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Tumours with profound copy-number aberration elude molecular stratification due to          
their genomic complexity. By representing this complexity as a mixture of copy-number            
signatures, we provide molecular explanations for differing clinical outcomes. Here we           
present a method for copy-number signature identification, deriving eight signatures in 117            
shallow whole-genome sequenced high-grade serous ovarian cancers (HGSOC), which         
validated on independent cohorts of 95 deep whole-genome sequenced, and 402 SNP            
array-profiled cases. Three copy-number signatures predicted longer overall survival, while          
the others predicted poorer outcome. We found evidence for the mutational processes            
giving rise to copy-number change for six of the eight signatures via correlations with other               
genomic features. Our results provide insights into the pathogenesis of HGSOC by            
uncovering multiple mutational processes that shape genomes following ​TP53 ​mutation.          
Importantly, our work shows that most HGSOC have a mixture of mutational processes             
suggesting that targeting a single mutator phenotype may be therapeutically suboptimal.  
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Introduction 
The discrete mutational processes that drive copy-number change in human cancers are not             

readily identifiable from genome-wide sequence data. This presents a major challenge for the             
development of precision medicine for high-grade serous ovarian (HGSOC), oesophageal,          
small-cell lung and triple negative breast cancers, which are strongly dominated by copy number              
changes (Ciriello et al., 2013). These tumours have low frequency of recurrent oncogenic             
mutations, few recurrent copy number alterations and highly complex genomic profiles (Hoadley et             
al., 2014). 

HGSOCs are poor prognosis carcinomas with ubiquitous ​TP53 ​mutations (Ahmed et al.,            
2010). Despite efforts to develop subtype classification approaches, overall survival has not            
improved over two decades (Vaughan et al., 2011). Current genomic stratification is limited to              
defining homologous recombination-deficient (HRD) tumours (Fong et al., 2010; Gelmon et al.,            
2011; Swisher et al., 2017), and gene expression classifiers identified by large-scale consortia have              
not yet demonstrated therapeutic utility (Etemadmoghadam et al., 2009; Verhaak et al., 2013).             
Deep whole genome sequencing has revealed gene breakage events targeting ​RB1, NF1 ​and             
PTEN, but has not provided further insights into the underlying mutational processes driving             
HGSOC (Patch et al., 2015). Integrated molecular classification has recapitulated the separation of             
HRD tumours via the enrichment of amplification associated fold-back inversions in non-HRD            
tumours (Wang et al., 2017).  

Recent algorithmic advances have facilitated interpretation of tumour genome complexity via           
the identification of ​mutational ​signatures - patterns that reflect the mutational processes active             
during the life of a tumour (Alexandrov et al., 2013). For example, signatures encoded by single                
nucleotide variants (SNVs) can represent mutations caused by UV exposure or mismatch repair             
defects (Alexandrov et al., 2013), whilst signatures encoded by structural variants (SVs) can             
represent different types of HRD (Nik-Zainal et al., 2016). Importantly, these studies show that              
tumours typically have multiple active mutational processes. Quantification of the exposure of a             
tumour to a particular signature may provide a rational framework to personalise therapy (Davies et               
al., 2017). However, accurate quantification currently requires costly whole-genome sequencing for           
SVs or exome sequencing for SNVs. By contrast, copy-number changes can be interrogated in a               
cost-effective manner using shallow whole-genome sequencing (Macintyre et al., 2016). Thus, we            
have developed a method for the identification of copy-number signatures from these data to test               
the hypothesis that copy-number signatures reflect underlying mutational processes. 

Results 

Identification and validation of copy-number signatures 
To identify copy-number (CN) signatures, we sequenced 300 primary and relapsed HGSOC            

samples of 142 patients from the BriTROC-1 cohort (Goranova et al., 2017) (Figure 1A). We               
combined low-cost shallow whole-genome sequencing (sWGS; 0.1×) with targeted amplicon          
sequencing of ​TP53 to generate absolute copy-number profiles. High-quality copy-number profiles           
from 117 patients were used for copy-number signature identification (Figure 1B). 

