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Abstract 21 

Determining the extent to which Symbiodinium communities in corals are 22 

inherited versus environmentally-acquired is fundamental to understanding 23 

coral resilience and to predicting coral responses to stressors like warming 24 

oceans that disrupt this critical endosymbiosis. We examined the fidelity 25 

with which Symbiodinium communities in the brooding coral Seriatopora 26 

hystrix are vertically transmitted and the extent to which communities are 27 

genetically regulated, by genotyping 60 larvae and their parents (9 maternal 28 

and 45 paternal colonies) using high throughput sequencing of the ITS-2 29 

locus. Unexpectedly, Symbiodinium communities associated with brooded 30 

larvae were distinct from those within parent colonies, including the 31 

presence of types not detected in adults. Bayesian heritability (h2) analysis 32 

revealed that 33% of variability in larval Symbiodinium communities was 33 

genetically controlled. Results highlight flexibility in the establishment of 34 

larval communities and overturn the paradigm that symbiont transmission is 35 

exclusively vertical in brooding corals. Instead, we show that Symbiodinium 36 

transmission in S. hystrix involves a mixed-mode strategy, similar to many 37 

terrestrial invertebrate symbioses. Also, variation in the abundances of 38 

common Symbiodinium types among adult communities suggests that 39 

microhabitat differences influence the structure of in hospite Symbiodinium 40 

communities. Partial genetic regulation coupled with flexibility in the 41 

environmentally-acquired component of larval Symbiodinium communities 42 

implies that corals with vertical transmission, like S. hystrix, may be more 43 

resilient to environmental change than previously thought.   44 

45 
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  46 

Introduction  47 

Symbiosis is fundamental to life on Earth, underpinning the existence of 48 

numerous prokaryotic and eukaryotic species and shaping the physiology 49 

and health of many organisms [1–3]. Microbial symbionts also enable hosts 50 

to expand their niche breadth to survive in environments otherwise unsuited 51 

to their physiology [4]. For example, symbiosis with photosynthetic 52 

dinoflagellates of the genus Symbiodinium has allowed corals to thrive in 53 

oligotrophic tropical seas through the utilization of symbiont 54 

photosynthates.  Similar nutritional facilitation has been described for sap-55 

sucking insects that rely on microbial partners to supplement their diets [5] 56 

and legumes that rely on rhizobia to fix nitrogen [6]. Unlike these well-57 

characterized systems, coral endosymbioses are poorly described at the 58 

Symbiodinium type level during early ontogeny. 59 

 60 

Nutritional symbioses can drive diversification of host and symbiont 61 

lineages [7–9], with eukaryotic symbionts like Symbiodinium having gone 62 

through multiple cycles of diversification and expansion [10]. Such sources 63 

of genetic variation provide new material upon which selection may operate 64 

[11,12], facilitating coevolution between hosts and symbionts or among 65 

symbionts [3,11,13]. Understanding the fidelity (exactness of transfer of 66 

symbionts from parent to offspring) of Symbiodinium community 67 

inheritance is key to determining the degree to which endosymbiotic 68 

Symbiodinium communities have coevolved with their coral hosts and is 69 
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central to coral nutrition and health. Despite this, little is known about 70 

genetic regulation underpinning this symbiosis. 71 

 72 

Symbionts may be acquired from the environment (horizontal transmission) 73 

or passed maternally into eggs or larvae (vertical transmission), with the 74 

latter thought to be the most prevalent mode of transmission in brooding 75 

scleractinian corals [14]. Maternally-derived symbionts may involve the 76 

transmission of one or multiple symbionts (superinfections) and, at least in 77 

well-studied insect vertical symbioses, may strongly impact host 78 

reproduction, behaviour and co-evolution [12,15]. Transmission of insect 79 

symbionts may be exclusively vertical or may occur initially as vertical 80 

transfer followed later by horizontal transmission [9,15–19]. Although 81 

similar mixed-mode transmission has been hypothesized for corals [20], the 82 

absence of experimental data means that it is not yet clear if transmission is 83 

exclusively vertical in brooding corals or if mixed-mode transmission also 84 

occurs in this group. Given recent evidence of differences in the diversity of 85 

symbiont communities transmitted from parents to offspring in two 86 

broadcast spawning corals [21,22], Symbiodinium transmission dynamics 87 

may be as complex as those observed in the Arthropoda. 88 

 89 

In general, symbiont-host specificity is theorized to be much greater when 90 

symbionts are transmitted vertically compared to horizontally [23,24]. In 91 

corals, hosts may form strict associations with only one Symbiodinium type 92 

(and vice versa) or associate with multiple partners, but in general, 93 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173591doi: bioRxiv preprint 

https://doi.org/10.1101/173591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

superinfections of multiple Symbiodinium types and subtypes of varying 94 

abundances are common [20,25–29]. Although maternal transfer of 95 

Symbiodinium and bacteria is less well-characterized in corals than in 96 

terrestrial invertebrates [20–22,30,31], the presence of superinfections raises 97 

