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The response of cancer cells to drugs is determined by various factors, including the 
cells’ mutations and gene expression levels. These factors can be assessed using 
next-generation sequencing. Their integration with vast prior knowledge on signaling 
pathways is, however, limited by the availability of mathematical models and scalable 
computational methods. Here, we present a computational framework for the 
parameterization of large-scale mechanistic models and its application to the 
prediction of drug response of cancer cell lines from exome and transcriptome 
sequencing data. With this framework, we parameterized a mechanistic model 
describing major cancer-associated signaling pathways (>1200 species and >2600 
reactions) using drug response data. For the parameterized mechanistic model, we 
found a prediction accuracy, which exceeds that of the considered statistical 
approaches. Our results demonstrate for the first time the massive integration of 
heterogeneous datasets using large-scale mechanistic models, and how these 
models facilitate individualized predictions of drug response. We anticipate our 
parameterized model to be a starting point for the development of more 
comprehensive, curated models of signaling pathways, accounting for additional 
pathways and drugs.  

	

Introduction 

Personalized tumor therapy relies on our ability to predict the drug response of cancer cells 
from genomic data1. This requires the integration of genomic data with available prior 
knowledge, and its interpretation in the context of cancer-associated processes2. At the 
heart of this endeavor are statistical and mechanistic mathematical models3. In patient 
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stratification, statistical models are used to derive prognostic and predictive signatures of 
tumor subtypes4,5. Linear and nonlinear regression, machine learning methods and related 
approaches have been used to obtain such signatures6. Yet, purely statistical models do not 
provide mechanistic insights or information about actionable targets. High-quality 
mechanistic models of cancer signaling are thus of interest to researchers and clinicians in 
systems biology and systems medicine.	

Mechanistic models aim to quantitatively describe biological processes. Consequently, they 
facilitate the systematic integration of prior knowledge on signaling pathways, as well as the 
effect of somatic mutations and gene expression. These models have been used for the 
identification of drug targets7 as well as the development of prognostic signatures8,9. 
Furthermore, mechanistic modeling has facilitated the study of oncogene addiction10, 
synthetic-lethal phenotypes11 and many other relevant phenomena12.	

Various pathways have been modeled mechanistically using Ordinary Differential Equations 
(ODEs) of varying detail13. ERBB, MAPK and PI3K signaling attracted special attention as 
they are altered in many cancer types14 and targeted by many drugs15. Tailoring the models 
to individual pathways ensures manageability of the development effort, but neglects 
crosstalk. The Atlas of Cancer Signaling Network (ACSN) addresses this issue by covering 
a majority of molecular processes implicated in cancer16. However, like other pathway 
maps17,18, the ACSN lacks kinetic rate laws and rate constants, preventing numerical 
simulation and quantitative prediction. This might be addressed in the future by using 
comprehensive databases13,19,20 in combination with semi-automatic21–23 or automatic 
reconstruction methods8,24,25.	

After the construction of a mechanistic model, parameterization from experimental data is 
necessary to render the model predictive. Optimization methods achieve this by iteratively 
minimizing the objective function, i.e. the distance between model simulation and 
experimental data26,27. This requires repeated numerical simulations. As even for medium-
scale models millions of simulations are necessary, the computational burden is often 
immense28. Accordingly, parameterizing large-scale pathway models is often deemed 
intractable and has not been done in practice. A scalable method for parameterization of 
large-scale mechanistic models is therefore essential for the community as it enables the 
comprehensive integration of prior knowledge and experimental data.	

Here, we describe a large-scale mechanistic model of cancer signaling which is 
individualized using information about somatic mutations and gene expression levels. We 
introduce a computational framework for the parameterization of large-scale ODE models 
that reduces the computation time by multiple orders of magnitude compared to state-of-
the-art methods. We demonstrate the parameterization of the model from thousands of drug 
assays from over 100 human cancer cell lines and validate the predictive power of the 
model. Moreover, we show that the mechanistic model outperforms all investigated 
statistical models in terms of classification accuracy and generalizes to cancer cell lines 
originating from tissues not used for training. 
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Figure 1. Model structure and properties. (a) Sketch of modeled signaling pathways. The developed model describes the synthesis and 
protein-protein interactions for protein products of 108 genes and 36 activating mutations. The visualization depicts drugs (purple), 
selected molecular species (orange) and cell proliferation as phenotypic readout (yellow). (b) Distribution of modeled molecular species on 
compartments and functional classes (c) Comparison of complexity of the proposed model with curated models from the BioModels 
database13, Recon 2.236 and the ACSN16. 

Results 

Large-scale mechanistic model integrates knowledge of cancer signaling pathways 

To predict the drug response of cancer cell lines, we developed a mechanistic model 
integrating signaling modules reflecting the human ERBB, RAS and PI3K/AKT signaling 
pathways, as well as regulation of the transcription factors MYC and AP129 (Fig. 1a). This 
model describes synthesis, degradation, translocation, complex formation, phosphorylation 
and various other types of reactions for proteins and their functional variants 
(Supplementary Fig. 1). We assembled it manually using the web-based platform 
PyBioS30,31 and provide it as annotated Systems Biology Markup Language (SBML) file 
(Supplementary File 1). The model is based on curated information from 
ConsensusPathDB32, a meta-database integrating more than 20 public databases (e.g., 
DrugBank33, KEGG34 and Reactome35), and additional publications. 	