For each sample, we computed the genome-wide distributions of six fundamental CN            
features: the number of breakpoints per 10MB, the copy-number of segments, the size of segments,               
the difference in CN between adjacent segments, the distance of breakpoints from the centromere,              
and the lengths of oscillating CN segment chains. The selection of these features was motivated by                
hallmarks of previously reported genomic aberrations, including breakage-fusion-bridge cycles         
(Murnane, 2012), chromothripsis (Korbel and Campbell, 2013) and tandem duplication (Menghi et            
al., 2016; Ng et al., 2012). We summarised each feature using measures of the shape of its                 
distribution: mean, variance, skewness (asymmetry), kurtosis (weight of tails) and modality (number            
of peaks) resulting in each sample being described by 30 variables. 
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To identify copy-number signatures from these data, we used non-negative matrix           
factorisation (NMF) (Lee et al., 2017), a method previously used for analysing SNV signatures              
(Alexandrov et al., 2013). NMF identified eight CN signatures (Figure 1B), as well as their defining                
features and their exposures in each sample. The optimal number of signatures was chosen using a                
consensus from 1000 initialisations of the algorithm and 1000 random permutations of the data              
combining four model selection measures (Figure 2). We found highly similar signature variable             
weights in two independent cohorts of 95 whole-genome sequenced HGSOC samples from ICGC             
(Campbell et al., 2017) and 402 SNP array profiled HGSOC samples (TCGA, 2011), thus              
demonstrating the robustness of our approach (Figure 1B, P<0.005, median r​2​=0.85. Table S1). 

Using copy-number signatures to predict overall survival 
Using a combined dataset of 602 samples with full clinical annotation, we explored the              

association between signature exposures and overall survival (Figure 3A). In a multivariate Cox             
proportional hazards model trained on 356 cases and tested on the remaining 246, CN signatures 1,                
7 and 8 had a positive influence on survival, while the remaining five CN signatures had negative                 
influences (Training: P=0.003, log-rank test; stratified by age and cohort; Test: P=0.01,            
C-index=0.57, 95% CI:0.51-0.62). Significant separation was observed when patients were stratified           
into good and poor prognosis groups by their dominant signature exposure (Figure S1; Training:              
P=0.0007, log-rank test; Test: P=0.0003, log-rank test).  

Linking copy-number signatures with underlying mutational processes 
Examination of cases with a predominant single signature showed that CN signatures 1, 7              

and 8 were characterised by high genome complexity (Figure 3B), with CN signature 7 reminiscent               
of a tandem duplicator phenotype (Ng et al., 2012). However, the vast majority of cases exhibited                
multiple signature exposures indicative of complex phenotypes shaped by several mutational           
processes (Figure 3A). Because our approach breaks down this complexity into its basic             
constituents, we could begin to characterize the individual contributing mutational processes. 

To link individual CN signatures to mutational processes, we used the weights identified by              
NMF to determine which pattern of global or local copy-number change defined each signature. For               
example, in CN signature 3, the highest weights were observed for the skewness and kurtosis               
variables of the breakpoint distance from the centromere feature (Figure 4). This suggested             
frequent breakpoints close to the end of the chromosomes, which are characteristic of peri-telomeric              
breaks from breakage-fusion-bridge (BFB) events (Murnane, 2012). To test this hypothesis, we            
correlated CN signature 3 exposures with other genomic features across samples that underwent             
deep WGS (Figure 5, Figure S2, Figure S3). CN signature 3 was negatively correlated with telomere                
length (r​2​=-0.21, P=0.08, multiple testing corrected) and positively correlated with age-associated           
SNV signature 1 (r​2​=0.35, P=0.0004), consistent with BFB events. In addition, CN signature 3 was               
positively correlated with amplification-associated fold-back inversion structural variants (r​2​=0.34,         
P=0.07) that have been associated with inferior survival in HGSOC (Wang et al., 2017) and have                
been strongly implicated in BFB events (Zakov et al., 2013). Thus, we believe that BFB is the                 
underlying mechanism for CN signature 3. 

