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Abstract Cells process extra-cellular signals with multiple layers of complex biological networks.

Due to the stochastic nature of the networks, the signals become significantly noisy within the cells

and in addition, due to the nonlinear nature of the networks, the signals become distorted, shifted,

and (de-)amplified. Such nonlinear signal processing can lead to non-trivial cellular phenotypes such

as cell cycles, di↵erentiation, cell-to-cell communication, and homeostasis. These nonlinear pheno-

types, when observed at the cell population levels, can be quite di↵erent from the single-cell level

observation. As one of the underlying mechanisms behind this di↵erence, we report the interplay

between nonlinearity and stochasticity in genetic regulation. Here we show that nonlinear genetic

regulation, characterized at the cellular population level, can be a↵ected by cell-to-cell variability

in the regulatory factor concentrations. The observed genetic regulation at the cell population is

shown to be significantly dependent on the upstream DNA sequences of the regulator, in particular,

5’ untranslated region. This indicates that genetic regulation observed at the cell population level

can be significantly dependent on its genetic context, and that its characterization needs a careful

attention on noise propagation.

One Sentence Summary Genetic regulation observed at the cell population level can be sig-

nificantly a↵ected by cell-to-cell variability in the regulatory factor copy numbers, indicating that

the observed regulation is dependent on 5’ UTR of the regulator coding gene.

⇤Corresponding author. Address: Department of Bioengineering, University of Washington, William H. Foege

Building, 3720 15th Ave NE, Seattle, WA 98195-5061, U.S.A., Email: kkim@uw.edu

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/173906doi: bioRxiv preprint 

https://doi.org/10.1101/173906
http://creativecommons.org/licenses/by/4.0/


2

1 Introduction

Genetic regulation often shows highly nonlinear patterns, for example, on-o↵ switching with respect

to the concentration levels of regulatory factors (transcription factors) (1 ). In addition, the factor

concentration levels fluctuate significantly due to intracellular random biological reactions (2 ). This

randomness – stochasticity – and the nonlinearity can provide a variety of noise-related cellular

phenotypes (3–6 ). Here, we investigate the interplay between stochasticity and nonlinearity. We

report that genetic regulation that are measured at the cell population level and at the single cell

level can be significantly di↵erent because of the interplay (5, 7 ). Considering that stochasticity

observed in a transcription factor concentration level can be controlled without altering a pair of the

transcription factor and its specific promoter (8–12 ), our result implies that the genetic regulation

is dependent on genetic context.

Consider the nonlinear signal process shown in Fig. 1A. When the process is linear, the mean values

of the input and output are located on top of the response curve. However, when the process is

nonlinear, for example, in the curve-down response, the output signal mean value is placed lower

than the response curve (Fig. 1A, middle). This is due to the fact that the output signals are

distorted by the nonlinear signal processing (Fig. 1B).

This nonlinear e↵ect can be understood mathematically with the Jensen’s inequality: For example,

the graph of a convex function lies below all its secant lines (Fig. 1C):

f(px1 + (1� p)x2) < pf(x1) + (1� p)f(x2),

for 0 < p < 1 and when x1 and x2 get closer to each other, the inequality becomes weaker. This

inequality statement can be re-phrased by considering x as a random variable. The value of a

convex function at the mean value of x is smaller than the mean value of the function:

f(hxi)  hf(X)i,

where h·i represents the mean value. When the value of x is less noisy (smaller randomness), the

inequality becomes weaker. This indicates that the output mean value can be dependent on the

strength of the input signal noise. Thus, when averaging cellular signals over the cell population,

the population responses can be significantly di↵erent from the individual cellular responses due to

interplay between stochasticity and nonlinearity.

Consider sigmoidal input-output response as shown in Fig. 1D. For the convex (curve-up) region
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of the response, the output mean value becomes larger than the curve itself and opposite for the

concave region. This indicates that the response curve measured in the average, such as at the cell

culture (population) level, can be significantly di↵erent from the response measured at the single

cell level. Here we will investigate such di↵erences in E. coli genetic regulation.

