of the known plant AGOs, and that therefore are expected to be inactive; layer 2 is 

composed by an ensemble of binary one-vs-one classifiers, each trained to explore the dissimilarities 

in AGO-bound sRNA sequences in a pairwise fashion; finally, layer 3 consists of a voting system that 

assigns a single score to each AGO using the decision values produced in the previous layer. Layers 

2 and 3 are interconnected, since the outputs of the classifiers from the 2nd layer serve as inputs to 

the 3rd layer, and the 3rd layer combines them to provide a more informative result. Layer 1 is 

independent of all other classifiers and can therefore be decoupled if desired. All sRNA sequences 

used in training, testing or validation were transformed into sets of features comprising: 

i. Position specific base composition (PSBC) 

One way to convert a string into a numerical representation is by using flags for the presence 

of a given nucleotide in a determined sequence position. This is equivalent to mapping each 
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sequence position to a four-dimensional feature space that represents each of the four 

possible bases in the DNA alphabet as follows: 

A=〈1,0,0,0〉, C=〈0,1,0,0〉, G=〈0,0,1,0〉, T=〈0,0,0,1〉 

By using such a format, a sequence can be mapped to a feature space of dimensionality 

F=A.L, where A is the number of possibilities in the alphabet of nucleic acids and L expresses 

the dependence on the sequence length. Since the length of the sRNA sequences here 

analysed is not constant but can vary in an interval with an upper right limit here defined as 

being 27 bases, all sRNA must be projected into a space of size 27x4=108. In the case of 

sequences with a length shorter than 27, the extra positions in the feature vector can simply 

remain empty for all nucleotides. Although this approach is a reasonable solution to cope with 

the variation observed in length, it has the disadvantage of introducing noise in the 

representation that increases as the 3’ end of the model sequence is approached. This 

happens because the right most nucleotides in the real sRNA sequences are projected into 

more central positions of the model sequence, blurring 3’ side positional patterns when 

looking across instances with variable size. To compensate for that effect, the same kind of 

projection but starting at the 3’ position of the sRNA instead of the 5’ was additionally 

considered in a feature set here mentioned as PSBC2. 

ii. k-mer composition 

Approaches based on k-mers map the presence or absence of subwords with a given length 

in the sRNA sequence into a feature space that represents all possible k-mers of that length. 

Taking as example k-mers of size 2, there are 42=16 possibilities in the 4 letters universe of 

DNA. The 16 length 2-gram vector for the DNA ‘ACGT’ alphabet would then be: 

〈AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT〉 

As an example, mapping the sequence “ATGCATG” onto this vector space, considering the 

presence or absence of each of the possible k-mers yields: 

〈0,0,0,2,1,0,0,0,0,1,0,0,0,0,2,0〉 

It is important to note that this method focuses on the frequency of patterns rather than their 

position in the sequence. Here k-mers of length 1 to 5 were explored. 

iii. Shannon entropy scores 

Entropy as a measure of information content gives an indication about the degree of 

repetitiveness in a sequence. Among several flavours, Shannon entropy is one of the most 

popular and consists in a score given by: 

H(X)=-∑i p(xi) log2	((xi)) 
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, with X a sequence with length l and p(xi) the frequency of the character at position i . 

iv. Sequence length 

This feature entails the number of nucleotides that compose each sRNA. Although simple, the 

enrichment for certain sizes in specific pathways is a consistent observation. 

The learning methodology applied to layers 1 and 2 was similar. Prior to model training, highly 

correlated features (|Pearson score|>0.75) were removed keeping a single representative randomly 

selected from each correlated set. The remaining ones were normalized in the range between 0 and 1, 

to avoid dominance effects and numerical difficulties in the downstream calculations (19). SVM 

learning with recursive feature elimination (SVM-RFE) (20) was then applied to find models for layers 