The model accounts for 108 genes and 36 activating mutations yielding a total of 1228 
molecular species in 4 cellular compartments (Fig. 1b) involved in 2686 reactions. The 
modeled mutations cover 7 of the 10 most frequent driver mutations reported by Rubio-
Perez et al.36 and account for 22.1% of driver mutations observed in patient samples36. The 
model describes the action of 7 different small molecule kinase inhibitors, of which 4 are 
FDA-approved. For 17 additional FDA-approved kinase inhibitors, one or more main targets 
are included in the model, but the action is currently not described. Thus, the model covers 
main targets for 27.3% of FDA-approved targeted cancer therapies.	

To quantify the scale of our model, we compared it to curated models available in the 
BioModels database13. The proposed model describes more biochemical species and  
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reactions than any other of the curated models (Fig. 1c). Two pathway maps, Recon 2.218 
and the ACSN, possess a similar size than our model. Yet these pathway maps do not 
provide kinetic rate laws and Recon 2.2 does not focus on cancer signaling. Hence, we 
conclude that the proposed model is one of the most extensive mechanistic models of 
cancer signaling.	

Most drug response assays provide information about the cell proliferation rate relative to 
the untreated condition. Cell proliferation of cancer cells is governed by a complex interplay 
of cellular signaling processes regulating e.g. the balance between pro-growth and (anti-) 
apoptotic signals in response to extracellular stimuli or presence of activating mutations 
within respective signal transduction cascades. A major function in regulation of cell 
proliferation has been attributed to transcription factor (TF) activation, e.g. of the MYC, AP1 
and FOXO transcription factors, and regulation of target gene expression in response to 
extracellular or oncogenic stimuli. In the current model we used the weighted sums of the 
simulated molecularly activated state of these TFs as a surrogate for proliferation (see 
Online Methods, Section Model Development). This semi-mechanistic description provides 
a simple model of down-stream regulatory processes.	

 

 

 

Figure 2. Individualization of the model with genomic and transcriptomic data. (a) Individualization of the generic mechanistic model 
for the two different cell lines: RERFLCAI (wild-type KRAS); and SW403 (wild-type and mutated KRAS). KRAS signaling model is 
illustrated from synthesis until complex formation. Degradation reactions are omitted. (b) Comparison of the occurrence frequency of 
mutations included in the model between the training/test set extracted from the Cancer Cell Line Encyclopedia and the InTOGen 
database by Rubio-Perez et al.36, which provides an extensive characterization of somatic mutations in human tumors.  
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Genomic data provides basis for individualization of the mechanistic model 

The mechanistic model provides a generic template for a subset of signaling processes in 
human cells. To obtain a model for a particular cancer cell line, we individualized the 
mechanistic model by incorporating gene expression levels as synthesis rates for proteins 
and their mutated functional variants (Fig. 2a). We assumed that all other kinetic parameters 
such as transport, binding and phosphorylation rates, only depend on the chemical 
properties of the involved biochemical species. Accordingly, these parameters differ 
between proteins and their functional variants, while they are assumed to be identical 
across cell lines. This enables the simultaneous consideration of multiple cell lines and 
drugs for the model parameterization, increasing the available training sample size. 
Furthermore, the assumption allows us to predict the drug response of new cell lines from 
information about gene expression levels and functional variants. 

In this study, we considered data for 120 human cancer cell lines from 5 tissues (breast, 
large-intestine, lung, pancreas and skin) provided in the Cancer Cell Line Encyclopedia 
(CCLE)37. We processed the included genetic characterization of cell lines in the untreated 
condition using a standardized bioinformatics pipeline (Online Methods, Section Data 
Processing). Of the modeled driver-mutations, 14 are present in more than one cell line 
(Fig. 2b).	

Scalable, parallel optimization method enables model parameterization 

The mechanistic model includes more than 4,100 unknown parameters, i.e. kinetic 
constants and weighting factors. To describe the available data and to predict future 
experiments, we parameterized the model using measured proliferation data from 120 cell 
lines treated with 7 different drugs at up to 9 concentrations provided in the CCLE. In total, 
this dataset provides more than 6,900 experimental conditions. To assess the prediction 
uncertainty, we performed 5-fold cross-validation with 5 pairs of training (80%; 96 cell lines) 
and test datasets (20%; 24 cell lines).  

To parameterize the model from the training data, we minimized the sum of squared 
residuals of measured and simulated relative proliferation. This non-linear and non-convex 

 

Figure 3. Parameterization of the mechanistic model. (a) Computation time for one evaluation of the objective function gradient, which 
determines the per-iteration time for a single local optimization step. For the non-parallelized evaluation, the time was computed based on 
representative samples (See Online Methods, Numerical Benchmark). The gradient evaluation time was dramatically reduced by using 
adjoint sensitivities, exploiting sparsity and parallelization. (b) Objective function traces for ten different local optimization runs for the first 
cross-validation set. Initial conditions for the local optimization runs are sampled from a latin hypercube. Although higher initial objective 
function values were observed, the corresponding axis was cropped at 104. The 5 best optimization runs are colored in red and used for 
subsequent analysis.  
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ODE-constrained optimization problem was solved using multi-start local optimization, an 
efficient and reliable approach that outperformed global optimization methods in several 
studies26,38. As the optimization problem is high dimensional, we first assessed the 
applicability of state-of-the-art methods, such as forward sensitivity analysis26. Therefore, 
we determined the computation time per gradient evaluation. This revealed that due to 
(i) the large-scale ODE model, (ii) the large number of parameters and (iii) the large number 
of experimental conditions, a single evaluation of the objective function gradient would 
require more than 5∙104 CPU hours (> 6 CPU years) (Fig. 3a). As the gradient has to be 
evaluated hundreds of times for a single optimization, available toolboxes were not 
applicable.	