Genetic regulation by transcription factors (TFs) has been characterized typically based on cellular

culture at the population level, for example, by using a microplate photometer (13 ). TF regulation

can be highly nonlinear and the intracellular TF copy number can show significant cell-to-cell

variability. Here, we will consider the genetic regulation of heterogenous LuxR activator in E. coli

observed at the population and single cell levels. We show that the regulation patterns observed at

both the levels are di↵erent, implying that the genetic regulation measured at the population level

can be context-dependent, i.e., dependent not only on the pair of LuxR and its specific promoter

(plux) but also on other genetic components such as the 5’ UTR and promoter region of the

luxR coding gene. Thus, genetic regulation needs to be carefully characterized by considering the

strength of the gene expression noise and its e↵ect on the regulation pattern.

2 Results

2.1 Orthogonal control of noise and mean levels

To observe the interplay between nonlinearity and stochasticity in relation to genetic regulation,

it is important to have an experimental method to control the noise strength in intracellular TF

concentrations. Such noise control has been performed in various types of cells (8–12 ). Our

previous study (14 ) adopted the dual control of transcription and translation e�ciencies to achieve

orthogonal control of mean (m) and noise levels (n). The noise level – defined here by coe�cient of

variation, i.e., standard deviation divided by mean – was shown to be varied by a factor of ⇠3 with

the p15A origin of replication (ORI) (Fig. 2B, KK16A strain series) (14 ), where the histograms of

GFP concentrations were shown to follow the Gamma distribution and the relationship between m

and n satisfied

n

2 =
c

m

, (1)

with c a constant (Fano factor) while varying the IPTG concentrations for a given ribosome binding

site (RBS; BBa B0034), and with c decreasing while adding longer adenine spacers downstream of

a given RBS (BBa B0034) (14 ).
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Here, we achieved a further increase in n without changing m by using di↵erent ORIs. Fig. 2B

(gray region) shows that when using the ORI of the higher copy number plasmid, pMB1, n increases

another ⇠ 2 fold change. As a net, we have achieved ⇠ 6 fold increase in n without changing m

(Fig. 2B) via triplet control of transcription and translation e�ciencies and plasmid copy number.

Fig. 2B shows that the graph of m vs. n tends to shift to the right when replacing p15A ORI to

pMB1 ORI as well as when using stronger RBSs. This observed shift indicates that the intrinsic

gene expression processes – here the plac regulated transcription-translation processes – are much

stronger than the extrinsic noise that is mostly originated from cell doubling (15 ). If the plasmid

expression were not used but instead genomic expression investigated, the intrinsic noise would

have been buried by the extrinsic noise as observed for typical E. coli transcription factors with

their copy numbers higher than ⇠10 (15, 16 ) (confer to the study on yeast transcriptome (17 ),

where intrinsic noise is strong enough to be observed for most transcription factors because the

extrinsic noise level is lower than E. coli due to its longer doubling time). The minimum noise level

that we observed in the GFP signals is slightly larger than 0.1, which is the minimal noise level

where the extrinsic noise becomes dominant in E. coli (15 ).

The value of n is significantly dependent on the tail distributions of gene expression level his-

tograms. Fig. 2C (inset plot) shows the case of similar m but di↵erent n values, where the tail

distributions become longer as n increases. Fig. 2D shows the case of di↵erent m but similar n

values, where the tail distributions are very similar. This implies that the tail distributions follow

the similar probability distribution function for the Points B, D, and E and they are a dominant

factor determining the noise strength.

2.2 Noise-dependent genetic regulation

To observe the e↵ect of cell-to-cell variability in TF copy numbers on the downstream regulation

pattern, the LuxR::Venus fusion as shown in Fig. 4A was used to monitor the copy number variation

of LuxR regulators. To maximize the e↵ect of the cell-to-cell variability (noise) onto the downstream

regulation, we used a strong ribosome binding site, B0034, for LuxR expression, and high copy

number plasmids by using the pMB1 origin (pGA1A3).

