1	Population genomics of Wold	bachia and mtDNA in Drosophila simulans from California	
2			
3	Sarah Signor*		
4			
5			
6	*Department of Molecular an	nd Computational Biology, University of Southern California, Los Angeles,	
7	California USA		
8	Key words: Drosophila simu	lans, population genetics, Wolbachia	
9			
10	Communicating Author:	Sarah Signor	
11		Section of Molecular and Computational Biology	
12		University of Southern California	
13		Los Angeles, California USA	
14		ssignor@usc.edu	
15		Phone 213-740-3065	
16			
17			
18			
19			
20			
21			

22 ABSTRACT: Wolbachia pipientis is a widespread intracellular endosymbiont infecting many arthropods 23 and filarial nematodes. Little is known about the short-term evolution of Wolbachia or its interaction with 24 its host. Wolbachia is maternally inherited, resulting in co-inheritance of mitochondrial organelles such as 25 mtDNA. Here we explore the short-term evolution of Wolbachia, and the relationship between 26 Wolbachia and mtDNA, using a large inbred panel of Drosophila simulans infected with the Wolbachia 27 strain wRi. We find reduced diversity relative to expectation in both *Wolbachia* and mtDNA, but only 28 mtDNA shows evidence of a recent selective sweep or population bottleneck. We find that all individuals 29 in the population are infected, and we estimate *Wolbachia* and mtDNA titre in each genotype. We find 30 considerable variation in both phenotypes, despite low genetic diversity in Wolbachia and mtDNA. A 31 phylogeny of *Wolbachia* and of mtDNA show that both trees are largely unresolved, suggesting a recent 32 origin of the infection and a single origin. Using Wolbachia and mtDNA titre as a phenotype, we perform 33 an association analysis with the nuclear genome and find several regions implicated in the phenotype, 34 including one which contains four CAAX-box protein processing genes. CAAX-box protein processing 35 can be an important part of host-pathogen interactions in other systems, suggesting interesting directions 36 for future research. 37 38 39 40

42

41

43

44 INTRODUCTION:

45 Heritable symbiotic associations such as that between Drosophila and Wolbachia pipientis have 46 widespread impact on host ecology and evolution. These types of heritable endosymbiotic relationships 47 are recognized as key drivers of evolution, but the intraspecific variation that effects their short-term 48 evolution is not well explored. Wolbachia are α -proteobacterial endosymbionts found in up to 40% of all 49 arthropod species¹⁻³. Wolbachia are maternally transmitted and spread through manipulating the 50 reproductive strategies of their host, using mechanisms such as feminization, male-killing, or cytoplasmic 51 incompatibility. The most common of these is cytoplasmic incompatibility, where mating between males 52 and females of the same species results in embryonic mortality if they have different Wolbachia infection 53 status⁴⁻⁸. Wolbachia may also confer certain protections upon their host, such as increased resistance to certain viruses, or increased survival when exposed to certain environmental stressors⁹⁻¹⁵. Wolbachia is 54 55 one of the most abundant obligate intracellular parasites, given that 85% of animal species are insects. This has profound meaning for evolutionary processes such as sexual selection and speciation^{16,17}. 56

57 Wolbachia strain wRi is known to have spread recently in the sister species to the model organism 58 Drosophila melanogaster, D. simulans^{4,5,8,18}. It was at ~95-100% frequency in Southern California 59 populations at the time its original sampling in the 1980's^{19,20}. It likely invaded California less than 25 60 years before it was first detected in 1984^{21} . It is now thought to have been horizontally transmitted to D. 61 simulans from D. ananassae, though the same strain is also found in D. suzukkii²². The maternal 62 transmission of Wolbachia means that as the microorganism spreads all maternally inherited organelles 63 spread along with it. Most notably mtDNA will be forced through a bottleneck, lowering the diversity of 64 mtDNA in infected populations^{18,23,24}. This will cause mtDNA and Wolbachia to be more closely associated than nuclear genes, and this coupling has been demonstrated previously in D. simulans^{18,25,26}. In 65 66 fact, D. simulans is known to have three major mitochondrial haplotypes (siI, siII, and siIII) and two 67 subtypes (siIIA and siIIB) that harbor very little variation and that appear to be nonrandomly associated 68 with Wolbachia strains²⁷⁻²⁹. These mitochondrial haplotypes are largely allopatric, except for the presence

69 of both *si*II, and *si*III in Madagascar and La Reunion³⁰.

70 In D. melanogaster variation in Wolbachia has been well investigated using genomic data, 71 namely in five populations from around the world, though this has not been done in the genomic era in D. 72 simulans³¹. They found long lived associations between mitochondrial and Wolbachia haplotypes and 73 strong geographic structuring among cytotypes³¹⁻³³. This study also observed that Wolbachia titre varied 74 among fly populations as the result of intraspecific nuclear genetic variation³¹. However, the assumption 75 that it was due to intraspecific nuclear background was based on the presence of a constant environment 76 and no polymorphisms were identified. Very little is known about how Wolbachia interact with their 77 hosts, though recent work has uncovered evidence that deubiquitylating enzymes produced by Wolbachia 78 and secreted into the host cytoplasm mediate cytoplasmic incompatibility³⁴. Wolbachia DNA is also 79 frequently inserted into the host genome, though this has not occurred with wRi in D. simulans²¹. Genes 80 involved in the formation of germline stem cells such as *benign gonial cell neoplasm* and *bag-of-marbles* 81 are considered candidates for interacting with Wolbachia, and have been found to have unusual population genetic patterns in *D. melanogaster*^{35,36}. *bag-of-marbles* has been suggested to interact with 82 83 Wolbachia due to fertility rescue in hypomorphs, but the interaction of this gene with Wolbachia in natural populations is not clear^{22,35-37}. Notably, *Wolbachia* localizes in tissues differently depending upon 84 85 the strain and species so the interactions between the host and Wolbachia are likely to also be 86 different^{38,39}.

87 *Wolbachia* infections must be maintained in host populations through transovarial transmission, 88 wherein *Wolbachia* is present in the germline at sufficient copy number to ensure transmission but not to 89 cause host pathology⁴⁰. *Wolbachia* titre has been shown to have important phenotypic effects on the 90 host^{11,41-49}. However, control of *Wolbachia* replication is not well understood, nor is the dependence of 91 this control on host background versus bacterial genotype^{11,50-52}. Differences in *Wolbachia* titre when it is 92 transinfected between species suggests a role of host background in controlling copy number, population 93 genomics in *D. melanogaster* suggest an effect of host background, and there does seem to be host-

94 specific patterns of tissue colonization⁵³⁻⁵⁵. However, multiple *Wolbachia* genotypes can also behave
95 differently in the same genetic background suggesting contributions from the bacterial genome ^{51,56}. It is
96 also possible to select for greater *Wolbachia* densities, though the heritability of this is unclear^{57,58}.