To render parameterization tractable, we addressed challenges (i)-(iii). Firstly, we reduced 
the CPU time per model evaluation by using a sparse linear solver39 for ODE integration 
(0.5% non-zero entries in the Jacobian). Secondly, we implemented adjoint sensitivity 
analysis40 which improves scaling with the number of parameters. These two 
methodological advancements reduced the computation time over 37,000-fold (Fig. 3a).  

Thirdly, we established scalability with respect to the number of experimental conditions by 
parallelization on the level of cell lines (Fig. 3a). Using 8 cores (7 workers), we observed a 
6.4-fold acceleration. In total, our flexible and easily extendable parameterization framework 
reduced the expected wall time by over 240,000-fold.	

Using 400 cores and a trivial parallelization over local optimizations, our computational 
framework enabled the parameterization for all cross-validations in less than one week. In 
comparison, state-of-the-art approaches would have required hundreds of thousands of 
years. The local optimization achieved a substantial reduction of the sum of squared 
residuals within a few iterations and then the curve flattened out (Fig. 3b). The optimization 
was stopped early at 100 iterations to improve the prediction accuracy by avoiding 
overfitting41. To filter insufficient optimization runs and improve robustness, we used 
ensemble averaging (see Online Methods, Section Ensemble Averaging) over the 5 
optimization runs that achieved lowest objective function value in each cross-validation for 
all following analysis and prediction. 

Mechanistic model yields quantitative description of experimental data and 
generalizes to test data 

The parameterized model describes the drug dose-dependent proliferation of cell lines. To 
assess the combined quality of the model and the parameterization, we quantified the 
model-data mismatch. Our study of the parameterized model revealed a good agreement of 
measured data and model simulation and little variation in the prediction (Fig. 4a), despite 
large parameter uncertainties (Supplementary Fig. 2). For the highest drug concentration 
(8µM) of each dose response curve, the correlation of measured and simulated proliferation 
was r=0.82 (p<10-150) (Fig. 4b, for more concentrations see Supplementary Fig. 3).  

The agreement of measured and simulated proliferation is similar for all tissues but varies 
between drugs (Fig. 4c). Similarly, no dependence of the model-data mismatch on mutation 
status could be identified (Supplementary Fig. 4). Particularly good correlations were 
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achieved for selumetinib (r=0.93) and PD0325901 (r=0.88). Interestingly, CHIR-265 (r=0.52) 
and PLX4720 (r=0.78) have distinct correlation coefficients although they share B-RAFV600E 
as main target with similar affinity. Still, many cell lines respond to CHIR-265, but appear to 
be resistant against PLX4720. This suggests that the molecular understanding of the 
drug/target effects or the implementation in the model may be incomplete. For example, 
inhibition of VEGFR2 activation by CHIR-265 has been described42, but is not captured by 
the current version of the model. 

To evaluate the predictive power of the parameterized mechanistic model, we turned to the 
test sets of the cross-validation (see Fig. 5a left). We quantified (i) the correlation of 
measured and predicted proliferation as well as (ii) the classification accuracy for responder 
cell lines in terms of the area under the receiver-operating-characteristic (ROC) and the 
precision-recall (PR) curve. A cell line was considered a responder to a drug when the 
proliferation at the highest drug concentration was below 50% compared to the untreated 
control. Our analysis of the correlation revealed a good quantitative agreement of measured 
and predicted relative proliferation for the test set (r=0.55, p<10-8) (Fig. 5b), a lower 
correlation comparing to the training set data (r=0.82, p<10-150) (Fig. 5b). For the qualitative 
predictions, we found an average classification accuracy of 76.7±1.8% (area under 
ROC=0.767±0.018, area under PR=0.73±0.022) (Fig. 5c and Supplementary Figure 5).  

Mechanistic model outperforms established statistical models	

To provide a reference for the performance of the parameterized mechanistic model, we 
trained several well-established statistical models on the training set. The statistical models 
include a random forest43, sparse linear and nonlinear regression models44, as well as a 
network-constrained sparse regression model (with network derived from the mechanistic 
model)45. The training of all statistical models was performed using state-of-the-art 
toolboxes (see Online Methods, Section Statistical Analysis). The best statistical model 
achieved a classification accuracy of 67.8±2.9% on the test set (Fig. 5d), which is 8.9 

 

Figure 4. Analysis of fitting properties of the model. (a) Representative examples of model simulations for six combinations of drugs 
(x-label) and cell lines (bold text on bottom, left). The five plotted lines are the median fit for the five best optimization runs for every cross-
validation set. (b) Correlation of simulation and measured proliferation for the response at maximal concentration. For the simulation the 
ensemble prediction based on the median is shown. Smaller subplots show the correlation filtered for individual drugs. (c) Correlation 
statistics over cross-validations for individual drugs and tissues. 
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percentage points lower than the classification accuracy of the mechanistic model 
(76.7±1.8%). In conclusion, the parameterized mechanistic model provides significantly 
(p<3.6∙10-2 according to Welch’s t-test) more accurate classification than all considered 
statistical models. 
 
 Following these positive results, we assessed the generalization error of the mechanistic 
model. We processed experimental data for 31 additional cell lines from 4 additional tissues 
(kidney, ovary, soft tissue and stomach) available in the CCLE database that were not part 
of the initial training set (see Fig. 5a right). For this independent dataset, the parameterized 
mechanistic model achieved a classification accuracy of 70.7±2.3% (Fig. 5e), which is 6 
percentage points lower than on the test set. Interestingly, the tested statistical models 
achieve a maximal classification accuracy of 62.1±3.1%, suggesting that our proposed 
parameterization framework for mechanistic models may achieve better generalization 
properties. 