1 and 2 with a reduced and more informative feature set. To circumvent computational problems that 

typically arise when standard SVM algorithms are applied to large datasets, a linear kernel was 

employed with a specialized linear solver (21). A 5-fold cross-validation procedure was implemented 

to modulate data variation in each feature selection round and the mean ROC-AUC was calculated to 

assess the quality of the classifiers. Each round, 1/3 of the features with the lowest contribution for the 

discriminative model were eliminated, until 10 features were left. From here on, features were 

excluded one by one until no more features were available. The optimal feature subset for each 

classifier from layers 1 and 2 was determined with an elbow method applied to the curve formed by 

the mean cross-validation ROC-AUC values recorded during the feature selection process. The best 

features were subsequently used to train classifiers applying LIBSVM (22) with radial basis function 

(RBF) kernels to explore non-linear relationships in the data. A cascade scheme was implemented in 

this task to tackle computational problems that otherwise would not allow learning with such large 

datasets (Supplementary Notes, Figure 3B). To avoid biases in learning, training was performed with 

balanced datasets by under-sampling the largest class involved in each binary problem. Sequences 

with the highest read abundance were prioritized, and the remaining spots were occupied by 

instances randomly selected from the remaining pool(s). 

In layer 3, a balanced dataset composed of sRNAs from all 8 AGO groups available was created. 

Decision values were computed for each of the sequences using the classifiers obtained for layer 2, 

and served as input for a 5-fold cross-validation procedure used to train and test the inference 

scheme applied to the 3rd layer. Three strategies were explored to combine the outputs from layer 2: a 

voting system, where the winner is the AGO protein with the largest number of decisions in its favour; 

a weighted rule learned with a linear SVM algorithm; and a weighted rule learned with a non-linear 

SVM using a RBF kernel.  

All SVM hyperparameters in layers 1, 2 and 3, were tuned by means of a grid search. A more detailed 

description of the SVM approach is provided in Supplementary Notes. 
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RESULTS 

Detection of high confidence functional sRNAs 

We explored a series of SVM classifiers to discriminate putatively functional from non-functional sRNA 

based on various sRNA sequence features. As outlined above (see section Material and Methods), 

SVM were trained on sequenced A. thaliana Columbia (Col-0) AGO-IP sRNA libraries in comparison 

with libraries of Col-0 total sRNA. Specific sRNA sequences contained in the AGO-IP sRNA libraries 

were labelled “AGO”, whereas sequences contained in the total library (but not in the AGO-sRNA 

libraries) were labelled “noAGO”.  To minimize sequencing noise, single copy sRNA were removed. 

5’ and 3’ k-mers are important in distinguishing functional from non-functional sRNA 

We first trained separate SVM using either only the Position Specific Base Composition (PSBC or 

PSBC2) of the sRNA sequences, sRNA entropy, sRNA length, or all possible k-mers of size 1 to 5 

nucleotides (see section Learning procedure). SVM trained on the PSBC or the k-mer features 

achieved considerable classification accuracy (~65%), while SVM trained using sRNA length and 

entropy performed less well (accuracy: ~50-60%, Figure 4). We then joint all the features together into 

a single classifier. Starting with 1582 features in total, our selection procedure yielded a final classifier 

containing only 138 features (Figure 4), and achieved a classification accuracy of nearly 80%.  Of the 

138 features, 127 are k-mers and 10 correspond to position specific nucleotides (Figure S2). 

The k-mers of the final classifier were examined in more detail. Since the k-mers had no positional 

requirements for inclusion in the model we asked whether the k-mers retained in the final classifier 

showed any positional bias in the actual sRNA sequences. To do this, each of these k-mers was 

mapped back to the sRNA sequences contained in the “AGO” and the “noAGO” libraries. We found 

that the location of the k-mers was strongly biased toward the 5’ end of sRNA and to some extent also 

toward the 3’ end (Figure 5), with a visible depletion toward the centre of the sRNA sequence.  

When looking to the 5’ end of sequences with meaningful length, we observed that 24 nt sRNA from 

the “AGO” set is dominated by k-mers starting with an adenine (A), and 21 nt sRNA have a mixture of 

adenine, uracil (U) and cytosine (C); plus in both cases there is absence of 5’ guanine (G), see Figure 

S4. This finding is consistent with previous reports showing that the base composition of the first 

nucleotide of a sRNA is important for AGO affinity (1, 4, 14). However, the vast majority (125 out of 

138) of the features consisted of k-mers larger than one nucleotide in length, indicating that more 

complex sequence features guide AGO-sRNA associations. 