97 Here I investigate the dynamics of *Wolbachia* and mtDNA in a large panel of *D. simulans* from a 98 single Californian population. I determine infection status of Wolbachia in the panel of D. simulans 99 genotypes. I look for signatures of selection in both genomes using summary statistics Tajima's D and π 100 and find that while Wolbachia patterns of variation are not unusual given its demographic history the 101 reduction in mtDNA diversity is suggestive of a recent bottleneck due either to selection or changes in 102 population size. I also measure linkage disequilibrium between mtDNA and Wolbachia as a proxy for co-103 inheritance. Using whole genome sequences, I investigate the phylogeny of both Wolbachia and mtDNA 104 and find that in this population they are essentially unresolved. I investigate variation in the copy number 105 of both Wolbachia and mtDNA in this population using relative estimates derived from illumina 106 sequencing coverage compared to nuclear coverage. I find considerable copy number variation in this 107 population, and an association analysis using this as a phenotype implicates several genomic regions 108 potentially involved in mediating this phenotype. This includes a region containing multiple genes 109 invovled CAAX-box protein prenylation, a process that is important for mediating the relationship 110 between host and pathogen in other systems⁵⁹⁻⁶¹.

111 METHODS

112 Drosophila strains

Strains are as described in⁶². Briefly, the *D. simulans* lines were collected in the Zuma organic orchard in Zuma beach, California in February of 2012 from a single pile of fermenting strawberries. Single mated females were collected and inbred by 15 generations of full sib mating of their progeny. *Drosophila* were raised at a constant temperature of 20° C with 12-hour light/dark cycles. They were raised on a standard glucose/yeast media, and

each library was constructed from adult females of similar age (less than one week).

118 Data sources and processing

119 The sequencing reads were downloaded from the NCBI Short Read Archive from project SRP075682. 120 Libraries were assembled using BWA mem (v. 0.7.5), and processed with samtools (v. 0.1.19) using 121 default parameters 63,64 . The Wolbachia reference is the wRi strain previously identified in Southern 122 California (Accession number NC 012416)²¹. The mtDNA reference is from *D. simulans* w⁵⁰¹, which is 123 haplogroup sill as expected for D. simulans from California (Accession number KC244284)⁶⁵. PCR 124 duplicates were removed using Picard MarkDuplicates (v. 2.9.4) and GATK (v. 3.7) was used for indel realignment and SNP calling using default parameters (http://picard.sourceforge.net)⁶⁶. SNPs were called 125 126 jointly for all genotypes using Haplotypecaller⁶⁶. Individual consensus fasta sequences were produced 127 using SelectVariants to create individual vcf files and FastaAlternateReferenceMaker. Vcf files were 128 filtered for indels and non-biallelic SNPs using VCFtools $(v, 0.1.13)^{67}$. The files were also filtered for 129 SNPs with more than 10% missing data and a minor allele frequency of 2%, meaning that each SNP must 130 be in the population in at least approximately 3 copies. The Wolbachia genome was filtered for regions of 131 unusual coverage or SNP density, for example two regions of the Wolbachia genome harbored ~40 SNPs 132 within two kb, far above background levels of variation (Supp. File for an example). These two regions 133 coincided with regions of unusually high coverage suggesting they are repeated elements. 134 Prediction of Wolbachia infection status

Wolbachia infection status was determined by calculating the mean depth of coverage of the assembly and the breadth of coverage of the consensus sequence using bedtools⁶⁸. Depth of coverage at each nucleotide was estimated using the genomecov function, while breadth was estimated using the coverage function. Predictions of *Wolbachia* infection status using illumina data have previously been shown to have 98.8% concordance with PCR based predication of infection status³².

140 Nucleotide diversity

141 Levels of polymorphism for mtDNA and *Wolbachia* were estimated as π in 10 kb windows. To

142 investigate whether the frequency spectrum conformed to the standard neutral model of molecular

143 evolution we calculated Tajima's D in 10 kb windows using VCFtools (v0.1.14)⁶⁹. To assess the

144 significance of deviations in Tajima's D and π 10,000 simulations were performed using msms

145 conditioned on the number of variable sites and with no recombination⁷⁰.

146 Linkage disequilibrium

147 Linkage between *Wolbachia* and mtDNA SNPs could potentially be a predictor of co-inheritance of

- 148 mtDNA and Wolbachia. Linkage was estimated using VCFtools (v0.1.14) using inter-chrom-geno-r2 to
- 149 estimate r^2 between the two genomes⁶⁷.

150 Estimation of mtDNA and Wolbachia copy number

151 In insects, the phenotypic effect of *Wolbachia* will vary depending upon copy number in the host cells^{9,32}.

152 Given that there are two copies of autosomal DNA in a cell, we infer mtDNA and Wolbachia copy

153 number based on the ratio between mtDNA and autosomal DNA. This is intended to provide a relative

154 estimate of copy number rather than an absolute measure. Relative copy number estimated in this way

155 obscures intra-individual variation and variation between tissues, though the authors note that all flies

156 used in constructing the libraries were females of approximately the same age. *Wolbachia* contains

157 several regions which were excluded due to unusually high coverage across all samples (more than 3x the

158 mean coverage). Average coverage was calculated from randomly chosen and equivalently sized nuclear

159 regions for each mtDNA (Scf_3L:8000000..8014945) and *Wolbachia* (Scf_2L:11000000..11445873).

160 The average coverage of each nuclear region, respectively, was then used to normalize estimates of copy

161 number for each genotype. Previously the results of measuring Wolbachia copy number in the same

samples using both qPCR and estimates from illumina read depth had a Pearson's correlation coefficient

163 of .79, thus this is a robust approach to measuring *Wolbachia* titre³¹.

164 **Phylogenomic analysis**

165 To understand the relationship between Wolbachia infection and mtDNA we reconstructed the

166 genealogical history of each within the sample population. Multiple alignments were generated for both

167 mtDNA and Wolbachia by concatenating fasta consensus sequence files for each genotype. All indels and

- 168 non-biallelic SNPs were excluded from the dataset prior to generating the consensus fasta for each
- 169 genotype. RAxML version 8.10.2 was used to reconstruct phylogenies⁷¹. Maximum likelihood tree