Combination treatment outcomes predicted from single treatment measurements 

For an additional assessment, we predicted the outcome of combination treatments. We 
considered the dataset published by Friedman et al.46 reporting the response of cancer cell 
lines to individual drugs as well as to combinations of two drugs. The dataset includes 7 cell 
lines and 5 drugs (selumetinib, CHIR-265, erlotinib, lapatinib, PLX4720) contained in our 
training set. To establish a reference for the accuracy of the prediction, we assessed the 
agreement of the proliferation measurements by Friedman et al.46 and the measurements 
from the CCLE database. The comparison yielded a correlation of r=0.33. This weak 
correlation is likely due to differences in the experimental procedure and systematic bias in 
the proliferation measurements. These are known problems for similar pharmacogenetic 
studies47,48 and apparently limit the achievable correlation between the predictions of the 
parameterized model and the Friedman data. The predicted proliferation from the 
mechanistic model achieves comparable agreement with the Friedman data for both 
individual drug treatments (r=0.35) and combinatorial drug treatments (r=0.26) (Fig. 6). 
Accordingly, for the combinatorial drug treatments, the model achieved a correlation with 
the Friedman data only 20% lower than the agreement between the datasets 

 

Figure 5. Validation of model prediction for single-drug treatment. (a) Overview over CCLE datasets used to evaluate the 
classification accuracy: (i) test set for cell lines originating from the same tissues on which the model was trained; and (ii) independent test 
set using cell lines from different tissues. (b) Correlation coefficients between measured and predicted proliferation for 8µM drug 
concentration on all considered datasets. Error bars show the standard error (c) Representative receiver-operating-characteristic curve for 
the mechanistic model on the test set (d-e) Comparison of classification accuracy across all tested methods for test set and independent 
test set. For the Lasso approach the d defines up to which network distance interactions are considered. Error bars show the standard 
error. Stars indicate statistical significance (*: p<0.05; **: p<0.01;***: p<0.001). 
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(0.26/0.33=0.79 compared to 1). The correlation difference between single and combination 
treatment was not statistically significant. We conclude that the prediction accuracy for 
combinatorial treatments of the mechanistic model is reasonable, given the reproducibility of 
the proliferation data. 

Protein abundances predicted using mechanistic model 

For the estimation of the model parameters only proliferation measurements were 
employed. As expected, our assessment of model uncertainties revealed that this limits the 
prediction accuracy (Online Methods, Section Uncertainty Analysis). The analysis 
suggested a low reliability of parameter estimates (Supplementary Fig. 2a), a higher 
reliability of prediction for protein abundances (Supplementary Fig. 2b) and the highest 
reliability for the proliferation readout (Supplementary Fig. 2c). To determine the accuracy of 
the predicted protein abundances in the untreated condition, we compared them to the 
measurements contained in the MD Anderson Cell Line Project (MCLP)49. The MCLP 
provides normalized Reverse Phase Protein Array (RPPA) data for 33 proteins described by 
the mechanistic model in 68 of the cell lines considered for the parameterization. We 
implemented the same normalization for the simulation and considered all proteins that 
were measured in at least 10 of the considered cell lines. The mechanistic model achieved 
an average correlation of r=0.57±0.03 (Figure 6b). This is similar to the correlation between 
gene expression and RPPA data (Figure 6b). We conclude that the individualization of the 
model with cell-specific gene expression levels allows for a reasonable prediction of the 
protein levels, despite the dependence on a large number of kinetic parameters, such as 
degradation rates, that were not constrained by any molecular data. 

Discussion 

We generated a large-scale mechanistic model that integrates large amounts of prior 
knowledge and expands upon previous large-scale models16,18 by implementing kinetic rate 
laws, mutation variants of key regulators and possibilities for individualization. As the model 
can be individualized to particular cell lines and covers many relevant driver mutations, the 

 

Figure 6. Assessment of model prediction for combination treatment dataset. (a) Correlation coefficients of the mechanistic model 
and data interpolation on the single and drug combination measurements by Friedman et al.46 evaluated for cell lines contained in the 
training sets of the cross-validation. Error bars show the standard error. (b) Pearson correlation coefficients of the mechanistic model and 
gene expression levels (as reads per kilobase of transcript per Million mapped reads (RPKM)) values with proteomic data from the MD 
Anderson Cell Line Project49 (For details see Online Methods, Section Validation). For the mechanistic model the correlation was 
evaluated for cell lines contained in the training sets of the cross-validation. 
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model provides a valuable resource for analysis of various cancer types and drug 
treatments.	

To parameterize this model, we established a computational framework that provides 
scalability with respect to the number of parameters and number of state variables, and 
employs parallelization to handle the large number of experimental conditions. The final wall 
time requirement for all optimization runs (~4∙103 hours) was more than one order of 
magnitude lower than the wall time required for a single gradient evaluation using 
established methods (~6∙104 hours). This allowed, to the best of our knowledge for the first 
time, the parameterization of a large-scale mechanistic model from experimental data from 
over 100 cell lines, each under dozens of experimental conditions. The computational 
efficiency of the approach renders iterative rounds of optimization, hypothesis generation 
and model refinement of large-scale mechanistic models and multiple (heterogeneous 
datasets) feasible in a reasonable time frame. Our implementation of the methods is 
available as Supplementary File 1 and can be freely reused by other research groups. 