We suspect that a time-delay in activating mCherry expression and maturating the fluorescent

proteins can de-synchronize the two signals of Venus and mCherry, making extremely di�cult to
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observe the LuxR-activation pattern. Single-cell microscopy experiments were performed (refer to

the Materials and Methods) and confirmed the time-delay (Fig. 3A,D). When the time delay is

taken care of (refer to the Materials and Methods), the nonlinear regulation transfer curve was

observed (Fig. 3C,F). The obtained transfer curve was, however, significantly noisy, because of the

sample size limit of approximately 100 lineage trajectories in the microscopy experiments.

To overcome these issues of desynchronization and limited sample size, we used overnight cultures

and their fluorescence signals were measured via flow cytometry. Based on the data obtained via

flow cytometry, we could observe the similar nonlinear regulation pattern as shown in Fig. 4. By

using the pMB1 ORI and the strong RBS B0034, we could achieve the cell-to-cell variability of the

LuxR copy numbers that is strong enough to cover the nonlinear regulation region (Fig. 4B (red and

blue)). The population average (filled circle) was systematically deviated from the single cell trend:

At the single cell level, the density plot of venus vs. mCherry shows how probable the genetic

regulation is, and thus the ridge line of the density plot indicates the most probable regulation

pattern. The population average values for the cases of 7 di↵erent IPTG concentrations were

deviated from the single-cell level genetic regulation pattern systematically. This confirms that the

population-level and single-cell-level experiments can show di↵erent genetic regulation patterns via

interplay between stochasticity and nonlinearity. In addition, the cell-to-cell variability of LuxR

copy numbers can be in principle controlled by changing the upstream of the luxR gene (RBSs

and lac-promoter) as well as the plasmid ORI, without altering LuxR-coding gene and its specific

promoter (plux). This manifests that the LuxR regulation pattern, measured at the population

level, is significantly dependent on genetic context.

3 Discussions

3.1 Intrinsic vs. extrinsic noise

Our synthetic gene circuits were integrated in plasmids and then E. coli was transformed with the

plasmids. Fig. 2 shows that the mean and noise levels of the gene expression are inversely related

(Eq. 1). This implies that the gene expression from the plasmids does not suppress intrinsic circuit

dynamics: In the E. coli transcriptome study (15 ), the intrinsic noise was completely suppressed

by the extrinsic noise mostly when transcription factor copy numbers were larger than 10 (refer

to Fig. 2B in (15 )). This means that biological processes faster than cell doubling time (extrinsic
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noise fluctuates typically with the cell doubling time) such as transcription-translation are averaged

out. Therefore, to study these processes, it is necessary either to use fast-responsive probes (18 )

or to come up with methods that amplify the intrinsic processes. Encoding genetic systems of

interest in plasmids amplifies the signal strength without suppressing the intrinsic processes such

as transcription-translation, and this allows us to investigate E. coli gene expression with flow

cytometry and fluorescence microscopy without resorting to single-molecule fluorescence microscopy

(15, 19 ).

3.2 Orthogonal noise control

We could achieve ⇠6 fold increase in the noise level without changing its mean level. In principle,

the fold increase can be enhanced up to ⇠ 9 fold. If the gene circuit is placed in a plasmid and/or

a strain that can provide tighter control of plac, purple triangles shown in Fig. 2B can be extended

into the gray-filled area. One possible experiment is that plac is replaced to T7lac and the circuit

is integrated in the pET28a plasmid and RosettaTM(DE3) E.coli is transformed with the plasmid.