170	searches were conducted using a general time reversible (GTR) model of nucleotide substitution with
171	CAT rate heterogeneity and all model parameters estimated by RAxM ⁷² . Trees were inferred using the
172	rapid bootstrap algorithm and simultaneous estimation of trees and bootstrapping, with automatic
173	estimation of the necessary number of bootstrap replicates.
174	Association Analysis
175	In order to focus on regions that may have been affected by selection due to the recent invasion of
176	Wolbachia we used a subset of the genome identified previously as exhibiting haplotype structure
177	suggestive of recent selection ^{62,73} . These regions are unusually long haplotype blocks, thus many of the
178	SNPs within each block are not independent, reducing the need for correction due to multiple testing.
179	Heterozygous bases were coded as missing, and all loci with more than 10% missing data were excluded
180	from the analysis, as well as SNPs with a minor allele frequency of less than 2%, meaning they were
181	present in the population in at least 3 copies. mtDNA and Wolbachia copy number were used for a
182	multivariate analysis of association using plink.multivariate ⁷⁴ . To investigate the possibility that
183	Wolbachia copy number is affected by polymorphisms in mtDNA, and vice versa, a single trait analysis
184	was performed using plink v. 1.07 ⁷⁵ .
185	
186	<u>RESULTS</u>
187	Sequencing Data
188	The autosomal data included in this analysis was reported in ⁶² . There was very little variation in both
189	Wolbachia and mtDNA in this population. This included 78 SNPs and indels in the Wolbachia genome
190	and 90 in mtDNA. Reduced diversity has been reported previously in D. simulans mtDNA ^{24,25} . The
191	authors note that previous work has established that there is no unusual relatedness in the nuclear genome
192	of this population ^{62} .
193	Infection status
194	In a previous study lines were scored as infected if they had a breadth of coverage greater than 90% and a
195	mean depth greater than one ³² . However, that dataset had a clearly bimodal distribution between infected

196 and uninfected lines, where uninfected lines had breadth of coverage less than 10% while infected lines

197 had a breadth of coverage of greater than 90%. As such that this demarcation was a natural interpretation

198 of the data³². In *D. simulans*, all lines had ~99% breadth of coverage aside from a single line with both a

- lower overall depth of coverage and 80% breadth (Fig. 1). For this reason, all lines were scored as
- 200 infected. 100% infection is not unusually high for *D. simulans*.

201 Nucleotide Diversity

202 Estimates of π in *Wolbachia* ranged from 5.98 x 10⁻⁷ to 1 x 10⁻³, with an average of 1.42 x 10⁻⁵, within the

203 range of estimates from *D. melanogaster* in another study $(7.9 \times 10^{-6} - 2.8 \times 10^{-5})$. The mean of π in

simulated populations of *Wolbachia* is 1.9×10^{-3} suggesting that variation is somewhat reduced in wRi. π

in mtDNA is 1 x 10^{-4} which again is similar to estimates from *D. melanogaster* (4.34 x $10^{-4} - 1.51$ x 10^{-3}

206 ³¹. However, compared to simulated populations this is reduced, as the mean of 10,000 simulations is 1 x

 $207 \quad 10^{-3}.$

208 Overall Tajima's D was estimated to be -2.4 for D. simulans mtDNA (Fig 2). This is similar to 209 estimates in D. melanogaster³². Significance of this estimate was assessed using 10,000 simulations in 210 msms conditioned on the number of segregating sites and no recombination, and it is significant at p 211 < .05. Tajima's D in Wolbachia is not significantly different from expectations under neutrality based on 212 10,000 simulations. Thus, while a selective sweep seems to have strongly effected mtDNA in D. 213 simulans, the same is not true of the Wolbachia population (Fig 2). This is very different from D. 214 *melanogaster* where *Wolbachia* and mtDNA had similar patterns of nucleotide diversity³². 215 This is also much more negative than previously reported for mtDNA in D. $simulans^{25}$. It is very 216 different from the general patterns of Tajima's D in the nuclear genome, where average Tajima's D is 1 217 and the majority of the genome has a positive Tajima's D. Simulations in previous work suggest that the 218 pervasively positive values in the nuclear genome may be due to a population contraction, which again 219 indicates that the population dynamics affecting D. simulans nuclear and mtDNA genomes are very 220 different^{25,62}.

221 Linkage disequilibrium

222	There was no significant linkage disequilibrium between the genomes of Wolbachia and D. simulans
223	mtDNA. Average LD between <i>Wolbachia</i> and mtDNA SNPs was 2.06 x 10 ⁻³ . This may be because the
224	infection of <i>D. simulans</i> was too recent for variation to accumulate along particular lineages, and also
225	suggests that D. simulans was infected by a single invasion. As all strains were infected with Wolbachia it
226	is also possible that variation in both lineages is fixed rather than sorting in the population.
227	
228	Estimation of mtDNA and Wolbachia copy number
229	There was considerable heterogeneity in both Wolbachia and mtDNA copy number (Fig. 1). Mean
230	(standard deviation) copy number of <i>Wolbachia</i> is 5.56 (2.45). This is similar to one estimate in <i>D</i> .
231	<i>melanogaster</i> , where mean copy number is $5.57 (3.95)$ though the standard deviation is lower in D.
232	simulans 32 . The reported mean was lower in other populations of <i>D. melanogaster</i> , though still within the
233	same range (2 - 4.5) ³¹ . Similarly mean mtDNA copy number is 33.85 (15.5) in <i>D. simulans</i> and 32.9
234	(44.5) in one estimate for <i>D. melanogaster</i> ³² . This is again not an absolute measure, but relative to nuclear
235	genomic coverage. The lower standard deviation could be due to more precise staging of the age of D .
236	simulans, less background variation effecting copy number (the D. melanogaster sample was from
237	multiple populations), or other unknown mechanisms. There was a positive relationship between mtDNA
238	and <i>Wolbachia</i> copy number (Fig. 1) ($p < 2.4 \times 10^{-7}$).
239	Phylogenomic analysis
240	To understand the relationship between Wolbachia infection status and mtDNA sequence variation we
241	reconstructed the phylogenetic history of the complete Wolbachia and mtDNA genome using the entire

set of 167 strains (Fig 3-4). What we found is consistent with the recent spread of *Wolbachia* in *D*.

- 243 simulans, as both phylogenies are essentially unresolved. This is not unexpected for mtDNA given
- 244 previous work in the species which found little within-haplotype variation among the three major mtDNA

haplotypes in *D. simulans*^{25,28}. Furthermore, of the 167 sequences 88 are identical to at least one other

- sequence in the sample. While the *Wolbachia* phylogenetic tree gives the impression of having more
- resolution than mtDNA, this is likely due to the larger genome, as the branches have similarly low

248	support. Of the 167 strains included in the tree 18 are identical to one or more Wolbachia genomes. Both
249	trees are essentially star phylogenies with the majority of bootstrap support values being less than 30.
250	Bootstrap support of greater than 70, for two branches in the mtDNA tree and five in the Wolbachia tree,
251	is shown (Fig 3-4). If uninfected individuals had been included in the dataset perhaps it would be possible
252	to test for congruence between the two phylogenies, however the essentially unresolved trees make it
253	clear that both <i>Wolbachia</i> and mtDNA swept the population recently.