The assessment of the parameterized model revealed that the prediction of cell proliferation 
– a key readout to cancer therapy – is accurate for single drug treatments. Hence, the large-
scale mechanistic model we derived and parameterized can predict the drug response of 
cancer cell lines from sequencing data. This is in our opinion a result of combining extensive 
integration of prior knowledge on network structure and reaction kinetics parameterized with 
our scalable methods. We illustrated the broad capabilities of the mechanistic model by 
predicting protein abundances and the outcome of combination treatments from single 
treatment proliferation measurements, neither of which is possible with statistical models. 

Our analysis, however, also revealed limitations of the available datasets and the parameter 
estimates. Firstly, for combination treatments, the weak correlation of the available 
datasets37,46 limited the validation of our model and highlighted the need for accurate, 
reproducible phenotypic characterizations. Secondly, the parameterization of the model 
using only proliferation data resulted in large parameter uncertainty, which suggests that 
inclusion of proteomic and phosphoproteomic data in the training process will be necessary 
to render reliable predictions on the molecular level feasible. Thirdly, even more cell lines 
are necessary to capture the effect of driver mutations with low recurrence. However, as the 
model can be individualized to arbitrary cell lines and other experimental systems, it is 
particularly suited for the study of rare mutation patterns.	

The developed model is currently limited to cell lines but can be extended in several ways. 
The modeling of additional intracellular processes, cell-cell communication, cancer 
heterogeneity or pharmacokinetics might improve the prediction of patients’ response. To 
obtain a refined description, our model could be integrated with agent-based models for 
tumor growth28,50 or physiology-based pharmacokinetic models51. The resulting models 
could provide valuable tools for the identification of novel drug targets3, virtual clinical trials52 
and personalized medicine. The extensive mechanistic modeling of biological processes will 
therefore be an important area of future research. 	
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Supplementary Figure 1. Simplified overview of the model. The figure illustrates modeled interactions. Complex formation and 
phosphorylation as well as activation and repression are not discriminated here. Synthesis, translocation and degradation are omitted. All 
species are colored according to their function. 
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Supplementary Figure 2. Eigenvalues densities of the Fisher Information Matrix for parameters, state variables and proliferation 
readouts. Small eigenvalues correspond to large uncertainties of readout combinations defined by respective eigenvectors. One line for 
each of the best 5 optimization runs for each of the 5 cross validation is shown. All eigenvalues below 10-45 are not shown in the density 
plot but the corresponding fraction of eigenvalues is indicated in the barplot on the left.  

 

0

0.05

0.1

pr
ob

ab
lili

ty 
de

ns
ity

parameters

0

0.05

0.1 state variables

10-40 10-30 10-20 10-10 100 1010

eigenvalues of the fisher information matrix

0

0.05

0.1 proliferation readout
pr

ob
ab

lili
ty 

de
ns

ity
pr

ob
ab

lili
ty 

de
ns

ity

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

eig
en

va
lue

s <
10

-4
5  [

%
]

eig
en

va
lue

s <
10

-4
5  [

%
]

eig
en

va
lue

s <
10

-4
5  [

%
]

uncertainty

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/174094doi: bioRxiv preprint 

https://doi.org/10.1101/174094
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	14	

	 	

Supplementary Figure 3. Correlation of model simulation and experimental data at all measured drug concentrations. The   
correlation for the drug concentrations from 250nM to 2530nM is higher than at 8000nM, which is likely due to an inflation of cell lines not 
responding to drugs (relative proliferation=1). For lower drug concentrations the correlation is lower than at 8000nM, which is due to the 
lower dynamic range of simulated and experimentally observed relative proliferation values. 
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Supplementary Figure 4. Overview of parameterization results. One column corresponds to an individual cell line. The cell lines are 
sorted according to the median over cross-validations of the maximal squared error at 8µM drug concentration shown in c). (a) Measured 
relative proliferation in response to the treatment with 8µM of the different drugs. (b) Gain-of-function mutations in the individual cell lines. 
Mutation status is summarized per gene and does not distinguish individual variants. (c) Boxplots of the maximal squared error at 8µM drug 
concentration over the 5 cross-validations. The squared error is evaluated for the median of the simulation from the 5 best optimization 
runs. The maximum is taken over all drugs. The boxplots are colored according to the tissue of origin of the cell lines.  
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Supplementary Figure 5. Receiver-operating-characteristic and precision-recall analysis for different datasets and classification 
thresholds. Every column corresponds to a dataset. Every row corresponds to a different value for the classification threshold. Colors 
indicate the 5 different cross-validations.  
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Online Methods 
Model Development 
The mechanistic model was developed using PyBioS30, a web-based platform for modeling 
of complex molecular systems. We exploited several features of PyBioS, including the 
modular formulation of large-scale models based on individual pathways and their 
interactions. For model development we employed information from ConsensusPathDB32. 
The information was manually curated and implemented in the model using a standard 
operating procedure (SOP). The SOP ensured the model quality and the compatibility of 
different pathway models. The model structure was refined several times by different 
experts to ensure highest standards. To validate the model structure a plethora of logical 
test was used, e.g. to certify that the known effects of growth factor stimulations are 
correctly captured. 	

The developed model is made publicly available as supplement to this manuscript. The 
model features an exhaustive annotation, including UniProt and Ensembl IDs. 
Phosphorylations are indicated in the name of the species by a preceding “P[$X;$Y;…]-“ 
where $X and $Y specify the phosphorylation site using a one letter amino acid code, 
followed by the amino acid number. Mutations are indicated in the name of the species by a 
preceding “MutAA[$Z]-“ where $Z specifies the mutation site using standard sequence 
variant nomenclature. Homodimers are indicated by a trailing “[2x]”.	

