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Abstract

Environmental deformations induce distortions in the time-averaged activity of grid and
place cells, which are thought to reflect a rescaling of the spatial metric of the rodent cognitive
map. We propose a mechanism for this phenomenon, where input from border cells resets the
spatial phase of grid cells, maintaining a learned relationship between grid phase and boundaries.
A computational model demonstrated that this mechanism would yield scale-dependent distor-
tions in time-averaged grid fields, as well as stretched, duplicated, and fractured place fields,
as observed experimentally. Furthermore, the model yielded a striking prediction: apparent
distortions in time-averaged activity actually arise from dynamical, history-dependent “shifts”
in grid field locations. We reanalyzed the two classic datasets on grid distortions and found
clear evidence of our alternative prediction. Thus, the effects of environmental deformations on
spatial representations must be reconceptualized – altering spatial geometry does not distort,
but rather dynamically shifts, the hippocampal map.

Introduction

The cognitive map is thought to be a metric representation of space that preserves distances be-
tween represented locations [1, 2]. Entorhinal grid cells are hypothesized to generate this metric
by maintaining an internally-generated, path-integrated representation of space [3–7]. Results of
environmental deformation experiments have led to the widespread belief that this metric is fun-
damentally malleable. In these experiments, neural activity is recorded as a rat explores deformed
versions of a familiar environment where chamber walls have been stretched, compressed, removed,
or inserted. Such deformations induce a number of distortions in the time-averaged activity of
both grid [8, 9] and hippocampal place cells [10–14]. Often described as ‘rescaling’, these distor-
tions have been taken to suggest that the metric embedding of the cognitive map can be reshaped
by altering environmental geometry [8]. Crucially, however, this interpretation assumes that the
distortions observed in the time-averaged rate maps of these cells directly reflect corresponding
changes to the underlying spatial code. Here, we propose and provide evidence for an alternative
mechanism which challenges this interpretation and instead indicates that the metric embedding
of the cognitive map perseveres unchanged during environmental deformations while undergoing
dynamical, history-dependent shifts.

We propose that border cells interact with grid cells in familiar environments to maintain
learned relationships between grid phase and boundaries [15, 16]. Under our hypothesis, when an
enviroment is deformed, border cell input continues to maintain these boundary-phase relationships,
inducing shifts in the grid pattern that depend on the most recent boundary encounter. Averaged
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over time, these boundary-tethered grid shifts lead to apparent distortions of grid patterns. The
shifts are inherited by downstream place cells, producing similar changes in place field location. In
this view, distortions observed in the time-averaged activity of place and grid cells are an artifact of
averaging over paths originating from different boundaries; aligned by the most recently contacted
boundary, the grid and place codes should appear shifted, not distorted.

To test this mechanism, we constructed a model where the activity of a grid cell attractor
network [17] is shaped by Hebbian-modified input from border cells [16, 18]. Recent work has
shown that such border cell input to grid cells can stabilize drift in the grid pattern [15, 16],
providing evidence for such interactions in familiar environments. Simultaneously, a population
of hippocampal place cells is learned from grid cell output [19, 20]. Our simulations show that
during environmental deformations, modeled grid and place units reproduce a number of striking
experimentally-observed behaviors, some of which have had no previous explanation: 1) when a
familiar environment is rescaled, the firing patterns of large-scale grid cells rescale to match the
deformation, while the firing patterns of small-scale grid cells do not [8, 9]; 2) when a familiar en-
vironment is stretched, the fields of place units exhibit a mix of stretching, bifurcation, modulation
by movement direction, and inhibition [10]; 3) when a familiar linear track is compressed, the place
code is updated when a track end is encountered [11]; 4) when a new boundary is inserted in an
open environment, place fields exhibit a mix of duplication, inhibition, and perseverance [12–14].
Furthermore, our model generated an additional unique prediction: a signature shift in grid and
place field location, dependent on the most recently contacted boundary. To test this prediction,
we reanalyzed the datasets from two key environmental deformation experiments [8, 9], and found
compelling new evidence for boundary-tethered grid shifts. In sum, our results indicate that de-
formation of a familiar environment results in dynamic history-dependent shifts in grid and place
field locations, rather than distortions of field shape. These results invite a reconceptualization of
how environmental deformations affect spatial representation and navigation more broadly.

Results

A model of border, grid, and place cell interactions

Previous recording studies in rodents have shown a number of striking effects of environmental
deformations on the time-averaged firing maps of grid cells (e.g., compression and stretching [8, 9])
and place cells (e.g., rescaling, bifurcation, modulation by movement direction, and suppression
[10–14]). We sought a single circuit mechanism that could give a unified explanation for these
phenomena. To this end, we developed a spiking feedforward model of border, grid, and place cell
interactions (Fig. S1).