254

255 Association Analysis

256 Association analysis was performed using plink.multivariate by regressing the line means for mtDNA and 257 *Wolbachia* copy number on each SNP contained within the previously identified in a scan for selection⁶². 258 This scan for selection focused on identifying haplotype blocks in LD. This considerably reduces the 259 number of SNPs tested for association, in addition to the fact that the SNPs are in haplotype blocks and 260 are therefore not independent tests^{62,73}. This reduces the need for correction due to multiple testing. We 261 used a *p*-value cut-off of $p < 9 \ge 10^{-6}$ and identified 16 SNPs associated with *Wolbachia* and mtDNA copy 262 number. Of these 16 SNPs 13 are located in the same region on chromosome 2R (Scf_2R: 13550916-263 13569038). Given the concentration of significant SNPs in a single region, this is also the region we will 264 focus on the most in the following discussion. The region containing 13 SNPs contains nine genes, four of 265 which are involved in CAAX-box protein processing, *ste24a-c* and a recent duplicate of *ste24c* CG30461. 266 CAAX-box protein processing is a part of a series of posttranslational protein modifications collectively 267 called protein prenylation which are required for fully functional proteins to be targeted to cell 268 membranes or organelles. It has been shown that pathogenic bacteria can exploit the host cell's 269 prenylation machinery, though it is unclear if this occurs in Wolbachia⁵⁹. 270 The other five genes are AsnRs-m, which is largely unannotated but is thought to a mitochondrial 271 aminoacyl-tRNA synthetase⁷⁶. NIPP1Dm is involved in axon guidance and negative regulation of protein

phosphorylation^{77,78}. *CG6805* is generally unannotated but is inferred to be involved in

273 dephosporylation⁷⁶. *Cbp53E* regulates neural development⁷⁹. Lastly, *Ehbp1* is a developmental gene

- implicated in regulation of the Notch pathway and membrane organization⁸⁰.
- 275 Of the other three SNPs identified in this association analysis two are located at Scf_2R:5814103
- and Scf_2R:5811043, while the third is located at Scf_3L:2055556. Scf_2R:5811043and
- 277 Scf_2R:5814103 are located in *Su(var)2-10* and *Phax*, respectively. These are neighboring genes, though
- there is a third gene within 10 kb, Mys45A. Su(var)2-10 is involved in development and chromosome
- 279 organization, but it has also been implicated in the regulation of the innate immune response and defense
- against Gram-negative bacteria⁸¹. Su(var)2-10 is of particular interest given that Wolbachia are Gram-
- 281 negative bacteria, however the potential role of Su(var)2-10 in immune response is not clear. *Phax* is not
- well annotated but is inferred to be involved in snRNA export from the nucleus ⁷⁹. *Mys45A* is potentially
- 283 involved in actin cytoskeleton organization⁷⁹. In *D. melanogaster Wolbachia* uses host actin for maternal
- transmission, though this has not been verified in *D. simulans*⁸². The last SNP, at Scf_3L:2055556, is in
- 285 *Connectin*, a cell adhesion protein also involved in axon guidance⁸³.

286 The identification of these SNPs in association with mtDNA and Wolbachia copy number does 287 not imply a functional relationship. Nonetheless, we chose to investigate whether any of these 288 substitutions had an effect on the coding sequence of any of genes in the region. Of the three SNPs found 289 outside the region containing the CAAX-box proteins all were either in introns or regulatory regions. Of 290 the 13 SNPs identified between Scf 2R: 13550916-13569038 eight are in introns or untranslated regions, 291 including one in the long intron of Cb53E, three in the introns or noncoding transcript of CG6805, and 292 two in the introns of *Ephb*. Of the remaining five SNPs four are in coding regions but silent, causing no 293 change in the amino acid sequence of the protein. This includes silent mutations in the exons of ste24c 294 and two silent mutations in the exons of *Epbh*. One SNP located in an exon of *ste24a*, at 13558515, is an 295 amino acid substitution from a Leucine to a Valine. This is not an uncommon amino acid substitution^{84,85}, 296 though it can be associated with phenotypes^{86,87}. Mutations in introns and untranslated regions could also 297 be having an effect on gene expression or processing, as could other linked SNPs in the region that were 298 not included in the analysis.

299

300 Association between Wolbachia and mtDNA

Association analysis was performed using plink by regressing the line means for mtDNA copy number onto the *Wolbachia* genome and vice versa⁷⁵. There was no association between *Wolbachia* SNPs and mtDNA copy number, but the opposite was not true. One SNP in the *D. simulans* mtDNA affected *Wolbachia* copy number at $p < 3.18 \times 10^{-6}$. It is located in the *D. simulans* homolog of *D. melanogaster srRNA* which has been implicated in pole cell formation⁸⁸. Wolbachia is incorporated into the pole cells, the precursor to the germline, in order to be transmitted⁸⁹.

307

308 **DISCUSSION**

309 Using high through-put sequencing of a large panel of D. simulans we have reconstructed the complete 310 genome sequences of mtDNA and Wolbachia. We use these genome sequences to investigate the recent 311 history of Wolbachia and mtDNA in this population, as well as to estimate titre of both Wolbachia and 312 mtDNA. The history of Wolbachia in this population is reflected in the essentially star-like phylogeny of 313 both mtDNA and Wolbachia, indicating recent spread and co-inheritance. Lack of variation at mtDNA 314 and Wolbachia suggests a single spread of wRi in this population as well as strict vertical transmission in 315 the maternal cytoplasm. Variation in *Wolbachia* is within the range expected under a neutral model, 316 however that was not the case for mtDNA which suggests either a selection sweep or a population 317 bottleneck. Previous studies found similar population genetic patterns at *Wolbachia* and mtDNA in D. 318 melanogaster, and thus could not distinguish whether selection on Wolbachia was driving similar patterns 319 in mtDNA or vice versa³¹. The much stronger pattern of negative Tajima's D in the mtDNA suggests that 320 in D. simulans selection is in fact mitochondrial. There was no linkage disequilibrium between Wolbachia 321 and mtDNA variants, however this is most likely due to fixation of a single mitochondrial haplotype 322 without considerable subsequent mutation.