the possibility that Symbiodinium dynamics are similar to the mixed-mode 98 

transmission dynamics characteristic of superinfections described in 99 

terrestrial invertebrates like aphids and sharpshooter cicada [9,11]. 100 

However, unlike studies of insect symbiont specificity, no studies have used 101 

high throughput sequencing to examine maternally-transmitted 102 

Symbiodinium communities in brooding corals or the diversity of low 103 

abundance Symbiodinium types in detail. Similarly, the genetic component 104 

of parental contributions to the maturation of coral-Symbiodinium 105 

symbioses remains unquantified. 106 

 107 

It is clear that different Symbiodinium types vary in their impact on 108 

holobiont physiology because of variation in their stress tolerance and 109 

ability to produce and transfer photosynthates to the coral host under 110 

differing light, temperature and nutrient regimes [28,32–36]. Moreover, 111 

environmental stressors may bring about shifts in the dominance of different 112 

Symbiodinium types, in some cases benefiting the host under the altered 113 

conditions [37,38]. The extent of a coral’s flexibility to acquire resilient 114 

types or shuffle symbionts may be genetically regulated, for example by 115 

heritable host immune responses, similar to those that shape symbiont 116 

diversity in Drosophila [39]. Complete inheritance results in complete 117 
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fidelity of symbiont transmission, and, hence, little scope for flexibility in 118 

coral-Symbiodinium symbioses. However, the extent of such potential 119 

regulation of symbiont transmission and its underlying basis are unknown 120 

for corals. 121 

 122 

Increasingly, studies are revealing that the genetic architecture behind traits 123 

and pathologies can be complex [40]. For example, both the diversity and 124 

abundance of microbial symbionts in the human gut are complex traits 125 

under partial genetic control [41–46]. Narrow-sense heritability (h2) is the 126 

parameter typically used to describe the degree to which variability in a trait 127 

is explained by genetic factors. Assuming that the Symbiodinium 128 

community associated with a coral can be represented as a complex trait, 129 

then an h2 value of 1 would imply that variability of the community is 130 

mostly due to host genetics. Conversely, an h2 value estimated at 0 would 131 

imply no genetic basis for variability in the community, thus the community 132 

would not be under selection and could not evolve [no evolvability; 47]. 133 

Although an h2 estimate close to 1 does not necessarily guarantee absolute 134 

genetic determination as a result of gene segregation [48], a large 135 

heritability estimate of the Symbiodinium community would imply that 136 

changes in host genotypes are required for shifts in symbiont communities. 137 

Conversely, changes in the environmental availability of Symbiodinium or 138 

in environmental conditions would have limited influence on in hospite 139 

communities. Understanding the relative contributions that host genetics 140 

versus environmental conditions make to the composition of Symbiodinium 141 
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communities through estimations of h2 will improve the accuracy with 142 

which the potential, direction and speed of changes in Symbiodinium 143 

communities can be predicted.  144 

 145 

To examine Symbiodinium community transfer between adults and their 146 

offspring in a brooding coral and quantify the narrow-sense heritability (h2) 147 

of this trait, we quantified the in hospite Symbiodinium communities of 148 

individual planula larvae and their parents across a spectrum of relatedness 149 

using high throughput sequencing. Relatedness was based on a population 150 

genetic parentage analysis that assigned the likely paternal identity of each 151 

larva. In light of results on heritability and fidelity of symbiont transfer, we 152 

discuss the potential of larvae from brooding corals like S. hystrix to 153 

acclimate to novel environments. 154 

 155 

Results 156 

 157 

Symbiodinium communities differ between parents and brooded larvae  158 

 159 

Symbiodinium communities differed between adults and their larvae in the 160 

brooding coral Seriatopora hystrix (ShA) (Figure 1A, B). Overall, the 161 

composition of Symbiodinium communities was similar among adult corals, 162 

but more variable among larvae. On average, adults contained 29.9±0.6 (SE) 163 

OTUs and larvae had 22±0.4 OTUs. However, the number of unique OTUs 164 

recovered was more than five times greater from larvae than from adults (93 165 
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vs. 17 OTUs, respectively; Figure 1C). Of the 17 unique adult OTUs, ten 166 

belonged to clade C (C1, C15 and other variants), three from clade A (A1 167 

and variants), three from D (including D1 and D1a), and one was a putative 168 

C type (Figure 1B, sequences most highly similar to mixed S. 169 

hystrix/Symbiodinium libraries– see Supporting Information). Unique to 170 

larvae were 17 OTUs from clade C (likely C1 variants), four from clade E, 171 

one from each of A3, B1, and G6, and 69 that were of putative 172 

Symbiodinium identity (Figure 1B). Of the 93 larval-specific OTUs, only the 173 

abundance of C1_OTU136 (type followed by OTU designation) and two 174 

putative clade D OTUs (OTU148 and OTU149) were significantly different 175 

from zero with the Bejamini-Hochberg correction (Figure 1B). Although 176 

raw read counts were low, C1_OTU136 was present in larvae from every 177 

dam but dam 3. 178 

 179 

Figure 1. Nonmetric multidimensional scaling (NMDS) plots, based on a 180 

Bray-Curtis distance matrix of variance-normalized OTU abundances and 181 

sequence similarity between OTUs (pairwise percent identities), illustrating 182 

differences between Symbiodinium communities associated with adult 183 

colonies and larvae of the brooding coral Seriatopora hystrix (ShA). 184 

Ellipses encircling symbols of the corresponding colour represent 95% 185 

probability regions for adults (black) and larval broods (coloured), where 186 

each brood represents all larvae sharing the same dam (colour-coded). A) 187 

Each point represents the Symbiodinium community associated with a 188 

unique coral adult or larval sample. B) Each point represents an OTU 189 
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coloured by type level (see Supporting Information table S5 for full names). 190 