3.3 Identical tail distributions for the same noise level

Points B, D, and E in Fig. 2B shows an identical tail distribution when rescaled to their mean values

equal to one. This scale invariance implies that the tail distributions follow the same functional

form. Our previous study showed that the distribution functions for the case of the KK16 series

closely follow the Gamma distribution function, p(Npr) = N

a�1
pr exp[�Npr/b]/�(a)ba, with b the

translational burst size (15, 20 ). The mean values of GFP was dominantly a↵ected by the use of

di↵erent RBSs, i.e., di↵erent values of b. Here, since the KK11 series shows the identical tails to the

ones observed with the KK16 series, the tail part of the KK11 series distributions follows the gamma

distribution and the translational burst size, b, will be the factor that changes the mean values of

Points B, D, and E. Considering the fact that the Points E and B correspond to the same RBS (i.e.,

translation e�ciency is identical) and that the burst size b – number of proteins synthesized from

a single RNA (from its birth to death) – is dependent on both the translation e�ciency and RNA

lifetime, we can conjecture that RNA lifetime was a↵ected by changing the plasmid replication

origin. Based on our mathematical model (Materials and Methods and Supplementary Materials:

Mathematica notebook), the plasmid copy number fluctuations did not (if any, negligibly) a↵ect

the Fano factor, implying that b does not depend on the plasmid copy number fluctuations. Thus,
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we attribute the observed identical tail distributions to the change in the RNAse activity, which is

directly related to the RNA lifetime and thus a↵ects the burst size b. Further experiments on RNA

stability is suggested by using qRT-PCR to verify this conjecture.

4 Materials and Methods

4.1 Genetic circuits and strains

Genetic components are mostly BioBrick parts (http://parts.igem.org). Venus and its fusion linker

are obtained from (21 ) and mCherry from pNS2-�VL (Addgene Plasmid 26756). The designed gene

circuits were constructed via the Gibson assembly method (22 ). All the gene circuits are integrated

into either pGA3K3 (p15A origin) and pGA1A3 (pMB1) and Escherichia coli MG1655Z1 and

NEB Turbo were used as expression and cloning strains, respectively. MG1655Z1 constitutively

overexpresses LacI from its chromosome (lacIq).

4.2 Cell Growth, Flow Cytometry and Microscopy Measurements

The E. coli strains were grown in 2 mL Luria-Bertani (LB) media (Becton Dickinson) with kanamycin

50 µg/mL at 37�C and 300rpm in a shaker. When OD600 reaches 0.2, the cultures were diluted

1:200 into 200 µL prewarmed fresh M9 media (Teknova 2M1990) in 96-well plates (Costar 3904).

The media in each well contains kanamycin 50 µg/mL and di↵erent IPTG concentration (0 mM,

0.02⇠1 mM). The M9 cultures were grown to OD600=0.3-0.4 in a shaker (37�C, 300 rpm).

Flow cytometry measurements: A Sony Biotechnology ec800 flow cytometer was used with a 525 nm

filter and a 488 nm excitation laser for GFP fluorescence, and a 595 nm filter and a 561 nm excita-

tion laser for mCherry. The cultures grown in M9 were diluted 1:4 in 1xPBS. 100,000 events were

collected for each culture and gated by using a 2-D normal distribution by using python package

FlowCytometryTools (http://gorelab.bitbucket.org/flowcytometrytools). Well-to-well contamina-

tion was prevented by executing the Medium Flush cycle after each sampling. When computing

the mean and noise levels of GFP signals of KK16 and KK11 series, background fluorescence was

removed by using the mean and noise levels of GFP signals (14 ).