The border population consisted of 36 units whose activity was designed to mimic the behavior
of border cells [18]. (Throughout this paper, we use unit to refer to modeled data, and cell to refer
to in vivo recorded data.) Each border unit was active only when a boundary was nearby, within 12
cm in a particular allocentric direction [15]. The preferred firing field of each border unit covered
∼ 10% of a boundary length, and maintained proportional coverage if that boundary was deformed
[18]. If a new boundary was inserted, the border unit was active at an allocentrically analogous
location adjacent to the new boundary.

The grid population was subdivided into 5 modules, each consisting of a neural sheet of size
90× 90 units. The internal connectivity and dynamics of each module was based on the attractor
network model described in [17], and identical across modules except for a single movement velocity
gain parameter controlling the grid scale of each module. This parameter was adjusted to yield
a geometric series of scales across modules (scale factor of 1.42), as observed experimentally [9]
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and explained theoretically [21–23]. In addition to these connections, each grid unit also received
initially random excitatory input from all border units. These connections developed through
experience via a Hebbian learning rule in which connections between coactive grid and border
units were strengthened at the expense of connections from inactive border units [24]. The place
cell population consisted of 64 units receiving initially random excitatory input from 500 random
grid units. These connections also developed with experience via Hebbian learning [20, 24]. In
combination with uniform recurrent inhibition, these dynamics yield place-cell-like activity at the
single unit level.

Model grid units deform with the environment in a scale-dependent fashion.

To explore the effects of environmental rescaling on grid units, we familiarized a naive virtual rat
with a 150 cm x 150 cm square environment, during which period the border-grid connectivity self-
organized via Hebbian learning (see Methods). Next this rat explored the familiar environment and
deformed versions of this environment (chamber lengths between 75 cm to 225 cm in increments
of 25 cm; chamber sizes chosen to match experiment [9]). We observed that these deformations
induced rescaling of time-averaged rate maps in some grid modules (Fig. 1a). To quantify this
module-dependent rescaling, we computed the grid rescaling factor required to stretch or compress
the time-averaged rate maps in the deformed environment to best match the rate maps in the
familiar environment, separately for each module. We found that the grid patterns of units in
large-scale modules morphed with the environment, but pattern of units in small-scale modules
tended not to (Fig. 1b). Precisely this behavior is observed experimentally [9], but a mechanistic
explanation has remained elusive. Our model is thus the first demonstration of a mechanism
capable of reproducing scale dependent distortions of grid activity patterns during environmental
deformation.

Our model predicts that whether the rate map of a grid cell appears to rescale is not just an
inherent property of its grid scale, but also of the size and type (stretch vs. compression) of the
deformation. Preliminary evidence for this prediction comes from the observation of small-scale
grid rescaling during less extreme [8] but not during more extreme compression deformations [9]. A
detailed exploration of the dependence of grid rescaling on deformation size and type would provide
a strong test of our theory.

Model place units distort heterogenously during environmental deformations.

To explore the effects of stretching deformations on model place units, we began by familiarizing the
naive virtual rat with a 61 cm x 61 cm square open environment, during which period the border-
grid connectivity and grid-place connectivity self-organized via Hebbian learning. Following this
familiarization, the virtual rat then again explored the familiar environment, as well as a number
of deformed environments (various chamber lengths between 61 cm and 122 cm, chamber widths
61 cm or 122 cm; chamber sizes chosen to match experiment [10]). During these deformations,
we observed heterogeneous changes to the time-averaged rate maps of place units. A number of
place units exhibited place field stretching in proportion to the rescaling deformation (Fig. 2ai).
Other units exhibited place field bifurcations accompanied by progressively lower peak firing rates
during more extreme deformations (Fig. 2aii). Finally, many units exhibited emergent modulation
by movement direction (Fig. 2aiii), with place fields shifting ‘upstream’ of the movement direction
(Fig. 2b). Precisely this mix of place field distortions is observed experimentally [10].

Next, we examined the effects of compressing a familiar linear track. We first familiarized the
naive virtual rat with running laps on a 161 cm long linear track, during which period the border-
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Figure 1: Grid unit response during deformation of a familiar open field environment. a) Rate
maps from five example grid units, one from each module, across all tested deformations. Colors normalized
to the maximum peak for each set of rate maps. Peak firing rate noted below the lower left corner of each
map. b) Grid rescaling factors that best match the familiar enclosure rate maps for 30 randomly chosen
grid units from each Module when the familiar open (150 cm x 150 cm) environment is rescaled to various
chamber lengths (see Methods). Each dot denotes the grid rescaling factor of a single grid unit, and the
color indexes the module (grid scale of each module is indicated at left).

grid connectivity and grid-place connectivity self-organized via Hebbian learning. Following this
familiarization, the virtual rat ran laps along both the familiar track and a number of compressed
tracks (track lengths between 53 cm to 161 cm; lengths chosen to match experiment [11]). During
laps on compressed tracks, place unit activity unfolded as if unaffected by the compression no
matter how extreme, until the opposing track end was reached. Once encountered, the place code
previously active at this track end during familiarization reemerged (Fig. 2b). Precisely this
behavior is observed experimentally [11].