The SBML file encodes an ordinary differential equation (ODE) model of the form 

𝑑𝑥
𝑑𝑡 = 𝑆 ∙ 𝑣 𝑥,𝜃,𝑑, 𝑐 , 𝑥 0 = 𝑥!, 

with concentration vector x and its initial condition 𝑥!, stoichiometric matrix 𝑆 and flux vector 
𝑣. The parameter vector 𝜃 provides the reaction rates, e.g. binding affinities. The vector 𝑑 
provides the drug concentrations used for  simulation and the vector 𝑐  provides the 
expression levels for the gene products and respective variants for a particular cell line. To 
consider different drug treatments and cell lines, only 𝑑 and 𝑐 need to be changed. The 
parameter vector is generic and transferable. The SBML model provides a representative 
parameter estimate.  

In the SBML model the proliferation output variable is specified as an assignment rule. The 
proliferation output is computed as fraction of weighted sums of concentrations of active 
forms of transcription factors  

 𝑦!,! =
!!
!"#!

! !!,!,!
!"#

!! !!
!"#!!,!,!

!"#!
!

, 

in which 𝑥!,!,!
!"#   and 𝑥!,!,!

!"#    denote the concentrations of transcription factors, for a particular 
cell line and drug treatment combination, with a positive and negative influence on 
proliferation, respectively. The corresponding weights are denoted by 𝜔!

!"#and 𝜔!
!"#  and 

were estimated during model parameterization. The model captures the effect of N = 12 
transcription factors with positive influence: P[S63;S73]-JUN[2x], P[S252;S265]-
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FOSL1:P[S63;S73]-JUN, P[T69;T71]-ATF2:P[S63;S73]-JUN, P[S374;T325;T331]-
FOS:P[S63;S73]-JUN P[Y701]-STAT1[2x], P[Y705]-STAT3[2x], P[Y694]-STAT5A[2x], 
P[Y699]-STAT5B[2x], MAX-001:P[S62]-MYCN, MAX:P[S62]-MYC, P[S324;S383]-ELK1, 
and P[S133]-CREB1. Furthermore,  𝑀 = 4 transcription factors with negative influence were 
included: FOXO1, FOXO3, FOXO4 and FOXO6. In all cases only the species with nuclear 
localization were considered to be active. 

The model employs experimentally derived drug-target binding affinity (Kd) values for the 
drugs CHIR-265, erlotinib, lapatinib, PLX4720, selumetinib, sorafenib and vandetanib, which 
were obtained from Davis et al.53. For PD0325901 the model employs the inhibitory 
concentrations (IC50), which was measured in a cell-free assay by Barrett et al.54. 

We note that the model includes several components that were not used in the presented 
analysis. This includes the option to specify gene specific scaling constants to individually 
adjust synthesis rates. Furthermore, the small molecular kinase inhibitor sorafenib was 
modeled. However, as none of the considered cell lines responded to sorafenib and as 
sorafenib targets several components that are not captured by the model, the corresponding 
response data was not considered in this study. 

CCLE Data Processing 

We downloaded RNAseq BAM-files for 780 CCLE cell lines from the Cancer Genomics 
Hub (https://cghub.ucsc.edu/) in April 2014. The same data, including additional cell lines is 
now available for download in the Cancer Genomics Cloud (https://cgc.sbgenomics.com/). 
The gene expression values were normalized as Reads Per Kilobase of transcript per 
Million (RPKM) using gene models from Ensembl Release 73. Mutation data was 
downloaded from the CCLE data portal (https://portals.broadinstitute.org/ccle/data/, file 
CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS_2012.05.07.
maf). RNA allele frequencies for the mutations were determined from the downloaded 
RNAseq BAM-files using SAMtools mpileup (http://www.htslib.org). Drug response data 
were downloaded from 
https://portals.broadinstitute.org/ccle/downloadFile/DefaultSystemRoot/exp_10/ds_27/CCLE
_NP24.2009_Drug_data_2015.02.24.csv?downloadff=true&fileId=20777. 

Of the 780 cell lines, for which we processed RPKM values, 123 originated from the tissues 
breast, large-intestine, lung, pancreas and skin which were considered in the training/test 
data-set and 31 originated from the tissues kidney, soft tissue, ovary and stomach which 
were considered for the independent test set. For the training/test data we considered 120 
of the 123 available cell lines to ensure equally sized training and test sets in all cross-
validations.  

To generate test and training datasets from the processed CCLE data, we performed 20-
80% splits on the cell-line level, which yielded 5 training sets with 96 cell lines and test sets 
with 24 cell lines. The split was performed such that the tissue distribution in the individual 
training sets is maximally similar. The number of experimental condition in the training sets 
varies from 5390 to 5403 due to incomplete data for individual cell lines.  
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Numerical Simulation and Gradient Evaluation 

The compilation and numerical simulation of the model was performed using the MATLAB 
toolbox AMICI40 (http://dx.doi.org/10.5281/zenodo.579891). AMICI employs the backward 
differentiation method implemented in the SUNDIALS solver package55. We used the KLU 
linear solver with AMD reordering and relative and absolute error tolerance 10-8. As the 
proliferation measurement was taken after 72 to 84 hours, we assumed that the state of the 
model reached a steady state. To find the steady state for the untreated condition of a cell 
line, the forward simulation was initialized with zero and run until the regularized maximal 
absolute relative derivative was smaller than 10-6, 

𝛿 = 𝑚𝑎𝑥
!

𝑆 ∙ 𝑣 𝑥,𝜃,𝑑, 𝑐 !

𝑥! + 10!!
10!!. 