Microscopy Measurements: Cells were inoculated into 2 mL M9 media from -80�C freezer stocks

and grown overnight at 37�C and 250 rpm shaking. Overnight cultures were diluted into 1 mL of
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M9 media supplemented with 0.1 mM IPTG at a 1:1000 ratio and were incubated at 37�C for about

3 hours until OD = 0.05. 2 µL of induced cells were spotted onto an agarose pad on a slide and then

covered with a coverslip and sealed using VaLP (1:1:1 vaseline/lanolin/para�n).The agarose pads

were prepared by pouring 1 mL M9 media supplemented with 0.2 % low-melting-point agarose,

0.1 mM IPTG and 0.1 mg Carbenicillin into into 2 cm x 2 cm wells cut into a rubber gasket sealed

onto a microscope slide (3” x 1”) using the VaLP. Imaging was performed using a Nikon Ti-E

inverted wide-field fluorescence microscope with a large-format scientific complementary metal-

oxide semiconductor camera (NEO, Andor Technology) and controlled by NIS-Elements. Samples

were kept at 30�C throughout the imaging process using an environmental chamber. The total

imaging time for each experiment was 10 hours during which both bright-field and fluorescent

images were captured every 3 minutes.

4.3 Image Pre-Processing

Raw microscope image data have been processed through a MATLAB-based software SuperSeg-

ger (23 ), a software suite designed for automatic cell segmentation and fluorescence quantification

for high-throughput fluorescence microscopy. SuperSegger creates a MATLAB matrix file (.mat)

as an output for each image set, which contains various quantities per individual cell per time

point. This file was used as an input for our scripts which further processed the data to obtain the

results. All of our scripts are based on Python, and utilize NumPy (24 ) for array manipulation,

matplotlib (25 ) and seaborn (26 ) for data visualization, and h5py for handling MATLAB file.

4.4 Cell Lineage Tracking

The output of SuperSegger contains information on parent and daughter cells for each cell. We used

this information to reconstruct a complete map of cell lineage and analyze fluorescence statistics

based on that. Prior to running cell lineage tracking, the output of SuperSegger segmentation

process has been visually inspected for obvious artifacts (i.e. air bubbles) which are marked to

be excluded. Our Python script initially reads all cell data and then purges cells that are marked

to be excluded. The tracking process searches for all the daughter cells given the initial parent

cells, which is to further reduce potential artifacts. Then, for each lineage, a full time-course

measurements of mCherry and Venus fluorescence levels are plotted over the entire duration of

microscope measurement in order to provide details on long-term correlation between mCherry
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and Venus signals. The fluorescence levels of mCherry and Venus are scaled to provide better

comparison.

4.5 Time Delay Correlation

After obtaining the complete map of cell lineages, we approximated the amount of phase di↵er-

ence between mCherry and Venus signals and generated plots depicting Venus-mCherry response.

Because we believed the rate of changes of mCherry level (d[mCherry]/dt) is not negligible, we

decided to run 1-dimensional cubic (spline of the third order) interpolation on our mCherry signal

time trajectories and obtain their first order derivatives of the interpolation functions. We then

plotted out d[mcherry]/dt+ b [mcherry] against Venus signal to obtain corrected response curve,

where b is a constant related to cell doubling time. In order to approximate the phase di↵erence

between mCherry and Venus signals, we tested 0–75 minute delay and chose the best value for

phase di↵erence through visual inspection of the resulting response curves.

4.6 Plasmid Copy Number Fluctuations and Their Contribution to the Fano

Factor

Consider that the plasmid copy number Npl follows the distribution P (Npl). The mean protein

copy number can be calculated as:

m =

Z
dNprdNplNprP (Npr, Npl)

=

Z
dNplP (Npl)

Z
dNpr NprP (Npr|Npl)

=

Z
dNplP (Npl)hNpriNpl

= hNpri.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/173906doi: bioRxiv preprint 

https://doi.org/10.1101/173906
http://creativecommons.org/licenses/by/4.0/


10

The variance of the protein copy number is expressed as:

Var(Npr) =

Z
dNprdNpl(Npr � hNpri)2P (Npr, Npl)

=

Z
dNprdNpl

⇣
Npr � hNpriNpl

+hNpriNpl � hNpri
⌘2

P (Npr, Npl)

=

Z
dNplP (Npl)

Z
dNpr

h�
Npr � hNpriNpl

�2

+
�
hNpriNpl � hNpri

�2i
P (Npr|Npl)

=

Z
dNplP (Npl)

h
Var(Npr)Npl +Var(hNpriNpl)

i
.