5’ and 3’ k-mers are enriched for transcription factor binding motifs 

We further assessed whether the k-mers correspond to known sequence motifs. To that end, we 

performed a motif analysis using the “AGO” and the “noAGO” sets with MEME (23), a computational 

framework for de novo and known motif identification. Then, we focused on k-mers with a size of 5 nt 

and mapped them to the motifs retrieved in the previous step. We found that the majority of k-mers 

(38 of 46) corresponded to segments of known or predicted motifs (Table S6), and noted a significant 
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enrichment for k-mer matches in “AGO” when comparing with “noAGO” (100 and 32, respectively). 

Interestingly, the known motifs mapping k-mers were consistently related to stress response and 

development, which are processes known to be highly regulated by sRNAs (Table S6). 

The TF enrichment was not surprising for 21nt sRNA which are known to act on genic sequences that 

frequently contain TF binding motifs. However, similar TF patterns were also found for 24nt sRNA, 

suggesting a role in gene regulation beyond the well-documented function of 24nt in heterochromatin 

silencing. We identified the 5-mer “AGAAG” as the k-mer that showed stronger enrichment in 24nt 

sequences compared with 21 nt sRNA from the “AGO” set and noted that this subsequence was 

associated with 3 motifs: At1g68670, a G2-like protein involved in phosphate homeostasis; SVP, a 

MADS protein that acts as a floral repressor and functions within the thermosensory pathway; and 

MYB77, which is expressed in response to potassium deprivation and auxin. All these motifs have 

been shown to have higher DNA-binding capacity when the targets are unmethylated (24), revealing a 

possible bridge between 24 nt heterochromatic sRNA, DNA methylation and TF occupancy. 

Classification and validation of specific AGO-sRNA associations 

In the previous section our goal was to build a classifier that can distinguish functional from non-

functional sRNA. We achieved this by training on “AGO” versus “noAGO” sRNA. A related problem is 

to find properties of sRNA that allow to infer their differential loading to specific AGO proteins, as this 

will determine their particular mode of action. To achieve this we trained binary one-vs-one classifiers 

to find sequence features that discriminate between the eight different Col-0 AGO-IP libraries (layer 2, 

Figure 3). The ensemble of one-vs-one classifiers was then subjected to a voting system that assigns 

a single score to each AGO (layer 3, Figure 3). 

We used a 5-fold cross-validation scheme to determine the accuracy of the inference system at three 

levels: 1. AGO: fraction of sequences for which the AGO-bound protein was correctly predicted; 2. 

Clade: fraction of sequences for which the AGO prediction falls within the correct clade; and 3. 

Function: fraction of sequences for which the functional group can be correctly assigned based on the 

AGO prediction, translating predictions for AGO4/6/9 into a potential for involvement in TS, and 

assignments to other AGOs as suggestion of PTS activity. In addition to the 5-fold cross-validation 

scheme we also validated the classification system using 37 additional A. thaliana AGO-IP datasets 

that were never seen during the training phase by the classifier. These validation datasets were 

collected from different tissues and experimental conditions, which allowed us to evaluate the 

robustness of the classifier. 

Classification accuracy of sRNA at AGO, clade and function level 

Results from our 5-fold cross-validation analysis showed that our classifiers achieved very high 

accuracy (Figure 6), indicating that differences between sRNA bound to specific AGOs can indeed be 

detected. Classification accuracy at the level of specific-AGO proteins was around 60% on average, 

ranging from as low as 40% (AGO7) to as high as 85% (AGO5), see Figure 6B. Since AGO proteins 

within a clade are highly homologous and similar in function, it is likely that sRNA-AGO binding is 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2017. ; https://doi.org/10.1101/173575doi: bioRxiv preprint 

https://doi.org/10.1101/173575


promiscuous in nature, which would render the search for discriminative features more challenging. 