We systematically applied the same approach to the remaining signatures to identify other             
statistically significant genomic associations using a false discovery rate <0.1 (Figure 5, Figure 6,              
Figure S2, Figure S3). For two CN signatures, 1 and 6, we did not find evidence for specific                  
underlying mechanisms. For three signatures, we identified significant associations with putative           
canonical signalling pathways, which can inform future mechanistic studies. CN signature 2 was             
associated with mutations in genes involved in histone deacetylation (P=0.007, one-sided t-test) and             
lengthening of telomeres (r​2​=0.47, P=3e-05); histone deacetylase (HDAC) activity is closely linked to             
DNA damage responses (Cea et al., 2016), specifically via ATM regulation (Thurn et al., 2013),               
whilst inhibition of HDACs can induce profound DNA damage (Conti et al., 2010) with upregulation               
of error-prone non-homologous end-joining (Smith et al., 2014). CN signature 4 was enriched in              
cases with oncogenic MAPK signalling involving ​NF1 loss and mutated ​KRAS ​(P=0.003, one-sided             
t-test)​, ​which has previously been shown to induce chromosomal instability as a result of aberrant               
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G2 and mitotic checkpoint controls and missegregation (Knauf et al., 2006; Saavedra et al., 1999).               
CN signature 7 was enriched in patients with high tandem duplicator phenotype scores (r​2​=0.42,              
P=1e-04) and mutations in the Toll-like receptor (TLR) pathway (P=0.06, one-sided t-test). TLR4             
activity regulates expression of Ku70 (Wang et al., 2013), whilst persistent TLR signalling leads to               
mitotic defects and potent DNA damage responses (Herrtwich et al., 2016), suggesting possible             
links between TLR pathway mutations and CN abnormalities. 

For the final two signatures, 5 and 8, we found strong evidence for the underlying mutational                
processes. CN signature 5 was found at significantly higher exposures (P=1.7e-16, one-sided            
t-test) in tumours with aberrant cell cycle control, including either amplification of ​CCNE1, CCND1,              
CDK4 ​or MYC​, or deletion/inactivation of ​RB1​. In addition, signature 5 was enriched in tumours with                
activated PI3K/AKT signalling (P=1.9e-07, one-sided t-test) through mutation of ​PIK3CA ​or           
amplification of EGFR, MET, FGFR3 and ERBB2​, suggesting that the underlying mechanism for this              
signature is failure of cell cycle control with co-existent oncogenic signalling. Exposure to CN              
signature 5 was positively correlated with age at diagnosis (r​2​=0.33, P=3e-13) and age-related SNV              

signature 1 (Alexandrov et al., 2013) ​(r​2​=0.33, P=5e-04). CN signature 5 was characterised by large               
values in the copy-number change-point distribution, which suggests that the signature represents a             
single, late whole-genome duplication event (Zack et al., 2013). By contrast, CN signature 3 is likely                
to represent an ongoing process of localised copy-number changes accumulating over multiple cell             
divisions. 

CN signatures 5 and 8 had mutually exclusive associations with mutated driver genes and              
other genomic features (Figure 5). Signature 8 had significantly higher exposures in cases with              
mutations in ​BRCA1/2 or other homology-mediated repair (HR) pathway genes (P=1.4e-05,           
one-sided t-test) and was positively correlated with SNV signature 3 (associated with ​BRCA1/2             
mutations, r​2​=0.53, P=4e-10). It was also negatively correlated both with age at diagnosis (r​2​=-0.23,              
P=8e-07) and the age-related SNV signature 1 (r​2​=-0.57, P=7e-12), suggesting early age of disease              
onset. Together, these results are consistent with HR deficiency being the underlying mechanism             
for signature 8, and confirm previous data showing mutual exclusivity of ​CCNE1 ​amplification and              
defective HR (Etemadmoghadam et al., 2013), as well as the poor prognosis conferred by cyclin E                
amplification (Etemadmoghadam et al., 2009). 

Discussion 
Overall, the CN signatures provide a framework that is able to rederive the major defining               

elements of HGSOC genomes, including defective HR (TCGA, 2011), amplification of cyclin E             
(Etemadmoghadam et al., 2009), and amplification-associated fold-back inversions (Wang et al.,           
2017). We derived CN signatures using inexpensive shallow whole genome sequencing of DNA             
from core biopsies, providing a rapid path to clinical implementation. The CN signatures open new               
avenues for clinical trial design by stratifying patients based upon contributions from BFB, tandem              
duplicator phenotype, NF1/KRAS and PI3K/AKT signalling. 

A major finding is that almost all patients with HGSOC demonstrated a mixture of signatures               
indicative of combinations of mutational processes. These results suggest that early ​TP53 mutation,             
the ubiquitous initiating event in HGSOC, may permit multiple mutational processes to evolve             
simultaneously. Even in the context of an additional early driver event such as ​BRCA2 mutation in                
germline carriers, a diverse and variable number of CN signatures is possible (Figure S4).              
Exposure to multiple signatures could alter the risk of developing therapeutic resistance, which             
challenges current therapeutic strategies that target a single process such as HRD. 