The second term appears because of the fluctuations in the plasmid copy number and if we assume

that the mean copy number of proteins is linearly dependent on the copy number of plasmids (i.e.,

m(Npl) = hNpriNpl = aNpl), the second term is directly related to the variance of Npl:

n

2 =
Var(Npr)

hNpri2

⇠
Z

P (Npl)Var(Npr)NpldNpl +
Var(Npl)

hNpli2
.

If the plasmid copy number is constant (i.e., no fluctuations), the second term vanishes. The Fano

factor could increase due to the plasmid copy number fluctuations. The common sense is that the

high copy number plasmids can have smaller copy number fluctuations relative to the mean copy

number. Thus, the second term that is related to the plasmid copy number fluctuations needs to

be smaller for the case of the high copy number plasmids, which is opposite to the observation.

Thus, the e↵ect of the plasmid copy number fluctuations on the changes in the Fano factor values

can be minimal.

5 Supplementary Materials

Supplementary Notes: DNA sequence information and mathematical models are described.

Supplementary Movies: The fluorescent signals of Venus and mCherry emitted from the KK61

strain were taken via microscopy (Materials and Methods). Note that red color corresponds to

Venus and yellow color to mCherry.

Supplementary Files: The Mathematica notebook file includes the analysis of the relationship

between n and m based on the mathematical model described in the Supplementary Notes.
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Figure 1: Nonlinear signal processing: (A) The mean value of an output signal is a↵ected by the

shape of the input-output response curve (i/o curve). The light blue circles correspond to single

observations and the orange circles to the mean values of all the observations. When the i/o curve

is linear, the output mean value is placed on top of the response curve (here, straight line) (when

neglecting noise within the signal processing). When the i/o curve is nonlinear, the output mean

value is placed below or above the response curve depending on its curvature. (B) Input signals to

a nonlinear processor are sinusoidal and its output signals are distorted when the amplitude of the

input oscillation is large enough to see the nonlinearity. (C and D) Jensen’s inequality shows the

averaged input-output response dependent on the input signal noise strength.
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Figure 2: Orthogonal control of gene expression noise and mean values: (A) The gfp expression cas-

sette is integrated in plasmids (pGA3K3 ORI: p15A and pGA1A3 ORI: pMB1). The transcription

and translation e�ciencies were controlled by varying IPTG concentrations and either by using

di↵erent RBSs or adding spacers between a given RBS (B0034) and gfp. The SBOL compliant

figure is shown (27 ). (B) The noise strength of the gfp expression and its mean value were plotted

for di↵erent control methods. KK16A strain series have pGA3K3-backbone plasmids, and di↵erent

spacers (no spacer and 6, 10, and 13 repeats of adenine) were used downstream of RBS B0034.

KK11B strain series have pGA1A3 backbone plasmids, and di↵erent RBSs (B0034 and B0031) were

used without any adenine repeat spacer. The data points A, B, and C correspond to orthogonal

control of the gfp expression noise level (C), and the data points B, D, and E to orthogonal control

of the expression mean level (D).
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Figure 3: Time delay in LuxR regulation: Two cell lineages, (A, B, C) and (D, E, F), are shown.

(A,D) The blue line represents mCherry and the green line Venus. The fluorescence signals were

measured for ⇠7 hours with 5 min interval, corresponding to ⇠6 cell divisions. The time delay

of ⇠ 75 mins in the activation (B,E) and the temporal change in mCherry signals (refer to the

Materials and Methods) are taken considered and then the regulation pattern (C,F) was recovered.
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Figure 4: E↵ect of gene expression noise on genetic regulation: (A) LuxR::Venus fusion activates

mCherry expression. RBS is B0034 and the circuit is integrated in pGA1A3 backbone. (B) mCherry

and Venus signals were measured via flow cytometry and their density plot were generated for