For all treated conditions of a cell line, the forward simulation was initialized with the steady 
state of the corresponding untreated condition. 

The objective function gradient was computed using adjoint sensitivity analysis40. As the 
model only possesses a single model output, the proliferation 𝑦, we computed the sensitivity 
of this output. From this output sensitivity, we computed the objective function gradient and 
the Fisher Information Matrix (FIM). The FIM is not accessible when adjoint sensitivity 
analysis is used to directly compute the objective function gradient. 

The forward and backward simulation of experimental conditions was parallelized using the 
MATLAB command parfor, which implements OpenMP parallelization. As our cluster 
infrastructure features 8 core nodes, we parallelized each gradient computation over 8 
cores (1 master, 7 workers), thereby avoiding inter-node communication overhead. The 
different local optimizations were performed on different nodes. 

Numerical Benchmark 

To compare different methods for gradient evaluation, we assessed the computation time 
for a single gradient evaluation on the full training set. For sequential and parallel gradient 
evaluation using adjoint sensitivity analysis, we measured the computation time. As this 
would have been too time consuming for forward sensitivities, we first assured that the 
computation time for individual experimental conditions is comparable and then extrapolated 
to all experimental conditions. The computation time was evaluated on the training set of the 
first cross-validation for 10 randomly sampled parameter vectors. For the difference 
between forward and adjoint sensitivity analysis and sparse and dense solvers, we only 
evaluated the simulation time for the untreated condition of a single cell-line. The 
performance was evaluated based on 100 samples with a randomly drawn parameter vector 
and a randomly drawn cell-line. The computation time was then normalized such that the 
median for the sparse adjoint approach matched the computation time for the full training 
set. 
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Parameterization 

To estimate the model parameters 𝜃, we used the measurement data for the proliferation in 
the treated condition relative to the untreated condition, 𝑦!

!,! 𝑦!! , provided in the CCLE 
dataset. These data were fitted using a sum-of-squared-residuals objective function  

𝐽 𝜃 =
𝑦!
!,!

𝑦!
!,! −

𝑦!,! 𝜃
𝑦!,! 𝜃

!

!∈!!!∈!

, 

in which 𝑐 ∈ 𝐶 is cell-line specific and 𝑑 ∈ 𝐷!  denotes the drug treatment. This objective 
function is equivalent to the negative log-likelihood function under the assumption of 
additive independent and identically distributed standard normally distributed measurement 
noise. To minimize the objective function we used multi-start local optimization26 
implemented in the MATLAB toolbox PESTO	 (http://dx.doi.org/10.5281/zenodo.579890). 
Parameters were constrained to a [10-2,102] hypercube. For each local optimization run, 
parameters were drawn from this hypercube, followed by 100 optimization iterations of the 
MATLAB fmincon interior-point algorithm. The gradient of the objective function was 
computed from adjoint sensitivities and supplied to the interior-point algorithm. A high-
performance-computing-ready standalone executable was generated from the 
parameterization pipeline implemented in MATLAB using the MATLAB Compiler toolbox. 
For every cross-validation we performed 10 local optimization runs. As no communication 
was necessary between optimization runs, each could be submitted as a separate job to the 
cluster. In total we submitted 50 jobs using 8 cores each, resulting in a total parallelization 
over 400 cores.	

Ensemble Averaging 

We used ensemble averaging to reduce the effect of overfitting and the variance of 
predictors. For the mechanistic model we used an ensemble model based on five 
optimization runs that achieved the lowest objective function value. The parameter values 
from these optimization runs were then used to simulate the model individualized to cell 
lines from the test and independent test set. For quantitative predictions the median of the 
five simulations was used and for classification a majority vote was used. The ensemble 
averaging was solely based on results from the training set. The test and independent test 
set were only used for validation.  

Uncertainty Analysis 

We assessed the uncertainty of parameters using the eigenvalue spectrum of the Fisher 
Information Matrix (FIM). Small eigenvalues indicate large uncertainties in the direction of 
the respective eigenvector while large eigenvalues indicate small uncertainties. The 
eigenvalue spectrum was evaluated for the best 5 optimization runs for every cross-
validation. 

The FIM was computed by summing the dyadic product of adjoint sensitivities over all 
experimental conditions 
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𝐹𝐼𝑀! =
!

!! ! !
!!!,! !

!"
𝑦! 𝜃 − !!! !

!"
𝑦!,! 𝜃

!
!!!,! !

!"
𝑦! 𝜃 − !!! !

!"
𝑦!,! 𝜃!∈!!!∈! . 

As the number of experimental conditions (~5.400) exceeds the number of parameters 
(~4,100) the FIM could theoretically have full rank.  

For parameter derived readouts 𝑧, such as proliferation readouts as well as state variables, 
a similar quantification of the uncertainty is possible by considering a transformation 𝐹𝐼𝑀! of 
the FIM. The transformation is obtained by multiplication with the respective parameter 
derivatives 

𝐹𝐼𝑀! =
𝜕𝑧
𝜕𝜃 𝐹𝐼𝑀!

𝜕𝑧
𝜕𝜃

!

. 

For state variables the formula for steady state parameter derivatives were computed 
according to the implicit function theorem  

!"
!"
= − 𝑆 ∙ !"

!"

!!
𝑆 ∙ !"

!"
, 

assuming that the system is in steady state,  

𝑆 ∙ 𝑣 = 0. 

For the 𝐹𝐼𝑀! for state variables, we only considered state variables with non-zero simulated 
steady state. The state variables with steady state equal to zero correspond to molecular 
species that are not expressed.  