Future studies on larger sample collections are needed to refine CN signature definitions             
and interpretation. Application to other tumour types is likely to extend the set of signatures beyond                
the robust core set identified here. Basal-like breast cancers and lung squamous cell carcinoma,              
which also have high rates of ​TP53 mutation and genomic instability (Hoadley et al., 2014), are                
promising next targets for our approach. Other limitations are technical: we integrated data from              
three sources, using three different pre-processing pipelines, and the ploidy determined by different             
pipelines can have a significant effect on the derived signatures. For example, high-ploidy CN              

5 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/174201doi: bioRxiv preprint 

https://doi.org/10.1101/174201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

signature 5 was predominantly found in the sequenced samples that underwent careful manual             
curation to identify whole-genome duplication events. When extending to larger sample sets, a             
unified processing strategy with correct ploidy determination is likely to produce improved signature             
definitions. 

In summary, our results represent a substantial advance in deconvoluting the profound            
genomic complexity of HGSOC, allowing robust molecular classification of a disease that lacks             
classic driver oncogene mutations or recurrent copy-number changes. By dissecting the mutational            
forces shaping highly aberrant copy-number, our study paves the way to understanding and             
categorising extreme genomic complexity. 
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Figure 1 | Copy-number signature identification - sample and analysis workflows  

 
 

A schematic showing the HGSOC samples appearing in the manuscript along with the technology              
used to interrogate copy number. sWGS was performed on 300 samples from 142 patients              
BriTROC-1 patients. 117 high and intermediate quality samples were identified, maximum one            
sample per patient. CN signatures were initially derived using 91 high quality samples and              
subsequently applied to the remaining 26 samples of intermediate quality. 48 of those 117 samples               
were also sequenced by deep WGS and used for correlation analyses. (sWGS = shallow whole               
genome sequencing, WGS = whole genome sequencing, SNParray = single nucleotide           
polymorphism hybridization array.)  
B A summary of the 5 steps taken to identify copy-number signatures using shallow whole genome                
sequencing. Step 1: compute absolute copy-numbers from sWGS data; Step 2: compute            
genome-wide distributions of six fundamental copy-number features; Step 3: summarize the shape            
of each distribution using the mean, variance, skewness, kurtosis, and modality; Step 4: Represent              
the data as a matrix with 30 (=6x5) variables per tumour. Step 5: Apply Non-negative matrix                
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factorisation to this matrix to deconvolute it into signature exposures.  
C ​Validation of the copy number signature identification approach across two independent cohorts             
of samples profiled using WGS and SNP array. The similarity between these matrices and the               
sWGS in a can be clearly observed. Correlation coefficients of the similarity can be found in Table                 
S1. 
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Figure 2 ​| Measures for selecting optimal signature number 

 
 
A comparison of signature number (x-axis) across four measures for determining optimal signature             
number. The circle and solid lines represent the results from the BriTROC-1 samples run whereas               
the triangles and dotted lines represent results from 1000 randomly permuted BriTROC-1 matrices             
(these can be considered a null measure). Here, basis refers to the signature-by-variable matrix,              
coefficients refers to patient-by-signature matrix, and consensus refers to the connectivity matrix of             
patients clustered by their dominant signature across 1000 runs. Best-fit is the run that showed the                
lowest objective score across the 1000 runs. A value of 8 defines the point of stability in the                  
cophenetic, dispersion and silhouette coefficients, and is the maximum sparsity achievable above            
the null model. 
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Figure 3​ ​| Copy-number signatures predict survival across 602 patients 

 
A​ Stacked CN signature exposures in every patient (top) and smoothed exposures independently 
for every CN signature (bottom). Patients were ranked from short survival (left) to long survival 
(right) using the risk estimated by a multivariate Cox proportional hazards model stratified by age 
and cohort, with CN signature exposures as covariates. 
B​ ​Examples of genomes with dominant copy-number signatures. ​Bar plots show the 
proportion of each CN signature identified in the example case. The outer ring of each circos plot 
shows copy-number changes. The inner ring shows structural variants: duplications (DUP), 
translocations (TRA), inversions (INV), and deletions (DEL).  
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Figure 4 | A strategy to highlight mutational processes underlying CN signatures 
 
 

 

 
 
The barplot shows the weights of the 30 variables defining copy-number signature 3, which              
represent the shapes of genome-wide distributions of six fundamental copy-number features (M:            
Mean, V: Variance, S: Skew, K: Kurtosis, D: DIP statistic). The turquoise distribution is annotated to                
show which part is highlighted by each shape measure. For example, in CN signature 3 shown                
here, the highest bars point to the skewness and kurtosis of the distribution of breakpoint distances                
from the centromere. This indicates that the copy-number changes of importance in genomes             
shaped by CN signature 3 are those that lie in the tail of the distribution. 
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Figure 5 |​ ​Association of copy-number signatures with mutated driver genes and 
other features. 