Outlining around each point represents the origin of the OTU, i.e., those 191 

found uniquely in adult (grey outline) or larval (broken grey outline) 192 

samples, or retrieved from both (black outline).  Samples presented in (A) 193 

and OTUs presented in (B) share the same ordination space but were 194 

separated for clarity. C) Venn diagram, illustrating the number of 195 

Symbiodinium OTU’s that were unique to larvae (dark grey text) versus 196 

adults (light grey text). The number of OTUs that were significant after p-197 

adjustments are in parentheses. Ellipses corresponding to dams 3 and 10 are 198 

not represented, as only one larva per dam was collected and sequenced. 199 

 200 

Fifty-one OTUs were shared by adult colonies and planula larvae (43 of 201 

known Symbiodinium taxonomy, 8 putative Symbiodinium, Figure 2B), and 202 

the abundances of 28 of these OTUs differed significantly between the two 203 

groups at the adjusted p-level (Table S4, Supporting Information). Of these 204 

28 OTUs, 23 were from clade C (including C1, C3w, C120 amongst others), 205 

three from clade D (D1, D1a), and two from clade A (A1, A3). Adult 206 

Symbiodinium communities were characterised by up to 1.3 times more D-207 

types (D1_OTU3, D1_OTU597, D1a_OTU6), and A-types (A1_OTU10 208 

and A3_OTU8) compared to larvae (Bejamini-Hochberg corrections, Table 209 

S4). Nine of the 23 C-types had up to 1.7 times significantly higher 210 

abundances in adults (including multiple C1 types, C120/C120a_OTU1, 211 

C1m_OTU5/105, C1v6/C22_OTU228, C15_OTU46, C31_OTU733, and 212 
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C3W_OTU165) and the remaining C1 types had between 1.5 – 2.4 times 213 

significantly lower abundances in adults (Table S4). 214 

 215 

Figure 2. A) Log2 fold change in abundances of Symbiodinium OTU’s that 216 

differed significantly between communities associated with adults versus 217 

larvae of Seriatopora hystrix (ShA). Grey-scale in the bar plot identify 218 

Symbiodinium clades. A positive change indicates the OTU is more 219 

abundant in adults. B) Boxplots showing medians, quartiles and 220 

minimum/maximum values of Symbiodinium community diversity (Leinster 221 

and Cobbold metric) in relation to individual larval relatedness. On the x-222 

axis, 0.25 denotes half sibs, 0.5 full sibs, and 1.0 denotes larvae produced 223 

from selfing. Each larva is coloured by its respective dam. C) Network 224 

analysis of planula larvae showing OTUs present in 50% or more of larvae 225 

per brood. White diamonds correspond to maternal broods, where each 226 

brood sharing the same dam is colour-coded. Line thickness denotes relative 227 

abundance of the Symbiodinium type per brood.  228 

 229 

Larval Symbiodinium communities vary among broods 230 

Planula larvae that shared the same maternal parent generally clustered 231 

when Symbiodinium OTU richness, abundance, and DNA distance between 232 

OTUs were incorporated into analyses (Figure 1A, B). Thirty-one OTUs 233 

(including multiple C1 variants, D1, D1a, A1, and A3) were found in 234 

greater than 50% of larvae per brood and were generally present across all 235 

broods (Figure 2C). However, differences in the abundance of OTUs 236 
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amongst larval broods were detected for symbiont types A1, A3, C1, D1, 237 

and D1a, amongst others. Briefly, larvae from dam 2 displayed higher 238 

abundances of A1 and A3. Larvae from dams 3, 7 and 10 had significantly 239 

less of C1_OTU2, whilst broods from dams 4, 6, 13, 14, and 18 had 240 

significantly different abundances of many C-types, including C120/C120a, 241 

C1, C1v1e, C1m, and C31. The abundances of D1_OTU3 and D1a_OTU6 242 

also varied significantly among larval broods, particularly among those 243 

from dams 2, 4, and 18 vs. dam 13 (for a full description see Supporting 244 

Information and Table S4). 245 

 246 

Heritability 247 

Leinster and Cobbold estimates of Symbiodinium community diversity 248 

varied across the 60 larvae. Notably, variance around median estimates 249 

decreased as relatedness between individual larvae increased (Figure 2B). 250 

The posterior mean heritability of the Symbiodinium community in S. 251 

hystrix (ShA) larvae was 0.43 ± 0.21 SD, with a posterior mode of 0.33 252 

(95% Bayesian credibility interval (BCI) 0.1 - 0.8; Figure S2, Supporting 253 

Information). Adding maternal identity as a random effect did not improve 254 

the model (Deviance Information Criterion < 2 units) but decreased the 255 

posterior mean and mode of heritability slightly (mean = 0.37 ± 0.21 SD and 256 

mode = 0.19; BCI: 0.1 - 0.8). 257 

 258 

Patterns in adult Symbiodinium communities with colony size and spatial 259 

distribution 260 
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Of the 68 Symbiodinium OTUs found in adults, the abundance of only four 261 