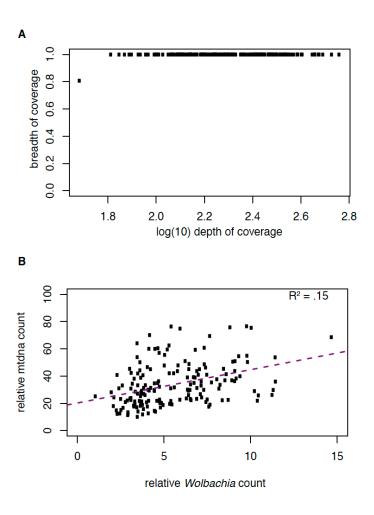
323 Currently little is known about how *Wolbachia* interacts with its host^{37-39,82,90}. Understanding these
 324 interactions, including regulation of *Wolbachia* titre, will be key to understanding the evolution of

325 Wolbachia and its hosts. By normalizing Wolbachia and mtDNA copy number using coverage of the 326 nuclear genome we are able to obtain estimates of its abundance. Much as in previous work, mtDNA 327 copy number was higher than *Wolbachia* copy number, though both varied across strains³². As all of my 328 data was produced from adult females, at the same time, using the same techniques, there is no danger 329 that this is due to differences in methodology among samples³². Estimates of copy number were very 330 similar to previous work in *D. melanogaster*, performed with qPCR, and there has been shown to be a 331 high correlation between qPCR and illumina estimates of copy number^{31,32}. These are not absolute 332 measures, rather they are relative to one another and to nuclear copy number, and they provide robust 333 estimates of Wolbachia titre within the population. As the Wolbachia phylogenetic tree is essentially 334 unresolved in this population but there is considerable variation in Wolbachia titre, it is clear that some 335 host factors must be affecting variation in Wolbachia titre.

336 The history of mtDNA and the nuclear genome is quite divergent in this population. The nuclear 337 genome has an average Tajima's D of 1 and 5 polymorphisms for every 100 bp⁶². Simulations suggest 338 that this is due to a combination of population contraction and selection, most likely from standing variation, though many types of sweeps can produce similar signatures⁶². In contrast the mtDNA genome 339 340 contains an abundance of low frequency variation, and in fact the majority of mtDNA genomes sampled 341 in this population are identical. This is consistent with the recent spread, single origin, and maternal 342 transmission, of wRi in D. simulans. This is consistent with previous work which found low levels of mtDNA variation in *D. simulans* within a haplotype^{24,91}. This is also consistent with work on *Wolbachia* 343 344 which documented the spread of wRi in D. simulans in the 1980's^{4,5,8,18-20}. 345 While it has been proposed elsewhere, the author is not aware of another association analysis of

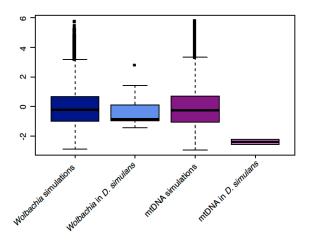
Wille it has been proposed elsewhere, the author is not aware of another association analysis of Wolbachia and mtDNA copy number³². Wolbachia copy number is known to be affected by host background, but the genes or mechanisms involved are not known^{54,55,57}. The fact that four of the nine genes found in the primary region detected in the association analysis are involved in CAAX-box protein processing is of particular interest, given the history of this type of gene and intracellular pathogens. CAAX-box protein processing is a part of a series of posttranslational protein modifications collectively 351 called protein prenylation which are required for fully functional proteins to be targeted to cell 352 membranes or organelles. Prenylated proteins include Ras, Rac, and Rho. However, it has been shown 353 that pathogenic bacteria can exploit the host cell's prenvlation machinerv⁵⁹. For example, Salmonella-354 induced filament A is a protein from Salmonella typhimurium, a gram-negative facultative intracellular 355 bacterium. Salmonella-induced filament A has a CAAX motif required for prenylation to occur, it was 356 shown to be processed by host prenylation machinery, and it is necessary for survival of the bacterium^{60,92,93}. Legionella pneumophila Ankyrin B protein exploits the host prenylation machinery in 357 358 order to anchor Ankyrin B protein to the membrane of the pathogenic vacuole⁶¹. Proliferation of 359 Legionella pneumophila requires Ankyrin B, as does the manifestation of Legionnaires disease. Ankyrin 360 repeat domains are most commonly found in eukaryotes and viruses, though they are rarely found in 361 bacteria and Archaea⁹⁴. In bacteria they are found in a few obligate or facultative intracellular 362 Proteobacteria⁵⁹. Wolbachia has an unusually high number of Ankyrin repeat domains with rapid 363 evolution⁹⁴. Ankyrin proteins play a major role in host-pathogen interactions and the evolution of 364 infections^{95,96}. There is no way to know from the current analysis if the Ankyrin repeat genes are 365 exploiting the host prenylation system but it is an intriguing area for future investigation. The results of 366 this association analysis suggest that some interaction between the pathogen and its host is targeting the 367 protein prenylation machinery.

368 There was also an association between a polymorphism in *srRNA*, which has been implicated in 369 pole cell formation⁸⁸, and *Wolbachia*/mtDNA copy number. Concentration of *Wolbachia* in the posterior 370 of the embryo, where pole cells are forming, is correlated with degree of cytoplasmic incompatibility⁹⁷. D. 371 simulans has been shown to have nearly complete cytoplasmic incompatibility, though it is possible there 372 are mutations sorting at low frequency that affect this or that mitigate negative phenotypic consequences 373 of high Wolbachia titre. It has also been demonstrated that gurken is important in for Wolbachia titre in 374 the germline in *D. melanogaster*, and it is involved in pole cell formation beginning at an earlier stage 375 than srRNA suggesting there could be an interaction between the two factors^{88,90}. D. simulans wRi has a 376 different distribution in the cytoplasm from other strains of *Wolbachia*, as it tends to evenly distribute


- throughout the embryo while other strains are either concentrated at the posterior, or at the anterior of the
- 378 embryo away from the pole cells⁹⁷. Future work in related species may show that these different
- 379 distributions also mitigate different interactions between host and symbiont, including being effected by
- 380 different genes and processes within the host.

381

382

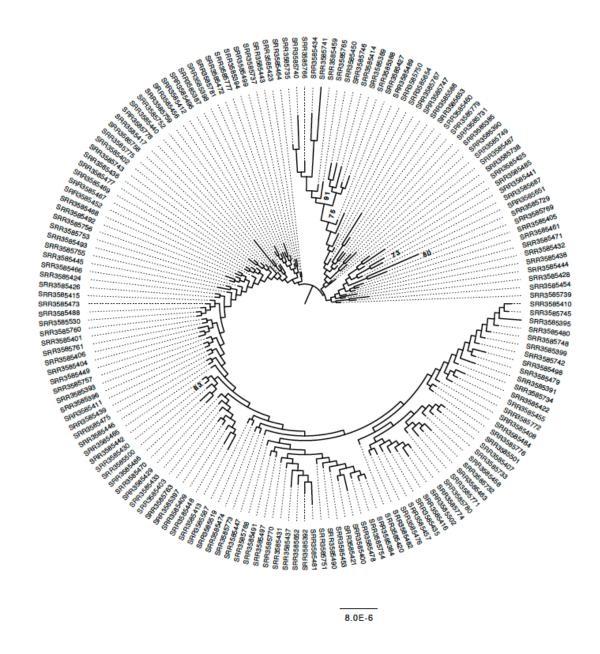

383

bioRxiv preprint doi: https://doi.org/10.1101/174375; this version posted August 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