 
 

In both ​A and ​B​, each dot corresponds to a significant correlation coefficient (P<0.1). The numbers                
to the right of the plots show the number of cases included in each analysis. 
A Significant correlation coefficients between other features and CN signature exposures. Blue            
indicates positive correlation and orange negative correlation. 
B Significant correlation coefficients between SNV signature and CN signature exposures. SNV            
signatures were taken from the COSMIC database. Blue indicates positive correlation and orange             
negative correlation. 
C Reactome pathways showing significantly different mean signature exposures between mutant           
and non-mutant cases (P<0.1, one-sided t-test). Colour scale indicates extent of difference. The             
numbers to the right of the plot show the number of mutated cases for each pathway out of a total                    
319 cases. 
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Figure 6 | Copy-number signatures found in HGSOC 
 

 
 
This figure summarises the CN signatures, their weights, important features and associations 
highlighting potential underlying mechanisms. 
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Methods 

Patients and samples 
The BriTROC-1 study has been described previously (Goranova et al., 2017). The study is              
sponsored by NHS Greater Glasgow and Clyde and ethics/IRB approval was given by Cambridge              
Central Research Ethics Committee (Reference 12/EE/0349). The study enrolled patients with           
recurrent ovarian high-grade serous or grade 3 endometrioid carcinoma who had relapsed following             
at least one line of platinum-based chemotherapy and whose disease was amenable either to              
image-guided biopsy or secondary debulking surgery. All patients provided written informed           
consent. Access to archival diagnostic formalin-fixed tumour was also required. 

Tagged-amplicon sequencing 
DNA was extracted from relapsed biopsies and archival diagnostic tissue, and mutation screening of              
TP53​, ​PTEN​, ​EGFR ​, ​PIK3CA​, ​KRAS and ​BRAF was performed using tagged-amplicon sequencing            
as previously described (Goranova et al., 2017). 

Shallow whole genome sequencing (sWGS) 
Libraries for sWGS were prepared from 100ng DNA using modified TruSeq Nano DNA LT Sample               
Prep Kit (Illumina) protocol (Piskorz et al., 2016). Quality and quantity of the libraries were assessed                
with DNA-7500 kit on 2100 Bioanalyzer (Agilent Technologies) and with Kapa Library Quantification             
kit (Kapa Biosystems) using to the manufacturer's protocols. Sixteen to twenty barcoded libraries             
were pooled together in equimolar amounts and each pool was sequenced on HiSeq4000 in              
SE-50bp mode. 

Deep whole genome sequencing 
Deep whole-genome sequencing was performed on 56 tumour and matched normal samples, of             
which 48 passed quality control. Libraries were constructed with ~350-bp insert length using the              
TruSeq Nano DNA Library prep kit (Illumina) and sequenced on an Illumina HiSeq X Ten System in                 
paired-end 150-bp reads mode. The average depth was 60× (range 40-101×) in tumours and 40×               
(range 24-73×) in matched blood samples. 

Variant calling 
on mapping quality, base quality, position in read, and strand bias as described (Secrier et al.,                
2016). In addition, the blacklisted SNVs from the Sanger Cancer Genomics Project pipeline derived              
from a panel of unmatched normal samples were used for filtering (Jones et al., 2016). 