C-type OTUs differed significantly among the five coral size classes. Two 262 

C-types (OTU228 and OTU105) had two times greater abundances in the 26 263 

– 32 cm class compared to corals in each of the other four size classes (all 264 

p’s>0.05; Table S4). Similarly, C31_OTU733 was found at significantly 265 

lower abundance in corals from the 8 – 14 cm class compared to the single 266 

colony in the largest size class (p>0.05; Table S4). Colonies from the 8 – 14 267 

cm class also had 1.7 times lower abundances of C1_OTU4 compared to 268 

corals in the 14 – 20 cm class (p>0.05; Table S4). 269 

 270 

The distributions of three of the ten most abundant OTUs in adult corals 271 

varied significantly across the sampling area (p > 0.05; Figure 3), although 272 

not in a consistent manner with distance either along or down the sampling 273 

area. For example, although abundances of Symbiodinium C120/C120a were 274 

greatest in the lower left of the sampling area (Gradient Boosted Model 275 

(GBM): p = 0.019), consistent with a gradual increase in distance down the 276 

reef slope, this pattern was not consistent along the reef slope (GBM: p = 277 

0.00841). The abundance of D1 was significantly higher in the top-right and 278 

lower left side of the sampling area than in other aspects (x and y 279 

interaction, GBM: p = 0.0393). D1a was least abundant in the top left and 280 

inner portion of the sampling area (GBM: p = 0.0405). Finally, although the 281 

variance normalized abundances of all three OTUs were significantly 282 

positively correlated overall (Spearman’s rank correlation rho: 0.42 – 0.77, 283 

all p < 0.004), extremely low abundances of C120/C120a at x-coordinates 284 
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>15 contrast markedly with high abundances of the two D-types in the same 285 

region (Figure 3). 286 

 287 

Figure 3. Spatial patterns in the normalised abundance of three 288 

Symbiodinium OTU’s associated with adult colonies of Seriatopora hystrix 289 

(ShA) that differed significantly in their abundances across a portion of the 290 

16 m x 40 m sampling area at Lizard Island:  A) C120/C120a, B) D1, and 291 

C) D1a. Grey scale represents changes in the normalized abundance of each 292 

OTU across sampling site coordinates. Sizes of the black circles represent 293 

size classes of coral colonies in cm (drawn to scale). 294 

 295 

Discussion  296 

Mixed mode transmission structures larval Symbiodinium communities in a 297 

brooding coral 298 

The availability of a full larval pedigree for Seriatopora hystrix 299 

(ShA) [49] provided a unique opportunity to evaluate the relative 300 

contributions of heritability (i.e., the degree to which variability in a trait is 301 

explained by genetic factors) versus maternal environmental effects (the 302 

effect of larvae sharing a common maternal environment) to the 303 

composition of larval Symbiodinium communities in a brooding coral. Here 304 

we show that Symbiodinium communities associated with larvae of S. 305 

hystrix (ShA) differ from those associated with their parents, providing 306 

experimental evidence that at least a portion of the Symbiodinium 307 

community is horizontally transmitted in a brooding coral. Such paradigm-308 
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changing knowledge on symbiont transmission is important as it realigns the 309 

cnidarian literature with well-characterized models of invertebrate 310 

symbioses. Overall, Symbiodinium communities were found to be 311 

moderately heritable, with only 33% of variability in larval symbiont 312 

communities under genetic regulation. Model selection also showed that 313 

maternal environmental effects did not significantly explain variability in 314 

Symbiodinium communities found among larvae. This result, combined with 315 

the moderate heritability estimate, indicates that similarities in 316 

Symbiodinium communities among larvae of the same maternal brood were 317 

due to gene(s) inherited by these larvae.  318 

 319 

Heritability estimates reveal important information about the 320 

evolvability of a trait, such as the capacity of brooding corals to vary their 321 

symbiont communities in response to changing environmental conditions. If 322 

levels of heritability and genetic variance are low, then responses to natural 323 

or artificial selection (evolvability) would be limited [48]. Conversely, high 324 

heritability and high genetic variance of a trait would enable greater 325 

responses to selection pressures.  On the other hand, highly heritable 326 

symbiont communities with low genotypic variation could be problematic 327 

for vertically-transmitting coral populations if adult communities are 328 

thermally sensitive [50]. We found moderate heritability of Symbiodinium 329 

communities in S. hystrix (ShA). Much greater heritability of the 330 

Symbiodinium community was expected in this vertically-transmitting coral, 331 

especially in comparison with what is known of other important 332 
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reproductive and fitness traits. For example, fertilization success, larval heat 333 

tolerance, protein content, settlement success, settlement substrate 334 

preferences, and juvenile growth and survivorship are all heritable traits 335 

[51–55]. Although the distribution of posteriors was skewed towards values 336 

greater than that of our heritability estimate, it is unlikely that heritability 337 