384

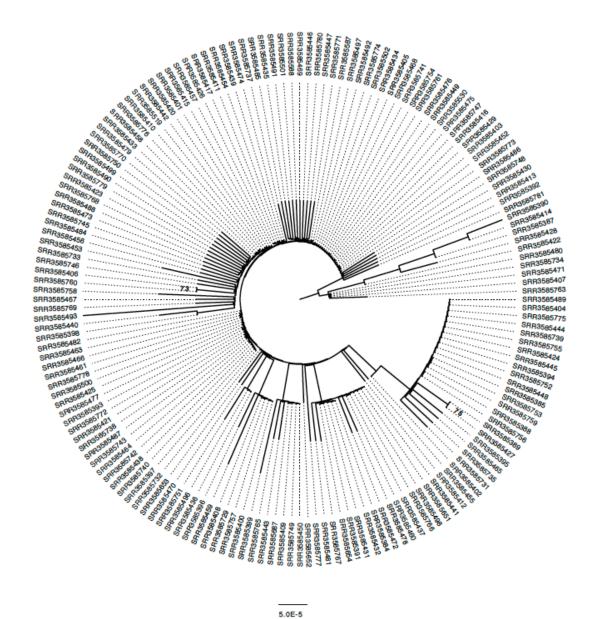
Figure 1. *Wolbachia* infection status and relationship to mtDNA copy number A. Relationship between depth and breadth of sequencing coverage for *Wolbachia* assemblies in the *D. simulans* panel. Depth of coverage is shown in \log_{10} unites and is calculated as the number of reads present at each nucleotide in the reference averaged over every site. Breadth of coverage is the proportion of covered nucleotides in the consensus sequence relative to the reference. **B.** Relationship between relative mtDNA copy number and *Wolbachia* copy number. Both were normalized relative to nuclear coverage. Although separate regions were used to normalize mtDNA and *Wolbachia*, as they are different sizes, average values were very similar within genotypes. The relationship between mtDNA and *Wolbachia* copy number is positive (p < 2.4×10^{-7}).

386


387 Figure 2. Wolbachia and mtDNA Tajima's D. 10,000 simulations were performed for Wolbachia and

388 *D. simulans* each conditioned upon the number of polymorphisms. The actual values in *D. simulans*

389 mtDNA are outside the 95% confidence interval of the simulations, while *Wolbachia* is not. There is


390 considerable variation in Tajima's *D* across the *Wolbachia* genome while mtDNA is much smaller and

invariant in its values of Tajima's *D*.

392

Figure 3: Maximum likelihood genealogy of the *D. simulans Wolbachia* **pathogen**. All strains were infected with *Wolbachia* and are included in this geneaology. The underlying data consist of an ungapped multiple alignment of 168 sequences of the entire *Wolbachia* genome. The unrooted tree was midpoint rooted for visualization and branches with > 70% RAxML bootstrap support values are shown in bold. Scale bars for branch lengths are in term of mutations per site. The majority of branches are essentially unsupported by bootstrapping.

393

Figure 4: Maximum likelihood genealogy of the *D. simulans* **mtDNA genome**. The underlying data consist of an ungapped multiple alignment of 168 sequences of the entire mtDNA genome. The unrooted tree was midpoint rooted for visualization and branches with > 70% RAxML bootstrap support values are shown in bold. Scale bars for branch lengths are in term of mutations per site. The tree is largely unresolved, suggesting recent spread of this mtDNA haplotype through the population.

394 395		
396 397	1.	Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. <i>PLoS ONE</i> 7 , e38544 (2012).
398	2.	Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J. H. How

200		
399		many species are infected with Wolbachia?A statistical analysis of current data. FEMS
400		<i>Microbiol</i> . <i>Lett</i> . 281 , 215–220 (2008).
401	3.	Jeyaprakash, A. & Hoy, M. A. Long PCR improves Wolbachia DNA amplification: wsp
402		sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 9, 393-405
403		(2000).
404	4.	Turelli, M. & Hoffmann, A. A. Cytoplasmic incompatibility in Drosophila simulans:
405		dynamics and parameter estimates from natural populations. Genetics 140, 1319–1338
406		(1995).
407	5.	Turelli, M., Hoffmann, A. A. & McKechnie, S. W. Dynamics of cytoplasmic
408		incompatibility and mtDNA variation in natural <i>Drosophila simulans</i> populations. <i>Genetics</i>
409		132 , 713–723 (1992).
410	6.	Charlat, S., Nirgianaki, A., Bourtzis, K. & Merçot, H. Evolution of Wolbachia-induced
411	0.	cytoplasmic incompatibility in <i>Drosophila simulans</i> and <i>D. sechellia</i> . Evolution 56 , 1735–
412		
	7	1742 (2002).
413	7.	Rousset, F., Vautrin, D. & Solignac, M. Molecular identification of Wolbachia, the agent of
414		cytoplasmic incompatibility in <i>Drosophila simulans</i> , and variability in relation with host
415	_	mitochondrial types. Proc. R. Soc. B 247, 163–168 (1992).
416	8.	Hoffmann, A. A., Turelli, M. & Harshman, L. G. Factors affecting the distribution of
417		cytoplasmic incompatibility in Drosophila simulans. Genetics 126, 933–948 (1990).
418	9.	Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. & Weill, M. High Wolbachia
419		density in insecticide-resistant mosquitoes. Proc. R. Soc. B 269, 1413–1416 (2002).
420	10.	Wong, Z. S., Hedges, L. M., Brownlie, J. C. & Johnson, K. N. Wolbachia-mediated
421		antibacterial protection and immune gene regulation in Drosophila. PLoS ONE 6, e25430-9
422		(2011).
423	11.	Osborne, S. E., Leong, Y. S., O'Neill, S. L. & Johnson, K. N. Variation in antiviral
424		protection mediated by different Wolbachia strains in <i>Drosophila simulans</i> . <i>PLoS Pathog</i> 5,
425		e1000656–9 (2009).
426	12.	Fytrou, A., Schofield, P. G., Kraaijeveld, A. R. & Hubbard, S. F. Wolbachia infection
427	12.	suppresses both host defence and parasitoid counter-defence. <i>Proc. R. Soc. B</i> 273, 791–796
428		(2006).
429	13.	Brownlie, J. C. <i>et al</i> . Evidence for metabolic provisioning by a common invertebrate
430	13.	
		endosymbiont, <i>Wolbachia pipientis</i> , during periods of nutritional stress. <i>PLoS Pathog</i> 5, 1000268 (2000)
431	1.4	e1000368 (2009).
432	14.	Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces
433		resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e1000002
434		(2008).
435	15.	Hedges, L. M., Brownlie, J. C. & O'Neill, S. L. Wolbachia and virus protection in insects.
436		322 , 702 Science (2008).
437	16.	Jiggins, F. M., Hurst, G. & Majerus, M. Sex-ratio-distorting Wolbachia causes sex-role
438		reversal in its butterfly host B. Proc. R. Soc. B 267, 69–73.
439	17.	Koukou, K. et al. Influence of antibiotic treatment and Wolbachia curing on sexual isolation
440		among Drosophila melanogaster cage populations. Evolution 60, 87–11 (2006).
441	18.	Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in
442		California Drosophila. Nature 353, 440–442 (1991).
443	19.	Hoffmann, A. A. & Turelli, M. Unidirectional incompatibility in <i>Drosophila simulans</i> :
444		inheritance, geographic variation and fitness effects. <i>Genetics</i> 119 , 435–444 (1988).
445	20.	Hoffmann, A. A., Turelli, M. & Simmons, G. M. Unidirectional incompatibility between
446		populations of <i>Drosophila simulans</i> . Evolution 40 , 692–701 (1986).
447	21.	Klasson, L. <i>et al</i> . The mosaic genome structure of the Wolbachia wRi strain infecting
448	<i>4</i> 1.	Drosophila simulans. Proc. Nat. Acad. Sci. USA 106 , 5725–5730 (2009).
449	22.	Choi, J. Y. & Aquadro, C. F. The coevolutionary period of <i>Wolbachia pipientis</i> infecting
тт)	<i>LL</i> .	Choi, J. 1. & Aquadio, C. 1. The cocyonationary period of worbachia pipientis infecting