Data download 
ICGC: ​Consensus SNVs and INDELs (October 2016 release), consensus structural variants (v 1.6),             
consensus copy-number calls (January 2017 release), donor clinical (August 2016 v7-2) and donor             
histology information (August 2016 v7) for 95 ovarian cancer samples were downloaded from the              
PCAWG data portal. ACEseq copy-number calls were used for analysis. 
TCGA​: ABSOLUTE (Carter et al., 2012) copy-number profiles from Zack et al (Zack et al., 2013) for                 
402 ovarian cancer TCGA samples were downloaded from Synapse (Schumacher, 2015). SNVs for             
these samples were downloaded from the Broad Institute TCGA Genome Data Analysis Center             
(Broad Institute TCGA Genome Data Analysis Center: Firehose stddata__2016_01_28 run.          
doi:10.7908/C11G0KM9, Broad Institute of MIT and Harvard). Donor clinical data were downloaded            
from the TCGA data portal. 
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Absolute copy-number calling from sWGS 
After inspection of the TP53 mutation status and relative copy-number profiles of the 300 BriROC-1               
sequenced samples, 44 were excluded from downstream analysis for the following reasons: low             
purity (21), mislabelled (7), pathology re-review revealed sample was not HGSOC (3), no detectable              
TP53 mutation (13). Of the remaining samples, 57 showed an over segmentation artefact (likely due               
to fixation). A more strict segmentation was subsequently applied to these samples to yield a usable                
copy-number profile. Relative copy-number profiles were generated using QDNAseq (Scheinin et           
al., 2014) and these were combined with TP53 mutant allele frequency identified using tagged              
amplicon sequencing in a probabilistic graphical modelling approach adapted from ABSOLUTE           

(Carter et al., 2012) to generate absolute copy-number profiles. Using Expectation-Maximisation,           
the model generated a posterior over a range of TP53 copy-number states, using the TP53 mutant                
allele frequency to estimate purity for each state. The TP53 copy-number state which provided the               
highest likelihood of generating a clonal absolute copy-number profile was used to determine the              
final absolute copy-number profile. Following absolute copy-number fitting, the samples were rated            
using a 1-3 star system. 1-star samples (n=54) showed a noisy copy-number profile and were               
considered likely to have incorrect segments and missing calls. These were excluded from further              
analysis. 2-star samples (n=52) showed a reasonable copy-number profile with only a small number              
of miscalled segments. These samples were used (with caution) for some subsequent analyses.             
3-star samples (n=147) showed a high-quality copy-number profile that was used in all downstream              
analyses. The maximum star rating observed per patient was 15 patients 1-star, 26 2-star, and 91                
3-star. 

Copy-number signature identification 
Preprocessing: ​91 3-star ​BriTROC-1 absolute copy-number profiles were summarised using          

six different feature density distributions (Outlined in Figure 1B): 1. segment size - the length of                
each genome segment in 10MB units; 2. Breakpoint number ​per 10MB - the number of genome                
breaks appearing in 10MB sliding windows across the genome; 3. ​change-point copy-number - ​the              
absolute difference in CN between adjacent segments across the genome; 4. ​segment            
copy-number - the observed absolute copy-number state of each segment; 5. normalised distance             
of breakpoints from centromere - the distance of a break from the centromere divided by the length                 
of the chromosome arm; 6. length of segments with oscillating copy-number - a traversal of the                
genome counting the number of contiguous CN segments alternating between two copy-number            
states. Each of these distributions was then reduced to a set of five variables encoding the shape of                  
the distribution: the first four moments (mean, variance, skewness and kurtosis) and a fifth variable,               
Hartigan’s dip test (Hartigan and Hartigan, 1985)​, which is a measure of the modality of the                
distribution. As skew can take a negative value, its absolute value was used. All variables were then                 
scaled to lie between (0,1). This approach resulted in a set of 30 variables representing the                
copy-number profile of each sample. 

Signature identification using NMF. ​The NMF Package in R (Gaujoux and Seoighe, 2010)             
was used to decompose the patient-by-variable matrix into a patient-by-signature and           
signature-by-variable matrix. A signature search interval of 3-12 was used, running the NMF 1000              
times with different random seeds for each signature number. As provided by the NMF Package in                
R (Gaujoux and Seoighe, 2010), the cophenetic, dispersion, silhouette, and sparseness coefficients            
were computed for the signature-by-variable matrix (basis), patient-by-signature matrix (coefficients)          
and connectivity matrix (consensus, representing patients clustered by their dominant signature           
across the 1000 runs). 1000 random shuffles of the input matrix were performed to get a null                 
estimate of each of the scores (Figure 2). We sought the minimum signature number that yielded                
stability in the cophenetic, dispersion and silhouette coefficients, and that yielded the maximum             
sparsity which could be achieved without exceeding that which was observed in the randomly              
permuted matrices. 8 signatures was deemed optimal under these constraints and was therefore             
chosen for the remaining analysis. 
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Assigning signature exposures to samples: ​For the remaining 26 2-star patient samples, and             
the 82 secondary patient samples (from patients with 2- or 3-star profiles from additional tumours),               
the LCD function in the YAPSA package in Bioconductor (Huebschmann et al., 2015) ​was used to                
assign signature exposures.  