Finally, we explored the effects on model place units of inserting a new boundary, We first
familiarized the naive virtual rat with a 65 cm x 65 cm square open environment, during which
period the border-grid connectivity and grid-place connectivity self-organized via Hebbian learning.
Following this familiarization, the rat explored the familiar environment and a deformed version of
this environment containing an additional 40 cm long boundary adjacent to one wall and evenly
dividing the space (chosen to match experiment [14]). Again, we observed heterogeneous changes
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Figure 2: Place unit response during environmental deformations. a) Place unit rate maps when
a familiar open (61 cm x 61 cm) environment is stretched. Place fields exhibit (i) stretching, (ii) bifurcation,
and (iii) emergent modulation by movement direction (indicated by white arrow). Colors normalized to the
peak for each rate map. Peak firing rate noted below the lower left corner of each map. Note that peak
firing rate tends to decrease with more extreme deformations for cells with place fields near the center of
the environment. b) Place unit activity for all 64 place units during compressions of a familiar (161 cm)
linear track, separated by (i) eastward and (ii) westward laps. Each line indicates the firing rate of a single
place unit at each location across the entire track during movement in the specified direction, normalized to
the familiar track peak rate. Units sorted by place field location on the familiar track. Note that, during
compressions, the place code unfolds as if anchored to the beginning of the track until the end of the track
is encountered, at which point the familiar end-of-track place units are reactivated. c) Place unit rate maps
demonstrating a mix of place field (i) duplication, (ii) inhibition, and (iii) perseverance when a new boundary
(white line) is inserted in a familiar open (65 cm x 65 cm) environment. Peak firing rate noted below the
lower left corner of each map.

in the time-averaged rate maps of place units. Some units exhibited place field duplication during
boundary insertion (Fig. 2ci) while other units exhibited place field inhibition (Fig. 2cii). Still other
persevered largely unaffected (Fig. 2ciii). Precisely this mix of responses is observed experimentally
during boundary insertions [12–14].

Together, these results demonstrate that our model gives rise to the heterogeneous behaviors
of place cells observed across three unique deformation paradigms, including features of these data
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that have no other current mechanistic explanation.

Boundary-tethered grid shift underlies model grid and place unit distortions.

How do model interactions give rise to these grid and place unit distortions? During familiarization,
Hebbian learning strengthens the connections from active border units to active grid units at the
expense of connections from inactive border units (Fig. 3a). Once familiarized, active border units
reinstate the grid network state associated with the same pattern of border unit responses during
familiarization. This grid reinstatement occurs even when border inputs are activated at a new
location, such as when a new or displaced boundary is encountered. In a rescaled open environment,
grid reinstatement leads to ‘shifts’ in the spatial phase of the grid pattern, such that the phase
relative to the most recent border input matches the phase entrained during familiarization in the
undeformed environment (Fig. 3b,c). Averaged over time, these shifts resemble a rescaling of the
grid pattern. Because of the periodic nature of the grid representation, border input can only reset
the grid network state to within one grid period. Thus if the grid scale of a unit is small and the
extent of the environmental deformation is relatively large, the number of grid fields within the
deformed environment will be substantially different, making rescaling a poor description.

As for place cells, in our model place unit activity can be thought of as a thresholded sum
of grid unit input [19]. Because of the boundary-tethered grid shifts induced during rescaling
deformations, the location of each place field will also shift, maintaining its spatial relationship to
the most recently contacted boundary (Fig. 3d). Critically, the likelihood of having most recently
encountered a given boundary differs throughout the open environment: locations near the center of
the chamber are more likely to have had an even distribution of previously encountered boundaries,
while locations near a given boundary are more likely to be visited following an encounter with
that boundary (Fig. 3e). When averaged across time, these most recent boundary biases result
in a mix of place field stretching (closer to boundaries) and bifurcation distortions (further from
boundaries).

The most recently encountered boundary is correlated with the direction of movement: the rat
is more likely to have most recently encountered a given boundary when moving away from that
boundary (Fig. 3f). Because of this, boundary-tethered place field shift causes place fields to be
displaced ‘upstream’ along the direction of movement. Finally, more extreme rescaling distortions
lead to more extreme boundary-tethered shifts and less frequent convergence of grid inputs at the
same location, and thus overall systematic decreases in the peak firing rate of grid and place units.
Because movement and thus the most recently contacted boundary is constrained when running laps
on a linear track, linear track compressions provide an especially clear view of boundary-tethered
updating. Until a track end is encountered, grid and place unit activity unfolds according to path
integration alone. When a track end is encountered, border input reinstates the grid network state
and in turn the place network state that coincided with that track end on the familiar track. This
produces the upstream place field shifts observed in Fig. 2c and [11].