(i.e., genetic regulation) for this trait will resolve to be much greater with 338 

increased sampling effort (~0.5-0.6, Figure S2). The moderate levels of 339 

genetic regulation (i.e., heritability) found here suggest that S. hystrix (ShA) 340 

has some capacity to respond to changing environmental conditions. Thus, 341 

intervention efforts to facilitate such phenotypic change may be possible 342 

[48]. Given that assisted evolution efforts involving heat-selected 343 

Symbiodinium types show promise in horizontally-transmitting corals [56, 344 

but see 57], it may be that vertically-transmitting, brooding species with 345 

moderate fidelity like S. hystrix (ShA) could also be candidates for assisted 346 

Symbiodinium uptake. 347 

 348 

Combined maternal and environmental uptake produces locally adapted but 349 

flexible Symbiodinium communities  350 

 351 

Detection of 93 larval-specific OTUs in this study demonstrates that 352 

brooding corals like S. hystrix (ShA) have a mixed-mode transmission 353 

strategy, in which dominant symbionts are transmitted vertically but 354 

additional background strains are acquired from environmental sources. 355 

Although adult diversity may have been under-sampled by only sequencing 356 
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one branch of each parental colony, unique larval OTUs were not detected 357 

in any of the 45 adult colonies that were genotyped. Environmental uptake 358 

of novel Symbiodinium by larvae of this species is further supported by the 359 

appreciable amount of variation in the composition of larval Symbiodinium 360 

communities that was not under genetic control, according to our heritability 361 

model. These results validate the hypothesis of potential mixed-mode 362 

transmission initially raised by Byler et al. [20]. However, although 363 

juveniles hosted multiple symbionts in their study, they did not find 364 

differences in diversity between S. pistillata adults and larvae [20]. 365 

Evidence of mixed-mode transmission in S. hystrix (ShA) contradicts 366 

previous assumptions that maternally-transmitted symbiont communities are 367 

transferred to offspring with high fidelity in corals [23–25]. Our findings are 368 

consistent with transmission patterns documented in other symbiotic 369 

systems, such as wild Drosophilia hydei populations [9], Acromyrmex ants 370 

[15,16], and paramecium [17,18], and aligns symbiotic transmission 371 

ecology in corals with terrestrial invertebrate symbioses. Additionally, the 372 

novel diversity found in S. hystrix (ShA) larvae mirrors increased diversity 373 

of Symbiodinium communities detected in eggs of Montipora capitata and 374 

M. digitata compared to adults [21,22] and of bacterial communities in 375 

larvae of the brooding coral Porites astreoides, as well as of various 376 

bacterial communities associated with larvae of sponge species with 377 

supposed vertical transmission [31,58].  378 

 379 
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Mounting evidence for mixed-mode transmission across phyla 380 

suggests that it may be evolutionarily advantageous to compromise between 381 

completely vertically- and horizontally-acquired symbiont communities, as 382 

both strategies provide distinct advantages and disadvantages [14,20]. In S. 383 

hystrix (ShA), vertical transmission of Symbiodinium that are locally 384 

adapted to the parental environment is likely to provide benefits for a 385 

species that is able to self-fertilize [49,59] and has highly localised larval 386 

dispersal (e.g., 60–62]. However, a locally adapted community might 387 

become a liability if environmental conditions change or if larval dispersal 388 

distances are long. Negative effects include deregulation or disruption of 389 

symbiont abundances, which may have harmful physiological effects on the 390 

host, like bleaching in corals [38] or wasp parasitism in insects [9,63]. Thus, 391 

a mixed-mode strategy that results in superinfections of multiple symbionts 392 

can be beneficial [e.g., parasitoid protection in aphid hosts, 9,19] and may 393 

provide more flexibility for adjusting to variable environmental conditions. 394 

Similarly, a mixed mating strategy of selfing and outcrossing in S. hystrix 395 

(ShA), combined with a functional nutritional symbiosis upon release, may 396 

facilitate both local and long-distance dispersal [49]. Our findings confirm 397 

that diversity and flexibility in Symbiodinium transmission are greater than 398 

previously thought, highlighting the potential for evolvability that may 399 

confer greater resilience than coral species with strict vertical transmission. 400 

 401 

Additional to environmental uptake of Symbiodinium during early 402 

ontogeny, processes like competitive exclusion may contribute to 403 
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differences between larval and adult communities in S. hystrix (ShA). 404 

Theory suggests that competition among symbionts may preclude 405 

transmission of an exact replica of the parental symbiont community 406 

because conditions promoting growth for some symbionts may differ 407 

between life stages [11]. The novel symbiont diversity found in S. hystrix 408 

(ShA) larvae may provide benefits similar to those observed in insect 409 

symbioses, for example to provide larvae with the flexibility to host optimal 410 

symbiont types for the changing conditions through ontogeny [20,27].  For 411 

example, Symbiodinium C1_OTU136, which was uniquely identified in 412 

larvae, may represent an adaptive advantage for this early life stage. Clade 413 

C types are taxonomically and physiologically diverse [10,64], and exhibit a 414 

range of tolerances for light and temperature, which are also reflected in 415 

their in hospite distributions across individual adult colonies and species 416 

[65]. Larval settlement and early juvenile survival are generally highest in 417 

cryptic, low-light areas that offer protection from predation [66,67]. Given 418 

that optimal settlement environments differ substantially from light 419 

environments experienced by adults, potentially by as much as 10-fold [67], 420 

it is possible that variation in Symbiodinium communities between larvae 421 

and adults observed here relates to different selective pressures associated 422 

with differing light environments [68–70]. Other potentially numerous, 423 

uncharacterized differences between larval and adult microhabitats may also 424 

contribute to differences in selective pressures between life stages. The 425 

potential ecological roles for the larval-specific OTUs recorded here are 426 

unknown. Indeed, it is possible that they represent non-symbiotic, free-427 
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living types [71] that may have attached to the exterior of the larvae 428 