Copy-number signature validation 
The variable summary procedure described above was applied to copy-number profiles from two             
independent datasets: 95 whole-genome sequenced (approximately 40×) HGSOC samples         
processed as part of ICGC Pan-Cancer Analysis of Whole Genomes Project (Campbell et al.,              
2017), and SNParray profiling of HGSOC cases as part of TCGA (Zack et al., 2013). The number of                  
signatures was fixed at 8 for matrix decomposition with NMF. A Pearson correlation coefficient was               
obtained by correlating the signature by feature matrix from each cohort with one derived from the                
high-quality sWGS copy-number profiles. 

Identification of copy-number signature patterns 
The density distributions appearing in Figure S5 were used to assist with determining important              
patterns associated with each signature. These were generated using a weighted kernel density             
estimator in R where the copy-number features were weighted by their signature exposures for 117               
BriTROC-1 cases. We used these, in combination with the variable weights for each signature              
(Figure 6), to determine which parts of each distribution were important for defining each signature. 

Survival analysis 
Overall survival in BriTROC-1 patients was calculated from the date of enrolment to the date of                
death or the last documented clinical assessment, with data cutoff at 1 December 2016. Given that                
the BriTROC-1 study only enrolled patients with relapsed disease, it was necessary to left truncate               
the overall survival time. In addition, cases where the patient was not deceased were right               
censored. Survival data for the ICGC and TCGA cohorts were right censored as required (left               
truncation was not necessary). The combined samples were split into training (100% BriTROC-1,             
50% ICGC and 50% TCGA = 356) and test (50% ICGC and 50% TCGA = 246) cohorts. All of the                    
BriTROC-1 samples were used in the training set to avoid issues calculating prediction performance              
on left-truncated data. A Cox proportional hazards model was fitted on the training set, with the                
signature exposures as covariates, stratified by cohort (BriTROC-1, OV-AU, OV-US, TCGA) and            
age (<51; 52-59; 60-69; >70), using the survival package in Bioconductor (Therneau, 2000). As the               
signature exposures summed to 1, signature 2, which demonstrated the lowest variance across             
patients was excluded. After fitting, the model was used to predict risk in the test set and                 
performance was assessed using the concordance index calculation in the survcomp package in             
Bioconductor​42​. An alternative survival analysis approach was also applied, where the maximum            
signature exposure in each patient was used to assign a patient to either a good prognosis group                 
(signature 1, 7, or 8) or a poor prognosis group (signature 2,3,4,5,6). A second Cox proportional                
hazards model was fitted on the training set using the groups as covariates to determine a log-rank                 
score. The survfit function was used to generate a Kaplan-Meier plot for the grouping. The survdiff                
function was used test the performance of this approach in the test set and the survfit function used                  
to generate Kaplan-Meier curves (Figure S1). 

Association of copy-number signature exposures with other features 
Of the 48 deep WGS BriTROC-1 samples, 44 had matched 2- and 3-star sWGS copy-number               
profiles. As the signature exposures from the sWGS were used for analysis, associations were              
made only with these 44 samples. 
 Mutational signatures. For 44 deep WGS BriTROC-1 samples and 95 ICGC samples, motif             
matrices were extracted using the SomaticSignatures R package (Gehring et al., 2015) and the              
weights of known COSMIC signatures were determined using the deconstructSigs R package            

21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/174201doi: bioRxiv preprint 

https://doi.org/10.1101/174201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(Rosenthal et al., 2016). Signatures showing a median exposure of 0 across the samples were               
removed. The rcorr function in the Hmisc R package (Harrell, 2016) was used to calculate the                
correlation matrix between the remaining SNV and CN signature exposures. 

Telomere length. Telomere lengths of 44 deep WGS tumour samples from the BriTROC-1             
cohort was estimated using the Telomerecat algorithm (Farmery, 2017). Partial correlation was            
calculated between telomere length and copy-number signature exposures greater than 10%, with            
age and tumour purity as covariates, using the ppcor package in R (Kim, 2015). 

Tandem duplicator phenotypes. Tandem duplicator phenotype (TDP) scores were calculated          
for 95 ICGC samples using the method described in Menghi et al (Menghi et al., 2016). 