450		Drosophila ananassae and its impact on the evolution of the host germline stem cell
451		regulating genes. Mol. Biol. Evol. 31, 2457–2471 (2014).
452	23.	Ballard, J. W. O. Comparative genomics of mitochondrial DNA in Drosophila simulans. J
453		<i>Mol Evol</i> 51 , 64–75 (2000).
454	24.	Ballard, J. W., Hatzidakis, J., Karr, T. L. & Kreitman, M. Reduced variation in Drosophila
455		simulans mitochondrial DNA. Genetics 144, 1519–1528 (1996).
456	25.	Ballard, J. W. O. Comparative genomics of mitochondrial DNA in Drosophila simulans. J
457		<i>Mol Evol</i> 51 , 64–75 (2000).
458	26.	Solignac, M., Vautrin, D. & Rousset, F. Widespread occurence of the proteobacteria
459		Wolbachia and partial cytoplasmic incompatibility in Drosophila melanogaster. C. R. Acad.
460		Sci. 317 , 461-479 (1994).
461	27.	Solignac, M. & Monnerot, M. Race formation, speciation, and introgression within
462		Drosophila simulans, D. mauritiana, and D. sechellia inferred from mitochondrial DNA
463		analysis. <i>Evolution</i> 40 , 531–539 (1986).
464	28.	Baba-Aïssa, F., Solignac, M., Dennebouy, N. & David, J. R. Mitochondrial DNA variability
465		in <i>Drosophila simulans</i> : quasi absence of polymorphism within each of the three
466		cytoplasmic races. <i>Heredity</i> 61 , 419–426 (1988).
467	29.	Montchamp-Moreau, C., Ferveur, J. F. & Jacques, M. Geographic distribution and
468	27.	inheritance of three cytoplasmic incompatibility types in <i>Drosophila simulans</i> . <i>Genetics</i>
469		129, 399–407 (1991).
470	30.	James, A. C. & Ballard, J. W. Expression of cytoplasmic incompatibility in <i>Drosophila</i>
471	50.	simulans and its impact on infection frequencies and distribution of Wolbachia pipientis.
472		Evolution 54, 1661–1672 (2000).
473	31.	Early, A. M. & Clark, A. G. Monophyly of <i>Wolbachia pipientis</i> genomes within <i>Drosophila</i>
474	51.	<i>melanogaster</i> : geographic structuring, titre variation and host effects across five
475		populations. <i>Mol. Ecol.</i> 22, 5765–5778 (2013).
476	32.	Richardson, M. F. <i>et al.</i> Population genomics of the Wolbachia endosymbiont in <i>Drosophila</i>
477	52.	melanogaster. PLoS Genet. 8, e1003129 (2012).
478	33.	Nunes, M. D. S., Nolte, V. & Schl tterer, C. Nonrandom Wolbachia infection status of
479	55.	Drosophila melanogaster strains with different mtDNA haplotypes. Mol. Biol. Evol. 25,
480		2493–2498 (2008).
480	34.	Beckmann, J. F., Ronau, J. A. & Hochstrasser, M. A <i>Wolbachia</i> deubiquitylating enzyme
482	54.	induces cytoplasmic incompatibility. <i>Nat Microbiol</i> 2 , 17007 (2017).
483	35.	Civetta, A. Rapid Evolution and gene-specific patterns of selection for three genes of
484	55.	
484	26	spermatogenesis in <i>Drosophila</i> . Mol. Biol. Evol. 23, 655–662 (2005).
485	36.	Bauer DuMont, V. L., Flores, H. A., Wright, M. H. & Aquadro, C. F. Recurrent positive
480		selection at <i>bgcn</i> , a key determinant of germ line differentiation, does not appear to be
487		driven by simple coevolution with its partner protein <i>bam</i> . <i>Mol. Biol. Evol.</i> 24 , 182–191 (2006)
	27	
489	37.	Flores, H. A., Bubnell, J. E., Aquadro, C. F. & Barbash, D. A. The Drosophila bag of
490		<i>marbles</i> gene interacts genetically with Wolbachia and shows female-specific effects of $B_{L} = S_{L} = 1005452$ (2015)
491	20	divergence. <i>PLoS Genet.</i> 11 , e1005453 (2015).
492	38.	Serbus, L. R. & Sullivan, W. A Cellular basis for Wolbachia recruitment to the host
493	20	germline. <i>PLoS Pathog</i> 3 , e190 (2007).
494	39.	Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell
495	10	biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).
496	40.	McGraw, E. A., Merritt, D. J., Droller, J. N. & O'Neill, S. L. Wolbachia density and
497		virulence attenuation after transfer into a novel host. <i>Proc. Nat. Acad. Sci. USA</i> 99 , 2918–
498	4.1	2923 (2002).
499	41.	Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite
500		associations between Bacteriophage, Wolbachia, and Arthropods. PLoS Pathog 2, e43-10