[IPTG] = 0.022, 0.025, 0.063, 0.13 mM (top-left, top-right, bottom-left, bottom-right). (C) Multiple

flow cytometry data for 7 di↵erent IPTG concentrations were combined. The filled circles are the

mean values of Venus and mCherry signals for given [IPTG] (B and C).
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Supplementary Notes

1 DNA sequences of 5’ UTR regions

Table 1 shows the DNA sequences that were used for the region of ribosome binding sites along with di↵erent
kinds of spacer sequences:

Name Sequence (BBa R0010 end-spacer-BBa B0034-spacer-BBa E0040 begin) Backbone

pKK16A0 TTTCACACATACTAGAGAAAGAGGAGAAAATGCGTAAA pGA3K3
pKK16A6 TTTCACACATACTAGAGAAAGAGGAGAAAAAAAAAATGCGTAAA pGA3K3
pKK16A10 TTTCACACATACTAGAGAAAGAGGAGAAAAAAAAAAAAAATGCGTAAA pGA3K3
pKK16A13 TTTCACACATACTAGAGAAAGAGGAGAAAAAAAAAAAAAAAAATGCGTAAA pGA3K3
pKK11B34 TTTCACACATACTAGAGAAAGAGGAGAAATACTAGATGCGTAAA pGA1A3

Sequence (BBa R0010 end-spacer-BBa B0031-spacer-BBa E0040 begin)

pKK11B31 TTTCACACATACTAGAGTCACACAGGAAACCTACTAGATGCGTAAA pGA1A3

Sequence (BBa R0010 end-spacer-BBa B0034-spacer-BBa C0062 begin)

pKK61 TTTCACACATACTAGAGAAAGAGGAGAAATACTAGATGAAAAACATAAA pSB1A2

Table 1: RBS region DNA sequences

2 Plasmid information

Name Gene Circuit Backbone

pKK16(A)n R0010-B0034(A)n-E0040-B0015 pGA3K3
pKK11B34 R0010-B0034-E0040-B0015 pGA1A3
pKK11B31 R0010-B0031-E0040-B0015 pGA1A3
pKK61 R0010-B0034-C0062-Venus-B0015-R0062-B0032-mCherry-J61048 pSB1A2

Table 2: RBS region DNA sequences

2.1 Mathematical Model

A two-state model for the lac-promoter (1–3 ) is considered to describe the promoter active and inactive states.
Transcription and translation processes and plasmid copy number fluctuations are considered with simple birth-
death processes to show how the fluctuations a↵ect the protein level noise:
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where Ni denotes the number of inactive promoters, Na that of active promoters, Nrna the RNA copy number,
and Npr the protein copy number. Here, the synthesis rate of the plasmid, i.e., the plasmid replication, is typically
dependent on the plasmid copy number; for example, negative feedback has been used to stabilize the plasmid
copy number (4 ). Here, we modeled the negative feedback by introducing the term ��Ni, which can be considered
as a linearized version of non-linear negative feedback.

1
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This model can be further simplified based on our experimental results. In the main manuscript, we already
discussed that the plasmid copy number fluctuations are not the dominant factor for the observed increase in the
Fano factor when switching from the medium-low copy number plasmid to the high copy number plasmid. Thus,
we will neglect the plasmid copy number fluctuations in the above model and keep the rest of the reactions:
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The noise level, n, of Npr was computed numerically from the analytical solutions that were obtained by
using the Mathematica (Supplementary File). The relationship between n and m are investigated by numerically
computing these values for di↵erent parameter values. Our conclusion was that for the biological reasonable values
of the parameters for E. coli the change in the Fano factor could be explained by the changes in �m and �p. �p is
typically dependent on cell doubling time because the protein is quite stable comparing to the cell doubling time.
Thus, we concluded that �m is changed when using the di↵erent plasmid backbones, pGA1A3 and pGA3K3.
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