Amplification associated fold-back inversion fraction. For the 95 ICGC samples, the fraction            
of amplification associated fold-back inversion events per sample was calculated as the proportion             
of head-to-head inversions within a 100kb window amplified regions (copy number ≥5). 
 
The significance of all observed correlations was estimated from a t-distribution where the null              
hypothesis was that the true correlation was 0. All reported p-values have been adjusted for multiple                
testing with ​Benjamini & Hochberg (BH) method ​(Benjamini and Hochberg, 1995)​. Comparison plots             
can be found in Figure S2. 

Mutated pathway enrichment analysis 
A combined set of 319 samples (39 deep WGS BriTROC-1, 94 ICGC and 186 TCGA) showing at                 
least one driver mutation were used for mutated pathway enrichment analysis. SNVs, INDELs,             
amplifications (CN>5) or deletions (CN<0.4) affecting 459 ovarian cancer driver genes from            
IntOGen (Gonzalez-Perez et al., 2013) were considered bona fide driver mutations if they had              
TIER1 or TIER2 status based on predictions by Cancer Genome Interpreter (Tamborero et al.,              
2017) (Table S2 and S3). 137 of the 459 genes were mutated in a least one case. These genes                   
were used to test for enriched pathways in the Reactome database using the ReactomePA (Yu and                
He, 2016) R package with a p-value cutoff of 1 and q-value cutoff of 0.05. Pathways with at least 5                    
genes were retained. For each pathway, patients were split into two groups: those with mutated               
genes in the pathways, and those with wild-type genes in the pathways. For each signature, a                
one-sided t-test was carried out to determine if the signature exposure was significantly higher in               
mutated cases versus wild-type cases. After multiple testing correction using the Benjamini &             
Hochberg method (thresholding the p-value <0.1 and the mean difference in exposures >0.06), 113              
pathways were significantly enriched (Table S4). Manual inspection revealed significant redundancy           
in the list and 5 representative pathways were selected as a final output (Figure S3, Table S5).  

Data and Software Availability 
Sequence data that support the findings of this study have been deposited in the European               
Genome-phenome Archive with the accession code EGAS00001002557. All code required to           
reproduce the analysis outlined in this manuscript can be found in the following repository:              
https://bitbucket.org/britroc/cnsignatures 
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Figure S1 | Survival analysis of patients stratified by dominant signature exposure 

 
Kaplan-Meier curves of overall survival probabilities for patients in ​A training cohort and ​B test               
cohort. Each cohort was divided into two groups based on the patients’ maximum observed              
signature exposure (Red: maximum observed signature exposure for signatures 2,3,4,5, or 6; Black:             
maximum observed signature exposure for signatures 1,7 or 8). Black dotted lines indicate the              
median survival for each group. The p-values reported are from a log-rank test. Shaded areas               
represent 95% confidence intervals. Below ​B is a table specifying the number of remaining cases at                
risk every 500 days. These is no at risk table for ​A as the BriTROC-1 cases have left truncated                   
survival.   
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Figure S2 ​| Correlation plots of signature exposures with other features and SNV 
signatures 

 
Feature values (right) versus signature exposures (top). Blue lines represent a linear model fit and 
shading around the lines represent the 95% confidence interval. Shaded panels represent results 
which are significantly correlated (adjusted P<0.1).  
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Figure S3 | Differences in exposures between cases with mutated pathways versus 
wild-type 
 

 
Boxplots representing the signature exposures of cases with mutations (mut) in a given pathway              
(top) versus those with wild-type alleles (wt). The box widths are proportional to the number of                
cases (exact numbers can be found in Figure 5). Shaded panels indicate significant differences              
(adjusted P<0.1, values found in Table S4).  
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Figure S4 ​| ​CN signature exposures of 4 BriTROC-1 patients with germline ​BRCA2 ​ mutations 
and somatic loss of heterozygosity.  
 

 
 
This figure shows stacked bar plots of copy-number signature exposures for 4 BriTROC-1 cases 
with confirmed pathogenic germline BRCA2 mutations plus somatic loss of heterozygosity (LOH).  
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Figure S5 | Overview of copy-number feature distributions 
 

 
 
Separate density distributions are plotted for each copy-number feature across all of the signatures.              
The distributions that have highly weighted variables (see Figure 6) for each of the feature               
distributions are coloured. 
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