Inserting a boundary in an open environment elicits identical border unit activity when ei-
ther the old boundary or new boundary is nearby in the preferred allocentric direction, inducing
boundary-tethered reinstatement of the grid network state at both locations (Fig. S2). This grid
shift translates to a duplication of the place unit representation adjacent to the old and inserted
boundaries. Because a new representation is now active around the inserted boundaries, the old
representation previously active at this location in the familiar environment is no longer activated,
leading to an inhibition of place units participating in this old representation. The representations
of locations away from the duplicated boundaries often persevere unaffected. Thus, in our model,
boundary-tethered grid shift drives the diverse grid and place field distortions observed during
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Figure 3: Boundary-tethered grid shift underlies model grid and place unit distortions. a)
During familiarization, Hebbian learning strengthens the connections between coactive border and grid cells,
at the expense of non-coactive connections. b) During deformations, border input acts to maintain the
previously learned relationship between grid phase and the most recent border input. c) Rate map of a
Module 4 grid unit when the west border was the most recently contacted boundary (red), overlayed with
the rate map of the same unit when the east border was the most recently contacted boundary (blue). The
spatial phase relative to the most recent border input (indicated by red/blue bars) is preserved during all
deformations. Thus the grid pattern is undistorted when separated by the most recent border input. d) Place
fields shift to maintain their previously learned relationships relative to the most recent border input. e)
Likelihood of having most recently contacted each border as a function of location in the square environment.
Color saturation denotes the strength of the bias. Data from [25]. f) Each square in the grid depicts the
joint probability distribution in a square environment of the indicated most recently contacted boundary
and movement direction. Data from [25].

Experimental evidence of the predicted boundary-tethered grid shifts.

Our model thus generates a clear and unique prediction: when a familiar open environment is
rescaled, the locations of grid and place fields should both shift to preserve their spatial relationship
relative to the most recently contacted boundary. To test this prediction, we reanalyzed data from
[8] and [9]. In [8], rats were familiarized with either a 100 cm x 100 cm square or a 100 cm x 70 cm
rectangular open environment. Following this familiarization, rats were reintroduced to familiar
and deformed environments (all combinations of chamber lengths and widths of 70 cm or 100 cm),
while the activity of grid cells was recorded (familiar square: 42 grid cells; familiar rectangle: 23
grid cells). In [9], rats were only familiarized with a 150 cm x 150 cm square open environment.
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Figure 4: Evidence of predicted grid shifts during environmental deformations from rats trained
in (i) a familiar square (data from [8]), (ii) a familiar rectangle (data from [8]), and (iii) a familiar square (data
from [9]). a) Examples of grid shifts visible in ‘boundary rate maps’ (see text) created by dividing spiking
data according to the most recently contacted boundary (indicated by rate map color). Maps organized by
opposing north-south (green—purple) and east-west (blue—red) boundary pairs. Colored arrows indicate
the directions of shifts predicted by our model during each deformation. b) Grid shift was measured as the
relative phase between opposing boundary rate maps, minus the average shift during familiar trials (see text).
Grid shift is shown for each cell (dots), separated by north-south (green—purple) and east-west (blue—red)
boundary rate map pairs. There is an increase in grid shift along deformed, but not undeformed, dimensions,
here quantified by the mean of the distribution of shifts (insets, errors bars are ±1 SEM). Significance markers
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and boundary rate map alignment (colored walls) shown in lower insets. Significance markers (asterisks:
*p < 0.05, **p < 0.01, ***p < 0.001; uncorrected 2-tailed sign test) denote the probability of the measured
proportion occurring by chance (i.e., 50% probability of best alignment by either boundary; full statistics
inTable S2).
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Following this familiarization, the rats were reintroduced to this environment as well as to a 100
cm x 150 cm rectangular enclosure (51 grid cells).

We began by separating the spiking data of each cell by the most recently contacted boundary,
either the north, south, east or west, with contact defined as coming within 12 cm of the boundary
[15]. From these data, we created four ‘boundary rate maps’ which summarized the spatial firing
pattern of the grid cell after contacting the north, south, east and west boundaries, respectively.
Comparison of such rate maps conditioned on contact with opposing boundaries (north-south vs.
east-west) revealed clear examples of grid shift along deformed dimensions (Fig. 4a). To quantify
these shifts, we first cross-correlated opposing boundary rate maps (i.e., north-south and east-west).
Next, we computed the distance from center of the cross-correlation to the nearest peak along the
dimension between to the boundary pair. This distance measured the relative shift between the
corresponding rate maps. Finally, we subtracted the average shift observed during familiar trials
from the shift observed during each deformation trial. This measure revealed an increase in grid
shift along deformed, but not undeformed, dimensions across deformation trials (Fig. 4b).