Indeed, classification accuracy at the level of the clade and function were considerably higher than at 

the level of specific AGOs (clade accuracy: 85%, function accuracy 93%, see Figure 6A). Moreover, 

the final intra-clade classifiers were generally more complex than inter-clade classifiers, containing on 

average 122 features compared with 75 features, respectively (Figure 6C). Looking to the features 

retained in the final classifiers, intra-clade classifiers contained proportionally more k-mers of length 

larger than 1 nt compared with inter-clade classifiers (86% and 79% of the features in intra-clade and 

inter-clade models, respectively). Hence, factors that govern AGO-specific affinities within a clade 

appear to involve more complex sequence determinants. Similar to the AGO versus noAGO analysis 

presented above (section Detection of high confidence functional sRNAs), we found that the k-mers in 

the final classifiers showed strong positional bias toward the 5’ and 3’ ends of sRNA sequences 

(Supplementary Figure S3). This finding indicates that the same sRNA regions that differentiate 

functional from non-functional sequences also contribute to the binding affinity of sRNA to specific 

AGO proteins. 

To study the nature of the information contained in the k-mers selected by SVM-RFE in more detail, 

we compared them with a motif analysis performed for each AGO library using the MEME suite (23). 

For a matter of simplicity, we focused on 5-mers (Supplementary Notes). We found that nearly 40% of 

the 5-mers were identified as motifs or derived segments (Table 2), often related to known 

transcription factors with roles in development and response to stress. For instance, in models 

involving AGO2 (an AGO linked to ta-siRNAs) we identified 5-mers matching the motif ETT, an 

experimentally validated target of an evolutionarily conserved ta-siRNA denominated tasiR-ARF (25). 

Targeting of ETT by ta-siRNA has been extensively studied and is known to have pleiotropic effects 

on Arabidopsis flower development by interference with the auxin pathway (26). These results thus 

support the conclusion that SVM learning captured sequence information with relevant biological 

meaning. A full overview of k-mers overlapping known or predicted motifs is provided in Table 2. 

Validation of the classification system 

The AGO-sRNA classification framework was validated by testing on 35 AGO-IP libraries never seen 

during the training phase, including material acquired from different tissues and from plants under 

different treatment conditions (Table 1). These diverse datasets allowed us to evaluate the robustness 

of our classification framework. AGO, clade and function-based sensitivity were determined for each 

AGO library, in a procedure similar to the one applied to layer 3. Additionally, validation was also 

performed using two datasets of experimentally confirmed ta-siRNAs. One of these two datasets 

contained ta-siRNA only from A. thaliana while the other datasets comprised ta-siRNA from a large 

collection of different plant species. Since the ta-siRNA databases did not contain a record for the 

specific AGO to which the sequences load, function-based inference was the only adequate 

assessment in this case. Because no dataset of validated hc-siRNA is currently available, the quality 

of function inference for this kind of sRNA could not be measured. 

Validation analysis revealed that our classifiers are relatively sensitive, even across biologically very 

heterogeneous datasets (Figure 7). Sensitivity was particularly high at the level of clade and function 
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(clade: 70% and function: 84.3%), and moderate at the level of specific AGOs (AGO: 42%). 

Interestingly, when looking to the performance obtained for the ta-siRNA dataset, we observed high 

sensitivity values both for the set isolated for Arabidopsis (~80%) and also for the complete plant set 

(~95%). The sensitivity is considerably higher for the second set compared with the first which 

supports the idea that the inference system can identify PTS sRNAs not only from the species used in 

the learning phase but is also extensible to other plant species. 

In conclusion, the inference system demonstrates robustness for tissue and treatment variation and 

can recognize sRNA membership independently of the cellular origin showing good generalization as 

desired for the discovery of new functional units. 