following release or that may have entered brooded larvae without engaging 429 

in symbiosis. Further work is needed to determine how many of these OTUs 430 

represent physiologically important versus transient Symbiodinium.  431 

 432 

Potential mechanisms shaping larval Symbiodinium communities 433 

 434 

The immune system is an obvious mechanism by which the host 435 

could exert control over the symbiotic community by regulating the 436 

establishment of individual Symbiodinium types [72] or of either whole 437 

clades or functional units (i.e., clades or types with similar metabolic roles) 438 

[44]. The symbioses of Wolbachia and Spiroplasma bacteria among 439 

Drosophila and lepidopteran genera, for example, are highly specific and 440 

exclude other bacterial lineages through a dynamic and mature immune 441 

response, to the extent that specific Drosophila species host novel and 442 

specific Wolbachia and/or Spiroplasma strains [12,39]. Mechanisms of 443 

immunity that could be transmitted through inheritance of parental genes 444 

include components of both the innate and adaptive immune response, 445 

including some that have been implicated in shaping invertebrate symbiont 446 

communities, such as T-cells, Nod2, defensins, and antimicrobial peptides 447 

[as reviewed in 73,74]. These mechanisms have been documented during 448 

Symbiodinium establishment in corals [72,75,76] and observed in the 449 

Hydra/bacteria symbiosis [73,77].  450 

 451 
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Conversely, the greater variation and diversity found in larval 452 

compared to adult Symbiodinium communities may be a function of an 453 

immature immune response that is not yet able to differentiate appropriate 454 

Symbiodinium types, rather than an adaptive response. As the coral immune 455 

system matures over time [78,79], it is possible that a winnowing process 456 

eliminates symbionts that are not physiologically beneficial to the coral host 457 

[20,27]. If true, then the ubiquitous presence of Symbiodinium C1_OTU136 458 

in larvae may be a consequence of an opportunistic Symbiodinium type 459 

taking advantage of immature host immunity. Further work is needed to 460 

identify the role that the immune response has in shaping Symbiodinium 461 

communities; in particular what (if any) immune-related genes are being 462 

transmitted from parents to offspring and whether novel symbionts are a 463 

function of an under-developed immune response. 464 

 465 

Winnowing and microhabitat variation may shape adult Symbiodinium 466 

communities 467 

 468 

The disparate Symbiodinium communities in larvae versus adults 469 

found here further indicate that the re-shaping of the Symbiodinium 470 

community through ontogeny is an important developmental process in 471 

corals. Ontogenetic variability in microbial communities (both 472 

Symbiodinium and bacteria) is common in both vertically- and horizontally-473 

transmitting cnidarian species [20,21,26,27,29–31,80–84]. The low level of 474 

variation in Symbiodinium communities associated with corals ranging in 475 
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diameter from 8 cm to >30 cm [3-10 years; 85] suggests that the end of the 476 

winnowing process likely occurs earlier in the development of the brooding 477 

coral S. hystrix (ShA)(i.e., before 3 years) than in broadcast-spawning corals 478 

[~3.5 years; 26,27]. Although evidence for switching of symbiont 479 

communities in adults corals exists [86], the pre-winnowing period may be 480 

the most flexible time for hosts to associate with a diversity of microbes. 481 

Therefore, identifying at what stage winnowing occurs in brooding corals 482 

will provide crucial insights into when the flexibility to associate with 483 

environmentally-acquired and potentially stress-tolerant types diminishes 484 

and specialisation of the Symbiodinium community begins. 485 

 486 

Spatial patterns in the abundances of Symbiodinium C120, D1, and 487 

D1a in adult corals were not consistent along or down the reef slope at 488 

Lizard Island, but may reflect variable temperature and light regimes at the 489 

microhabitat level that interact with differing photo-physiologies among 490 

symbiont types [87,88]. Variation in benthic light regimes at cm-level scales 491 

down the vertical faces of individual colonies and variation in irradiance 492 

within coral tissues have been shown to drive symbiont communities in 493 

other coral species [69,70,89,90]. Thus differences at the meter-level scales 494 

found in this study could be important for structuring in hospite 495 

Symbiodinium diversity, and may be partly responsible for the variability 496 

found at the level of individual larvae and broods. These small scale 497 

differences in symbiont abundances within adults may subsequently  498 

influence variability in Symbiodinium types among larvae. However, further 499 
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work is needed to understand how fine-scale environmental variables impact 500 