Next we asked whether the grid pattern in each boundary rate map maintained its spatial
phase with the corresponding boundary, as our model would predict. To address this question,
we compared the full familiar environment rate map to each of the boundary rate maps, while
varying their alignment along deformed dimensions. If the spatial relationship relative to the most
recently contacted boundary is preserved, then each boundary rate map should be most similar to
the familiar environment rate map when the two maps are aligned by the corresponding boundary.
If, on the other hand, reshaping a familiar environment rescales the grid pattern uniformly, then
the familiar and boundary rate maps should be equally well aligned by any boundary. Consistent
with our prediction, we found that a boundary rate map and the familiar environment map were
usually best aligned by the corresponding boundary, rather than the opposite boundary (Fig. 4c).

Lastly, we examined firing rate predictions of our model. If, during deformations, grid vertices
are shifted to different locations when different boundaries are encountered, then averaging across
trajectories originating from different boundaries will necessarily reduce the peak values of the
whole-trial rate map. Thus our model predicts a reduction in the peak firing rate during environ-
mental deformations (Fig. S3a), as measured by the peak value of the whole-trial rate map. On
the other hand, because the density of grid fields within the environment remains unchanged on
average, grid shift does not predict a change in mean firing rate (Fig. S3b), as measured by the total
number of spikes across the entire trial divided by the trial duration. To address this prediction, we
computed for each grid cell the ratio of its average peak rate across all deformed environment trials
to the average peak rate across familiar environment trials. This ratio was significantly below 1
(0.873± 0.028, mean ± SEM; 2-tailed 1-sample t-test versus 1: t(114) = 4.6, p < 0.001; Fig. S3a),
indicating that peak firing rates were lower during environmental deformations, as predicted. Con-
versely, the ratio of the mean firing rates during deformed and familiar trials did not significantly
differ from 1, suggesting that the mean firing rate did not change during environmental deforma-
tions (1.037 ± 0.032, mean ± SEM; 2-tailed 1-sample t-test versus 1: t(114) = 1.16, p = 0.25; Fig.
S3b). In sum, these results provide convergent evidence of boundary-tethered grid shifts during
environmental deformations.

Discussion

Here we proposed that a novel mechanism, boundary-tethered grid shift, underlies the effects of
environmental deformations on grid and place cells. We first demonstrated that a model incorpo-
rating this mechanism can account for key results from a number of environmental deformation
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studies, including features of these data that have remained otherwise unexplained (e.g. scale-
dependent rescaling of grid patterns and modulation of grids by movement direction). Next, we
reanalyzed two classic environmental deformation datasets, and observed striking evidence of the
predicted grid shifts, including the precise alignment of these shifts to the most recently contacted
boundary. Together, these results provide new and compelling evidence that a novel mechanism,
boundary-tethered grid shift, underlies the distortions observed in grid and place cell activity dur-
ing environmental deformations. We also showed that at a circuit level the proposed mechanism
could be naturally implemented by interactions between border cells and grid cells in the entorhinal
cortex.

The apparent rescaling of grid patterns during environmental deformations has been taken as
evidence that the mental metric for space maintained by grid cells can be reshaped by altering
environmental geometry [8, 26]. Our results indicate instead that the grid pattern continues to
reflect unbiased metric path integration during environmental deformations, at least relative to the
most recently contacted boundary. However, our results further imply that, during deformations, a
particular grid network state no longer coincides with a unique spatial location within the environ-
ment. This dissociation between grid network state and spatial location may make environmental
deformation paradigms particularly well-suited for dissociating the contributions of grid cells to
navigation from other factors [27, 28].

Previous work has revealed striking parallels between deformation-induced distortions of spatial
representations in the rat brain and the spatial memory of humans in deformed environments [10, 27,
29, 30], leading to the suggestion that a common mechanism might underlie these effects. Consistent
with this, recent evidence suggests that rescaling can be observed in the time-averaged activity of
human grid cells [31]. In light of our results, we suggest that boundary-tethered grid shift might
be the common mechanism underlying these cross-species similarities, and predict that boundary-
anchored shifts in human spatial memory can be observed during environmental deformations.