DISCUSSION 

To our knowledge, this is the first time that classifiers were built to infer AGO-sRNA affinity from the 

sRNA sequence alone. Using adequate solvers and learning architectures, SVMs could be applied to 

large genomic datasets and discovered highly discriminative rules, both to distinguish sequences that 

bind to AGOs from other sequencing products, as well to infer AGO-sRNA kinship. In addition to the 

known 5’ nucleotide composition and the sequence length, feature selection revealed the contribution 

of other features, mostly complex k-mers, in defining sRNA preference for certain AGO proteins. The 

question how robust specific sRNA-AGO affinities are to changes in certain sequence properties is an 

interesting topic for future research and can shed light on evolutionary constraints on sRNA-mediated 

transcriptional and post-transcriptional silencing pathways. To answer such questions, additional 

experiments are necessary that can manipulate sRNA sequence in a precise and targeted fashion, for 

example by use of the CRISPR-Cas9 system. Although our inference method appear to be highly 

accurate in predicting the putative function of sRNA sequences, it is important to keep in mind that the 

actual biological activity of a given sRNA is dependent on other factors beyond the AGO loading step, 

such as the degree of complementarity between a sRNA and the target sequence, as well as the 

presence of specific chromatin states at the target locus.  

AGO-sorting information has the potential to decrease the very high number of false positives 

reported by currently available PTS target prediction tools, but the true impact needs to be further 

evaluated. In any case, the computational framework here developed displays a discriminative power 

that makes it suitable for early screens in genome-wide sRNA libraries when looking for candidates 

with the highest chance to have certain functional roles, and when sorting sRNAs by TS and PTS 

classes is needed. The tool is ultimately a more affordable alternative to expensive and laborious 

AGO-IP experiments, since it can get AGO-sRNA profiles from a single genome-wide sequencing 

library. Another interesting application of the framework is to explore if specific sRNA from exogenous 

sources, such as artificially designed sequences or those derived from pathogens, correspond to 

functional plant sRNAs and which silencing pathways they are likely to target in a plant. 

More sophisticated models can be developed using for example the expression patterns of the AGO 

proteins at the moment that the sRNA sequencing experiments take place. This extra information can 

eventually improve the capacity to correctly predict AGO affinity under particular situations, but on the 
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other hand demands additional and more complex inputs, thus limiting the range of applications of the 

sRNA classifiers. 
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Figure 1
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Figure 1. The main endogenous sRNA pathways in plants: miRNA (A), nat-siRNA (B), ta-siRNA (C) and hc-
siRNA (D). DCL: dicer; dsRNA: double-stranded RNA; Pol: RNA polymerase; RDR: RNA-dependent RNA
polymerase.
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Figure 2

Figure 2. Phylogenetic tree for AGO in A. thaliana.
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Figure 3

A

Figure 3. Machine learning architectures used in the current work: (A) architecture of the inference system; (B)
cascade SVM implemented. In the cascade scheme, the data are split into subsets and each one is evaluated
individually for SVs in the first layer. The results are combined two-by-two and entered as training sets for the
next layer. The resulting SVs are tested for global convergence by feeding the result of the last layer into the
first layer, together with the non-SVs. FV: feature vectors; DVi: decision values from classifier i; TDi: Training
data partition i; SVj: SVs produced by optimization j; CLk: cascade layer k.
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Figure 4

Figure 4. Results for the classifiers trained to detect sRNA from the sets AGO vs noAGO: number of features
and performance. Pie charts represent the fraction of features in the complete set (the total number is in the
central black section of the pie) that was eliminated during the correlation analysis (red section in the external
ring) or kept (grey section in the external ring). The remaining features were subjected to selection with SVM-
RFE, of which a subset comprises the optimal features (light blue section). For each initial conglomerate of
features, accuracy was measured: using all features in a set (grey bars) and after feature selection (light blue
bars). The optimized features determined when all feature sets were analysed together was then subjected to
non-linear learning using a cascade SVM scheme (dark blue bar). Each bar plot has on top the standard
deviation for the accuracy calculated from the 5-fold cross-validation procedure.
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Figure 5

Figure 5. Density distribution of k-mers retained in the final classifiers discriminating
between functional (AGO) versus non-functional (noAGO) sRNA (layer 1). The k-mers show
a clear positional bias toward the 5’ and 3’ ends of 21 nt (salmon) and 24 nt (green) sRNA
sequences.
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Figure 6

Figure 6: Details of the AGO‐sorting inference
(layers 2+3). Mean accuracy across the 5‐fold
cross‐validation scheme for the voting system
used in layer 3, measured by: (A) AGO, clade
and function level; (B) separated by individual
AGO sets. The average number of features
composing the intra‐ and inter‐clade
classifiers from layer 2 (C), and the
percentage of those features which are k‐
mers (D). Error bars: standard deviation.
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Figure 7 