Symbiodinium presence and abundance at the type and OTU level in this 501 

species.  502 

 503 

Conclusion 504 

Based on novel heritability and paternity analyses, we show that 505 

Symbiodinium communities associated with the brooding coral S. hystrix 506 

(ShA) are only partially genetically regulated by their host and that larvae 507 

retain the flexibility to associate with novel symbionts across generations. 508 

Unexpectedly, our results reveal a mixed-mode transmission strategy for 509 

establishing Symbiodinium communities in larvae of a brooding coral, based 510 

on demonstrations that novel and unique Symbiodinium types are found in 511 

brooded larvae but not in adults. Importantly, this information aligns 512 

symbiosis transmission ecology in corals with well-known terrestrial 513 

invertebrate symbioses that typically exhibit mixed-mode transmission 514 

strategies. Advances in the understanding of heritable genetic mechanisms 515 

quantified here provide important insights into how Symbiodinium 516 

communities may be targeted for intervention strategies to increase reef 517 

resilience.  518 

 519 

Materials and Methods 520 

Study species and sampling design 521 

The common, hermaphroditic coral Seriatopora hystrix broods sexually-522 

produced larvae following internal fertilization of eggs by sperm from 523 
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surrounding colonies [49,91]. DNA extracts of planula larvae for the present 524 

study were selected from samples that were collected in an earlier study to 525 

assess sperm dispersal distances and larval parentage of a cryptic species 526 

within the S. hystrix species complex, specified as S. hystrix (ShA) [49,92]. 527 

In Warner et al.’s study, colonies were tagged and sampled for molecular 528 

analyses within a 16 m x 16 m sampling area, with additional colonies 529 

sampled from two adjacent transects (totalling 16 m x 40 m area) in the 530 

Lizard Island lagoon [S14°41.248, E145°26.606; 49,92].  Microsatellite 531 

genotypes and paternity assigned to individual larvae in this earlier study 532 

[49] enabled us to examine the effect of both maternal and paternal identity 533 

on larval Symbiodinium communities across a full pedigree of larval 534 

relatedness. Hence, our study included full-sib and half-sib larvae, and four 535 

individuals produced by selfing (further details in Supporting information 536 

and Table S1). 537 

 538 

Symbiodinium community genotyping 539 

Symbiodinium communities of adults and larvae were quantified with 540 

amplicon sequencing of the ITS-2 locus using the same DNA extractions 541 

that had been used to assign microsatellite genotypes and paternity in 542 

Warner et al. (2016). Nine maternal and 45 assigned paternal colonies 543 

(which included the nine maternal colonies), plus all larvae whose paternity 544 

was designated with a confidence level of Very High, High, or Medium by 545 

Warner et al. (2016) (n=60 larvae) were sequenced with the primers 546 

ITS2alg-F and ITS2alg-R [93] using paired-end Illumina Miseq technology. 547 
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Library preparation and sequencing were performed at the University of 548 

Texas at Austin’s Genomics Sequencing and Analysis Facility (USA) using 549 

their standard protocols, including Bioanalyzer (Agilent)-based DNA 550 

standardization and pooled triplicate PCR before library preparation. 551 

 552 

Raw reads (total = 6,875,177) were analysed using the USEARCH and 553 

UPARSE pipelines [v.7; 94], as outlined in Quigley et al. [95; further details 554 

in Supporting Information]. Because there is currently no single copy 555 

marker for Symbiodinium genotyping [96], the ITS-2 marker was selected 556 

for the broadest comparisons to the vast literature that has used this marker 557 

to describe Symbiodinium diversity, including some using next generation 558 

sequencing (e.g., [22,95,97–100]. Additional steps were taken to assess the 559 

presence and impact of intragenomic variants (further explained below). 560 

Briefly, reads were filtered, clustered into OTUs at 97% similarity, 561 

annotated with NCBI nt database and Symbiodinium-specific searches 562 

(further details in Supporting Information Table S2). Using these methods, 563 

the majority of the OTUs were re-assigned to a clade/type level, leaving 564 

only 0.03% of cleaned reads (1459 reads, 78 OTUs) that could not be 565 

classified, and which may represent new Symbiodinium types (Table S3, 566 

Figure S1, Supporting Information).  567 

 568 

To account for variable read-depth across all samples, sample reads were 569 

normalized using ‘DESeq2’ and ‘Phyloseq’ implemented in R [101–103]. 570 

Nonmetric multidimensional scaling (NMDS) was performed and plotted 571 
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using the normalized counts matrix using ‘Phyloseq’, ‘vegan’, and ‘ggplot’ 572 

[104,105]. Genetic distances between OTUs were calculated in ‘Ape’ [106]. 573 

Statistical testing of variation in OTU abundance was performed on raw 574 

reads in ‘DESeq2’, which incorporates variance normalization of OTU 575 

abundance, and interpreted using the Bejamini-Hochberg correction for 576 

multiple-inferences of p-adjusted alpha at 0.05. ‘DESeq2’ outputs are 577 

expressed in multiplicative (log2 fold) terms between or among treatments 578 

[107]. Network analysis on planula larvae was performed using the ‘igraph’ 579 

package [108] and custom scripts from [109].  580 

 581 

Estimating the diversity and heritability of Symbiodinium communities  582 

To describe the Symbiodinium community in coral samples, we used a 583 

diversity measure (qDZ
ij(p)) that incorporates OTU richness, evenness and 584 

sequence similarity [110]. Sequence similarity was calculated using 585 

pairwise percent similarities between OTU sequences using the ‘Ape’ 586 

package with a “raw” model of molecular evolution. Heritability of 587 

Symbiodinium diversity associated with the 60 larvae was calculated using 588 

the package ‘MCMCglmm’ [111] utilizing the diversity metrics described 589 

above, where the coefficient of relatedness between individuals was set as a 590 

random effect. Models were run with 1.5 x 106 iterations, a thinning of 50, 591 

and burn-in of 10% of the total iterations. A non-informative flat prior 592 

specification was used following an inverse gamma distribution [112]. 593 

Assumptions of chain mixing, normality of posterior distributions, and 594 

autocorrelation were met. The posterior heritability was calculated by 595 
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dividing the model variance attributed to relatedness by the sum of additive 596 