The phenomenon of boundary-tethered grid shift, predicted by our model and observed in a
reanalysis of experimental data, could have various neural circuit realizations. Here we implemented
a particular model of interactions between border, grid and place cells that gave rise to these shifts.
Our model was feedforward [20], included an attractor network of grid cells [17], and generated place
cells from grid cell output alone [19]. Although each of these components was motivated by prior
work, our model is not intended as a complete recreation of entorhinal-hippocampal connectivity,
but rather demonstrates how border cell input can give rise to the complex dynamics we describe,
even in a relatively simple network. As such, our model excludes known connections that are not
necessary for these dynamics. For example, our model lacks input to place cells from sources other
than grid cells [32], as well as reciprocal connections from place to grid cells [33], both of which
play important roles in developing and maintaining a functional spatial code. Nevertheless, our
analysis of the experimental data shows that any alternative circuit model of the hippocampal
formation should also incorporate a mechanism to produce boundary-tethered grid shifts, as the
key phenomenon underlying deformation-induced grid and place field distortions.

The prevailing interpretation of these distortions has been that a rescaled environment induces
a rescaled version of the cognitive map [10, 12, 14, 26, 30, 34–39]. Our results suggest an alternative
interpretation. Grid and place representations are not rescaled or otherwise distorted during envi-
ronmental deformations. Rather, these representations are dynamically updated when boundaries
are contacted, as if one were feeling one’s way through the dark. Our results add to a growing
body of literature highlighting the unique ways in which environmental boundaries shape spatial
representations in the brain [8–12, 14, 15, 25, 38, 40, 41], and suggest a reconceptualization of how
these representations dynamically adapt to a changing world.
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Methods

Model

Border layer: The border layer consisted of 36 units. First, the area near each wall in 4 allocen-
tric directions (North, South, East, West) was divided into ‘bricks’ (see [16] for a similar treatment).
Each brick extended 12 cm from the wall and covered 11.1% of the total environment length along
that dimension. The jth unit received a uniform input bj = 0.1 whenever the simulated rat was
within one of three adjacent bricks. This input was was converted to stochastic spiking activity
(see below). Each brick was assigned to a single border unit.

Grid layer: The grid layer, derived from the model of [17], consisted of 5 grid ‘modules’. Each
module consisted of a neural sheet with periodic boundary conditions, visualized as a torus. This
neural sheet was composed of 452 identical 2 unit x 2 unit tiles (902 units per module). Each unit
in a tile was associated with a particular direction (North, South, East, West), which determined
both the movement-direction-specific excitatory input received, as well as its local connectivity.
Movement-direction-specific excitatory input vj to grid unit j was determined by

vj = γ + gm (d cos (θ − φj)) (1)

where d is the distance moved since the previous timestep, θ is the direction of movement, φj is
the preferred direction of unit j, gm is a gain factor specific to the module m to which to unit
j belongs, and γ = 0.6 is a constant. Local connections within each module consisted of shifted
radial inhibition, in which each unit inhibited all units within a 12 unit radius by a uniform weight
of −0.02. The center of this radial inhibition output for each unit was shifted by 2 units away
from that unit in a direction consistent with each units preferred direction. In the absence of other
inputs, each grid module yields a hexagonal grid-like pattern of activation on the neural sheet,
which is translated during movement at a rate proportional to the gain factor. Thus, to model
modules with varying grid scales, the gain factor gm of the mth module was set by

gm =
g1

2
m−1

2

(2)

where g1 = 0.92 is the gain of the smallest-scale module, module 1. This results in a geometric
series of biologically-plausible [9] grid scales for each module.

Place layer: The place layer consisted of 64 units, subject to uniform recurrent inhibition from
all place layer units with a weight of −0.15.

Border-to-grid connectivity: All grid units received additional excitatory feed-forward pro-
jections from all border units. These connections were initialized with random weights uniformly
sampled from the range 0 to 0.00222, and developed through experience via Hebbian learning (see
below and [16]).

Grid-to-place connectivity: Each place unit received additional excitatory feed-forward pro-
jections from 500 random grid units. These connections were initialized with random weights uni-
formly sampled from the range 0 to 0.022, and developed through experience via Hebbian learning
(see below).
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Model dynamics

Activation: The dynamics of the network was developed following the methods in [17]. The
activation aj of unit j was determined by first computing the total input bj to unit j according to

bj =


vj +

I∑
i
aiwij grid

I∑
i
aiwij place

(3)

where ai is a variable quantifying activation of unit i, wij is the weight from unit i to unit j, and I
enumerates all the units. (Note that some weights wij can be zero.) Also recall from above that a
border unit receives a constant input when the rat is in a boundary region associated to the unit.
The total input bi was used to stochastically determine the spiking sj of each unit j during the
current timestep, according to

sj =

{
1 κ (bj − βj) dt > unif(0, 1)

0 κ (bj − βj) dt ≤ unif(0, 1)
(4)

where κ = 500 is a scale factor, βj (border: β = 0; grid: β = 0.1; place: β = 0.05) is the spike
threshold for unit j, unif(0, 1) is a single draw from a random uniform distribution ranging from 0
to 1, and dt = 0.001 sec is the length of each timestep. Finally, this spiking activity was integrated
to update the activation variable aj of unit j after each timestep according to

aj = aj − aj
dt

c
+ αsj (5)

where α = 0.5 is a scale factor and c = 0.02 sec is the time constant of integration.