Statistical Methods 

For the comparison of model performances, we trained a series of statistical models for the 
prediction of response to treatment, based on the exact same training data sets, cross-
validation setup and test data sets that were used for the mechanistic model. Responder 
and non-responder cell lines were defined for each drug by applying the threshold 0.5 on 
the proliferation at the highest dose used for the drug (in addition results for thresholds 0.7 
and 0.9 were also obtained). The classification of cell lines into responders and non-
responders was evaluated for three sets of input variables: 1) mutation genotype data; 2) 
gene expression data; and 3) genotype and gene expression data. In addition we also 
provided the network topology as input to some of the classifiers. Model training was 
performed by nested cross-validation, where the outer 5-fold cross validation loop split the 
data into training set (80% of the data) and test set (20% of the data). For each classifier 
and each training set we estimated the model parameters by optimizing the classification 
performance in the inner cross validation loop splitting the training data again into training 
and validation sets with balanced class labels or by bootstrapping of the training data. 

We used the R implementations of the following classifiers: 1) logistic regression with 
LASSO penalty (glmnet package); 2) Random Forest (randomForest package); 3) graph 
regularized logistic regression (glmgraph package); and 4) logistic regression with LASSO 
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penalty on augmented data, including additional interaction terms. The interaction terms 
were defined based on the network topology used in the mechanistic model. The adjacency 
matrix was extracted from the Jacobian of the right hand side of the differential equation. 
For a pair of genes the Jacobian was reduced to rows or columns corresponding species 
that include the corresponding proteins in any form (phosphorylated, cleaved or bound). 
Two genes were defined to be adjacent when the corresponding submatrix of the Jacobian 
has at least one non-zero entry. We augmented the data set either with all pairwise 
interactions (product) between variables of the same type (genotype or gene expression) or 
interactions between genes that are connected by paths in the network not longer than 1, 2 
or 3 steps. The optimal parameter 𝜆 for LASSO models, 𝜆! and 𝜆!  for the graph regularized 
LASSO model were selected as the largest 𝜆 that produces an AUC ROC within one 
standard error of the maximum AUC ROC56 in a 8-fold inner cross validation. Random 
Forest classifiers were trained by selecting parameters that minimize the out of bag error43. 
We optimized over the number of variables randomly sampled as candidates for each split, 
the number of trees in the forest ranging from 50 to 500 and the maximum leaf node size 
criterion ranging from 1 to 1/3 of the data set. All classifiers were then applied to the test set 
and performance was assessed as the area under the ROC curve.	

Finally, we used the classifiers trained in each round of the cross validation and applied 
them to an independent test set. Performance was assessed as the area under the ROC 
curve and averaged over the five cross validation rounds. 

Validation  

Area Under the Curve: For the quantification of the classification accuracy for the 
mechanistic model we computed receiver-operating-characteristic (ROC) curves and 
precision-recall (PR) curves. For the data and model, a cell line was classified as responder 
to a drug when the measured/simulated relative proliferation at 8µM was smaller or equal to 
the specified threshold. For the data, this threshold was fixed to 0.5 and for the model the 
threshold was continuously varied between 0 and 1 and the precision, sensitivity and 
specificity was evaluated for every threshold value. From these evaluations the ROC and 
PR curves were constructed and the area under the curve was evaluated using a 
trapezoidal rule.  

Exactly the same split in training and test set was applied for all statistical models and the 
mechanistic model. For both approaches the test and independent test sets were never 
used for parameterization. For the statistical model the AUC was averaged over drugs and 
cross-validation as individual models were constructed for every drug. For the mechanistic 
model the AUC was averaged only over cross-validations as a single model for all drugs 
could be constructed. 

Combination Therapy: The data by Friedman et al.46 includes measurements for single and 
paired treatments at low and high concentrations for the drugs selumetinib, CHIR-265, 
erlotinib, lapatinib and PLX4720. For the paired treatment, the experiment was repeated 
twice and the average value was used for our analysis. As the treatment concentrations 
employed in the two studies did not agree, we interpolated measurements from the CCLE 
data to concentrations employed in the Friedman dataset. The interpolation was performed 
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in logarithmic concentration space but results were comparable for linear concentration 
space. For every cross validation we only considered the measurements from cell lines 
which were also contained in the training set. 

Proteomics Measurements: For the comparison of model prediction and RPPA data from 
the MD Anderson Cell Lines Project, we computed the median total protein concentrations 
for the 5 best optimization runs. To compute total protein concentrations, we computed the 
sum of concentrations of all protein and complex species that contain a specific protein, 
taking into account the individual stoichiometry. As the RPPA data in the MD Anderson Cell 
Lines Project are normalized, we also normalized the simulation data using the same 
procedure: 1) The simulated concentrations were log2 transformed; 2) The median 
concentration over all cell lines was subtracted for every protein and then the median of all 
concentrations was subtracted for every cell-line. While this procedure resembles the 
procedure described in the manuscript providing the data, we note that the model only 
captures a fraction of the proteins and the normalization might therefore be suboptimal. For 
the RPKM data, only a log2 transformation was applied. The correlation coefficients of 
normalized data and predictions were computed for all proteins that were measured in at 
least 10 cell lines. For every cross validation we only considered the measurements from 
cell lines which were also contained in the training set.  

The considered dataset only provides measurements for the untreated condition. However, 
the parameterization was performed based on relative proliferation values, which is 
computed based on the ratio of sums of active transcription factor concentrations in the 
model. Accordingly, the training data provides some information about the ratio of 
concentrations in treated and untreated condition, but little information about absolute 
concentrations in the treated and untreated condition. 
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