and residual variance. Deviance Information Criterion was used to test if 597 

adding a maternal random effect had a statistically significant effect on 598 

heritability estimates.  599 

 600 

Multiple ITS-2 copies and intragenomic variation 601 

Intragenomic variation within and between Symbiodinium types makes 602 

classifying type-level diversity in Symbiodinium based on sequence data 603 

difficult [99,113–115]. However, comparisons between single-cell and next-604 

generation sequencing suggests that clustering across samples at 97% 605 

similarity sufficiently collapses intragenomic variants to the type level [99], 606 

as has been used in this study. Furthermore, a recent study suggests that 607 

clustering across samples at 97% identity underestimates diversity instead of 608 

overestimating it [109]. Intragenomic variation and generation of false-609 

positives is therefore substantially minimized by using across-sample 610 

clustering at 97% similarity, as we have employed. Single cell sequencing is 611 

currently financially and logistically outside the scope of studies that 612 

examine communities of hundreds of different Symbiodinium types (as with 613 

coral juveniles), with a majority of these types not yet existing in culture. It 614 

is questionable if microsatellite flanking regions provide superior taxonomic 615 

resolution [116], and as no known single-copy marker exists, using other 616 

markers in tandem with ITS-2 will only result in data representing multiple, 617 

multi-copy markers. We addressed intragenomic variation by clustering 618 

across samples at 97% similarity and also provided two additional analyses 619 
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to test for their presence and potential impact on the heritability estimate; 620 

and both confirm the robust nature of our conclusions in regards to this 621 

issue. Overall, we undertook a three-step approach, as outlined in [95], to 622 

assess if multiple copies and intragenomic variation of ITS-2 genes could 623 

potentially bias abundance and heritability estimates across Symbiodinium 624 

types after clustering at 97% identity. Briefly, OTUs were first divided by 625 

clade and inspected for co-occurrence across samples using the tree function 626 

in ‘Phyloseq’ and grouped into subsets of co-occurring OTUs. Secondly, 627 

OTUs that increased proportionally and with high percent pairwise 628 

similarity were inspected. Finally, pairwise percent identities were 629 

calculated for these latter subsets of OTUs using the package ‘Ape’ [106], 630 

and correlations of variance-normalized abundances were calculated for 631 

pairs that had greater than 85% similarity with the function ggpairs in the 632 

package ‘GGally’ [104]. The diversity metric was calculated taking into 633 

account possible intragenomic variation by pooling the raw abundances of 634 

potential intragenomic variants (OTUs: 8/10, 12/22/24, 28/223, 3/6, 635 

588/848), and heritability was calculated using the parameters described 636 

above. As we found little evidence of intragenomic variation amongst 637 

OTUs, these results and their impact on heritability estimates are only 638 

discussed in the Supporting Information. 639 

 640 

Colony size and spatial distribution of adult S. hystrix (ShA) colonies 641 

To determine if Symbiodinium communities varied with colony size (as a 642 

proxy for colony age), adult colonies were divided into five size classes 643 
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based on their mean diameter [49]: < 8 cm (n = 1 colony), 8 – < 14 cm (n = 644 

19), 14 – < 20 cm (n = 13), 20 –  < 26 cm (n = 11), and 26 – 32 cm (n = 1). 645 

Differential abundance testing of Symbiodinium OTUs was among size 646 

classes was performed as for larval communities. 647 

 648 

Sitepainter [117] and Inkscape [118] were used to test for spatial patterns in 649 

the distribution of Symbiodinium OTUs associated with the 45 adult 650 

colonies of S. hystrix (ShA) that were genotyped across the 16 m x 40 m 651 

sampling area. Gradient Boosted Models and linear models were run in the 652 

package ‘gbm’ [119] to examine spatial distributions of the ten most 653 

abundant OTUs. Linear models were checked for assumptions of linearity, 654 

normality, and homogeneity of variance. Square-root transformations were 655 

used to correct for issues of normality or heterogeneity. Latitude and 656 

longitude coordinates were centered before fitting models. The package 657 

‘Spatstat’ [120] was used to visualize spatial variability in abundances of the 658 

three most significantly heterogeneous OTUs across the sampling area 659 

(OTUs: 1, 3, and 6). Spearman’s Rho rank correlation coefficients were 660 

calculated to test for competitive exclusion amongst the three OTUs that 661 

varied significantly across the sampling area. Pairwise p-values were 662 

generated for all OTU comparisons using the base ‘stats’ package in R.  663 

 664 
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