Hebbian learning: All Hebbian weights were updated by the competitive learning rule

wij = wij + λaj

((ξj − wij) ai)− (wij

∑
n6=i

an)

 (6)

where the sum is only over the set of units with nonzero Hebbian weights to unit j, λ = 0.00001 is
the learning rate, ξj is a constant specifc to the connection type (border-to-grid: ξ = 0.4; grid-to-
place: ξ = 0.5) [20, 24]. This rule results in competitive activity-dependent weight changes among
incoming Hebbian connections, and leads over time to a total weight of ξj across incoming synapses.

Simulation details

Generating simulated rat paths: Because some of the deformed environments that we tested
have not been experimentally studied, it was necessary to generate simulated rat paths, rather than
using experimentally recorded paths. Open field paths were generated via a bounded random walk
model, parameterized by speed and movement direction. At each timestep, unbiased normally-
distributed random noise was added to both speed (σ = 0.001 cm/msec) and movement direction
(σ = 1°/msec). To approximate actual rat exploration, speed was bounded to the range [0, 40]
cm/sec. If a step would result in the rat path crossing a boundary, random noise was again added
repeatedly to the movement direction until the next step would no longer cross the boundary. Open
field paths always began in the center of the environment, with the simulated rat stationary and
facing a random direction. Linear track paths were generated as straight end to end laps at a
constant speed of 20 cm/sec.
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Familiarization: In all simulations, familiarization with the environment was mimicked by
allowing the naive simulated rat to explore the environment for 60 min. Prior to familiarization,
grid layer activity was allowed to settle into its grid-like attractor state for 2 sec without learning.
Initialization of the grid layer was biased so that an axis of the settled grid network state would lie
at an angle of -7.5° relative to east, consistent with experiments [25, 40]. Following familiarization,
the model weights were saved so that all post-familiarization simulations could begin with the
familiarized model.

Post-familiarization testing simulations: The model weights were reset to the state saved
after familiarization, and the experienced virtual rat was allowed to explore each tested environ-
ment for 30 min. Grid layer activity was also initially reset to the familiar environment state
corresponding to the rat’s start location. Learning was turned off during the testing phase.

Analysis

Unit sampling: Due to computational constraints and the redundant nature of grid unit activity,
only the spikes from 30 randomly chosen grid units in each module were recorded and analyzed
during all simulations. All place units were recorded and analyzed.

Rate maps: Rate maps were created by first dividing the environment into 2.5 cm x 2.5 cm
pixels. Then the mean firing rate within each pixel was calculated. Finally, this map was smoothed
with an isotropic Gaussian kernel with a standard deviation of 1.5 pixels (3.75 cm) and square
extent of 9 pixels × 9 pixels (22.5 cm × 22.5 cm). Pixels which were never visited were ignored
during further analyses.

Autocorrelations and cross-correlations: Autocorrelations of rate maps were computed as
described in previous reports [42]. Briefly, overlapping bins of the original rate map and a shifted
version of itself were correlated at a series of single pixel (2.5 cm) step lags. Cross-correlations were
computed similarly, except that two different rate maps, rather than two copies of the same rate
map, were correlated.

Grid scale: To compute grid scale we first averaged the autocorrelations of all grid units within
a module. Next, we computed the mean distance from the center of the autocorrelation to the
center of mass of the six closest surrounding peaks. In cases where the grid period was larger
than the size of the environment thus obscuring the periodicity, grid scale was instead estimated
by multiplying the scale of the next smaller module by

√
2, reflecting the parameters set in the

attractor model creating the grid.

Grid rescaling factor: The grid rescaling factor during each deformation trial was computed
separately for each unit by comparing rescaled versions of the deformed environment rate map to
the familiar environment rate map. Following [9], the deformed rate map was uniformly rescaled
to a series of chamber lengths, ranging from 10 cm below the smaller of the deformed and familiar
chamber lengths, through 10 cm above the larger of these chamber lengths in 5 cm (2 pixel)
increments. This yielded a set of rescaled rate maps for each unit, which were aligned with the
familiar environment ate map by each of the two displaced boundaries. For each rescaled map and

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174367doi: bioRxiv preprint 

https://doi.org/10.1101/174367
http://creativecommons.org/licenses/by-nc-nd/4.0/


alignment, we computed the correlation r between the rescaled and familiar rate maps:

r =

∑I
i=1

∑J
j=1(vi,j − v̄)(v′i,j − v̄′)√∑I

i=1

∑J
j=1(vi,j − v̄)2

√∑I
i=1

∑J
j=1(v

′
i,j, − v̄′)2

(7)

where v is the rescaled rate map, v′ is the familiar rate map, i, j run over pixels in the overlapping
regions of these maps, and v̄ and v̄′ indicate the mean firing rates across the overlapping pixels.
The grid rescaling factor was defined as the ratio between the rescaled chamber length that gave
the highest correlation and the the familiar chamber length, across either alignment.