Figure 7. Sensitivity for the validation sets. Bar plots show results for AGO (light grey), clade (light blue) and 

function (dark blue) inference. Indication about the use of the data sets during learning, the sampled tissue and 

the AGO with which they were immunoprecipitated is shown by coloured squares under the bars. After these, 

the data sets reference numbers are indicated, following the enumeration in Table 1. 
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Table 1.  Libraries of sRNA used in the current work. TOT: total sRNA; AGO-IP: AGO 

immunoprecipitated; NA: Not Applicable. T: used for training; V: used for validation. 

#Set Type Notes Species Tissue Reference T V 

1 AGO1-IP - A. thaliana   Inflorescence Mi, 2008 Y Y 

2 AGO1-IP - A. thaliana   Flower Zhu, 2011 N Y 

3 AGO1-IP - A. thaliana   Flower Wang, 2011 N Y 

4 AGO1-IP - A. thaliana   Leaf Wang, 2011 N Y 

5 AGO1-IP - A. thaliana   Root Wang, 2011 N Y 

6 AGO1-IP - A. thaliana   Seedling Wang, 2011 N Y 

7 AGO1-IP - A. thaliana   Inflorescence Qi, 2006 N Y 

8 AGO1-IP Pseudomonas syringae infection set A. thaliana   Leaf Zhang, 2011 N Y 

9 AGO2-IP - A. thaliana   Inflorescence Montgomery, 2008 Y Y 

10 AGO2-IP - A. thaliana   Inflorescence Mi, 2008 N Y 

11 AGO2-IP Pseudomonas syringae infection set A. thaliana   Leaf Zhang, 2011 N Y 

12 AGO4-IP - A. thaliana   Inflorescence Mi, 2008 Y Y 

13 AGO4-IP - A. thaliana   Inflorescence Havecker, 2010 N Y 

14 AGO4-IP - A. thaliana   Inflorescence Qi, 2006 N Y 

15 AGO4-IP - A. thaliana   Flower Wang, 2011 N Y 

16 AGO4-IP - A. thaliana   Leaf Wang, 2011 N Y 

17 AGO4-IP - A. thaliana   Root Wang, 2011 N Y 

18 AGO4-IP - A. thaliana   Seedling Wang, 2011 N Y 

19 AGO5-IP - A. thaliana   Inflorescence Mi, 2008 Y Y 

20 AGO6-IP - A. thaliana   Aerial Havecker, 2010 Y Y 

21 AGO7-IP - A. thaliana   Inflorescence Montgomery, 2008 Y Y 

22 AGO9-IP - A. thaliana   Aerial Havecker, 2010 Y Y 

23 AGO10-IP  A. thaliana   Inflorescence Zhu, 2011 Y Y 

24 AGO1-IP TuMV set: HA-AGO1-DAH(Col-0)_Mock_IP A. thaliana   Inflorescence Garcia-Ruiz, 2015 N Y 

25 AGO1-IP TuMV set: HA-AGO1-DAH(Col-0)_TuMV_IP A. thaliana   Inflorescence Garcia-Ruiz, 2015 N Y 

26 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_Mock_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

27 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_TuMV-AS9_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

28 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_Mock_IP A. thaliana   Cauline Garcia-Ruiz, 2015 N Y 

29 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_TuMV-AS9_IP A. thaliana   Cauline Garcia-Ruiz, 2015 N Y 

30 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_Mock_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

31 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_TuMV_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