Place field statistics: First, place fields were identified as regions of contiguous pixels with
firing rates exceeding 3 Hz. Field size was computed as the total area covered (number of pixels ×
the area of a single pixel) by place fields, summing over any disjoint fields. Directional modulation
was measured as the difference in peak firing pixel location when comparing rate maps of activity
in one movement direction along the chamber length versus the opposite direction.

Reanalysis of experimental data

A complete description of the experiments was provided in [8, 9]. To test these data for the presence
of grid shifts during environmental deformations, we first divided the spiking activity of each cell
according to the most recent boundary contact (North, South, East, West). Boundary contact
was defined as the rat being within 12 cm of a boundary. Spiking activity prior to boundary
contact at the beginning of the trial was ignored. Next, four separate rate maps were created, one
for each most recently contacted boundary. To quantify grid shift along a particular dimension
for each cell, the rate maps of opposing boundaries perpendicular to the chosen dimension were
cross-correlated at a series of lags in single pixel steps. Lag range was set by the extent of the
largest deformation: ±12 pixels (±30 cm) for data from [8], ±20 pixels (±50 cm) for data from [9],
along both dimensions. The absolute distance from the center to the nearest peak of this cross-
correlation along the chosen dimension was computed as the measure of grid shift. The nearest
peak was defined by first partitioning the cross-correlation into ‘blobs’ of contiguous pixels which
had correlations of at least 20% of the maximum value. Then, the location with the maximum
correlation value within the blob nearest to the center was taken as the nearest peak. Finally, the
average shift measured across both dimensions during familiar trials was subtracted from the shifts
measured during each deformation trial.

Data and code availability

All simulations were conducted with custom-written Matlab scripts. These scripts, the simulation
results presented here, and similar results from an additional simulation of each experiment (to
confirm reliability), are available from the authors upon reasonable request. All reanalyzed data
are available upon request from the corresponding authors of the relevant papers.
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Figure S1: Schematic of the border, grid, and place cell network model. See Methods for
a complete description of model interactions. Note the behavior of border units during environmental
deformations – stretching the environment stretches the border field, and inserting a barrier duplicates
border fields with the same allocentric relationship to the original and inserted boundaries.
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– 6 units shown from each module. Distortions are minimal in the time-averaged rate maps of small-scale
grid units (matching experiment [18]), but become apparent in the activity of large-scale grid units. Peak
firing rate noted below the lower left corner of each map.
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Figure S3: Grid cell peak firing rate is reduced during environmental deformations. Boundary-
tethered grid shift predicts a reduction in peak firing rate during chamber deformations (since shifting grid
vertices will often misalign), but no change in mean firing rate (as the density of fields remains unchanged).
a) (i) Histogram of the peak firing rate ratios for each grid cell averaged across all deformations (all data from
[8] and [9] combined). Peak firing rate ratio computed for each cell as the peak firing rate (see text) averaged
across all deformations, divided by the peak firing rate averaged across familiar environment trials. The
distribution of peak firing rate ratios is significantly shifted below 1 (mean = dashed blue line; mean ± SEM
= 0.873 ± 0.028), indicating that grid cell peak firing rates are reduced during environmental deformations
(one-sample t-test comparing the peak firing rate ratio vs. 1, t(114) = 4.6, p < 0.001). (ii) Histogram of
model grid unit peak firing rate ratios measured under the same deformation conditions as [8] and [9]. Mean
(solid black line) ±1 standard deviation (grey shading) across 1000 random draws of model grid units from
each experimental condition, with the number of units from each condition matched to the experimental
data. The model predicts a decrease in peak firing rate during deformations (mean = dashed blue line) as
seen in panel (i). b) (i) Histogram of the mean firing rate ratio (see text) for all grid cells and deformations
(data from [8] and [9] combined). The distribution of mean firing rate ratios was not significantly shifted
away from 1 (mean = dashed blue line; mean ± SEM = 1.037 ± 0.032), indicating that grid cell mean firing
rates did not significantly differ during environmental deformations (one-sample t-test comparing the mean
firing rate ratio vs. 1, t(114) = 1.16, p = 0.25). (ii) Histogram of model grid unit mean firing rate ratios
measured under the same deformation conditions as [8] and [9]. The model predicts no change in mean firing
rates during deformations (mean = dashed blue line) as seen in (i).
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