32 AGO1-IP TuMV set: HA-AGO1-DAH(Col)_Mock_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

33 AGO1-IP TuMV set: HA-AGO1-DAH(Col)_TuMV_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

34 AGO10-IP TuMV set: HA-AGO10-DDH(Col)_Mock_IP A. thaliana   Inflorescence Garcia-Ruiz, 2015 N Y 

35 AGO10-IP TuMV set: HA-AGO10-DDH(Col)_TuMV_IP A. thaliana   Inflorescence Garcia-Ruiz, 2015 N Y 

36 AGO10-IP TuMV set: HA-AGO10-DDH(Col)_Mock_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

37 AGO10-IP TuMV set: HA-AGO10-DDH(Col)_TuMV_IP A. thaliana   Rosette Garcia-Ruiz, 2015 N Y 

38 AGO1-IP TuMV set: HA-AGO1-DAH(ago2-1)_Mock_IP A. thaliana   Cauline Garcia-Ruiz, 2015 N Y 

39 AGO1-IP TuMV set: HA-AGO1-DAH(ago2-1)_TuMV-AS9_IP A. thaliana   Cauline Garcia-Ruiz, 2015 N Y 

40 AGO10-IP TuMV set: HA-AGO10-DAH(ago2-1)_Mock_IP A. thaliana   Cauline Garcia-Ruiz, 2015 N Y 

41 AGO10-IP TuMV set: HA-AGO10-DAH(ago2-1)_TuMV-AS9_IP A. thaliana   Cauline Garcia-Ruiz, 2015 N Y 

42 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_Mock_IP A. thaliana   Inflorescence Garcia-Ruiz, 2015 N Y 

43 AGO2-IP TuMV set: HA-AGO2-DAD(ago2-1)_TuMV_IP A. thaliana   Inflorescence Garcia-Ruiz, 2015 N Y 

44 ta-siRNA All known tasiRNA from Arabidopsis A. thaliana  NA Zhang, 2014 N Y 

45 ta-siRNA All known tasiRNA in plants All plants NA Zhang, 2014 N Y 

46 TOT Total sRNA from WT background A. thaliana Inflorescence Slotkin, 2009 Y N 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2017. ; https://doi.org/10.1101/173575doi: bioRxiv preprint 

https://doi.org/10.1101/173575


Table 2. Number of 5-mers in the final classifiers from layer 2 matching motifs found with MEME in 

each AGO-IP library. The 5-mers were separated by the signal of their weight w in the final classifier. 

# Set a Set b 
# features 
in the final 
classifier 

# 5-mers in the the final classifier 
% 5-mers 

mapping to 
a motif 

Favouring Mapping to a motif 

AGOa 
(w>0) 

AGOb 
(w<0) 

AGOa AGOb 

1 AGO1 AGO2 92 22 30 2 19 40,4 

2 AGO1 AGO4 27 9 3 0 2 16,7 

3 AGO1 AGO5 92 20 18 8 8 42,1 

4 AGO1 AGO6 41 14 6 7 1 40,0 

5 AGO1 AGO7 92 35 16 19 10 56,9 

6 AGO1 AGO9 92 27 17 11 0 25,0 

7 AGO1 AGO10 138 53 24 14 9 29,9 

8 AGO2 AGO4 61 8 6 7 0 50,0 

9 AGO2 AGO5 61 16 14 15 6 70,0 

10 AGO2 AGO6 92 25 16 18 3 51,2 

11 AGO2 AGO7 61 10 5 3 5 53,3 

12 AGO2 AGO9 92 19 18 12 3 40,5 

13 AGO2 AGO10 61 11 8 8 4 63,2 

14 AGO4 AGO5 18 2 1 1 0 33,3 

15 AGO4 AGO6 137 48 17 9 1 15,4 

16 AGO4 AGO7 92 35 16 7 11 35,3 

17 AGO4 AGO9 131 36 17 8 3 20,8 

18 AGO4 AGO10 61 2 6 2 5 87,5 

19 AGO5 AGO6 41 4 5 3 1 44,4 

20 AGO5 AGO7 61 19 16 10 8 51,4 

21 AGO5 AGO9 41 5 5 1 1 20,0 

22 AGO5 AGO10 207 65 42 31 21 48,6 

23 AGO6 AGO7 138 46 41 7 20 31,0 

24 AGO6 AGO9 91 8 18 0 0 0,0 

25 AGO6 AGO10 92 9 16 1 11 48,0 

26 AGO7 AGO9 138 36 43 22 2 30,4 

27 AGO7 AGO10 138 38 49 22 23 51,7 

28 AGO9 AGO10 61 6 5 0 3 27,3 
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