501		(2006)
501	42.	(2006). Martinez, L. et al. Should sumbiants he nice or calfish? Antiviral affects of Walkashis are
502	42.	Martinez, J. <i>et al.</i> Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. <i>PLoS Pathog</i> 11 , e1005021 (2015).
503	43.	Clark, M. E., Veneti, Z., Bourtzis, K. & Karr, T. L. Wolbachia distribution and cytoplasmic
504	43.	
505 506		incompatibility during sperm development: the cyst as the basic cellular unit of CI
500 507	44.	expression. Mech. Dev. 120, 185–198 (2003).
508	44.	Chrostek, E., Marialva, M. S. P., Yamada, R., O'Neill, S. L. & Teixeira, L. High anti-viral protection without immune upregulation after interspecies Wolbachia transfer. <i>PLoS ONE</i> 9 ,
508		
510	45.	e99025 (2014). Chrostek E. & Taivaira L. Mutualian broakdown by amplification of Walhashia gapas
510	43.	Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes.
512	46.	PLoS Biol. 13, e1002065 (2015).
512	40.	Chrostek, E. <i>et al.</i> Wolbachia variants induce differential protection to viruses in <i>Drosophila</i>
515	47.	<i>melanogaster</i> : A phenotypic and phylogenomic analysis. <i>PLoS Genet.</i> 9 , e1003896 (2013).
514	47.	Hoffmann, A. A. <i>et al.</i> Successful establishment of Wolbachia in Aedes populations to
515	48.	suppress dengue transmission. <i>Nature</i> 476 , 454–457 (2011).
517	40.	McMeniman, C. J. <i>et al.</i> Host adaptation of a Wolbachia strain after long-term serial
517	49.	passage in mosquito cell lines. <i>App. Environ. Microbiol.</i> 74 , 6963–6969 (2008).
518	49.	Osborne, S. E., Iturbe-Ormaetxe, I., Brownlie, J. C., O'Neill, S. L. & Johnson, K. N.
520		Antiviral protection and the importance of Wolbachia density and tissue tropism in
520 521	50.	Drosophila simulans. App. Environ. Microbiol. 78 , 6922–6929 (2012).
521	50.	Kondo, N., Shimada, M. & Fukatsu, T. Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. <i>Biol. Lett.</i> 1 , 488–491 (2005).
522	51.	Reynolds, K. T., Thomson, L. J. & Hoffmann, A. A. The effects of host age, host nuclear
525 524	51.	•
524 525		background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosonhila malanogastar, Canatias 164, 1027, 1034 (2003)
525 526	52.	in Drosophila melanogaster. Genetics 164 , 1027–1034 (2003). Olsen, K., Reynolds, K. T. & Hoffmann, A. A. A field cage test of the effects of the
520 527	52.	endosymbiont Wolbachia on <i>Drosophila melanogaster</i> . <i>Heredity</i> (2001).
528	53.	Boyle, L., O'Neill, S. L., Robertson, H. M. & Karr, T. L. Interspecific and intraspecific
528 529	55.	horizontal transfer of Wolbachia in <i>Drosophila</i> . Science 260 , 1796–1799 (1993).
530	54.	Poinsot, D., Bourtzis, K., Markakis, G. & Savakis, C. <i>Wolbachia</i> transfer from <i>Drosophila</i>
531	54.	<i>melanogaster</i> into <i>D. simulans</i> : host effect and cytoplasmic incompatibility relationships.
532		Genetics (1998).
533	55.	McGraw, E. A., Merritt, D. J., Droller, J. N. & O'Neill, S. L. Wolbachia-mediated sperm
534	55.	modification is dependent on the host genotype in <i>Drosophila</i> . <i>Proc. R. Soc. B</i> 268 , 2565–
535		2570 (2001).
536	56.	Poinsot, D., Montchamp-Moreau, C. & Mercot, H. Wolbachia segregation rate in
537	50.	Drosophila simulans naturally bi-infected cytoplasmic lineages. Heredity 85 (Pt 2), 191–
538		198 (2000).
539	57.	Boyle, L., O'Neill, S. L., Robertson, H. M. & Karr, T. L. Interspecific and intraspecific
540	57.	horizontal transfer of Wolbachia in <i>Drosophila</i> . Science 260 , 1796–1799 (1993).
541	58.	Perrot-Minnot & Werren. Wolbachia infection and incompatibility dynamics in
542	50.	experimental selection lines. J. Evol. Biol. 12, 272–282 (1999).
543	59.	Amaya, M., Baranova, A. & van Hoek, M. L. Protein prenylation: A new mode of host-
544	57.	pathogen interaction. <i>Biochemical and Biophysical Research Communications</i> 416 , 1–6
545		(2011).
546	60.	Reinicke, A. T. <i>et al</i> . A <i>Salmonella typhimurium</i> effector protein SifA is modified by host
547	50.	cell prenylation and s-acylation machinery. J. Biol. Chem. 280 , 14620–14627 (2005).
548	61.	Price, C. T. D., Al-Quadan, T., Santic, M., Jones, S. C. & Abu Kwaik, Y. Exploitation of
549	~	conserved eukaryotic host cell farnesylation machinery by an F-box effector of <i>Legionella</i>
550		pneumophila. J Exp Med 207, 1713–1726 (2010).
551	62.	Signor, S. A., New, F. & Nuzhdin, S. <i>in review</i> . An abundance of high frequency variance

552		uncovered in a large panel of Drosophila simulans.
553 554	63.	Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM <i>arXiv</i> . 1–3 (2015).
555	64.	Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-
556		2079 (2009).
557 558	65.	Meiklejohn, C. D. <i>et al</i> . An Incompatibility between a mitochondrial tRNA and its nuclear- encoded tRNA synthetase compromises development and fitness in <i>Drosophila</i> . <i>PLoS</i>
559		Genet. 9, e1003238 (2013).
560	66.	McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing
561		next-generation DNA sequencing data. Genome Res. 20, 1297-1303 (2010).
562	67.	Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158
563		(2011).
564	68.	Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
565		features. Bioinformatics 26, 841–842 (2010).
566	69.	Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA
567		polymorphism. <i>Genetics</i> 123 , 585–595 (1989).
568	70.	Ewing, G. & Hermisson, J. MSMS: a coalescent simulation program including
569		recombination, demographic structure and selection at a single locus. <i>Bioinformatics</i> 26,
570		2064–2065 (2010).
571	71.	Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
572	/1.	phylogenies. <i>Bioinformatics</i> 30 , 1312–1313 (2014).
573	72.	Izquierdo-Carrasco, F., Smith, S. A. & Stamatakis, A. Algorithms, data structures, and
574	12.	numerics for likelihood-based phylogenetic inference of huge trees. <i>BMC Bioinformatics</i>
575		12, 470 (2011).
576	73.	Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent selective sweeps in
577	15.	North American <i>Drosophila melanogaster</i> show signatures of soft sweeps. <i>PLoS Genet.</i> 11,
578		e1005004 (2015).
579	74.	Ferreira, M. A. R. & Purcell, S. M. A multivariate test of association. <i>Bioinformatics</i> 25,
580	/4.	132–133 (2008).
580	75.	
582	15.	Purcell, S. <i>et al.</i> PLINK: A tool set for whole-genome association and population-based
583	76.	linkage analyses. <i>Am. J. Hum. Genet.</i> 81, 559–575 (2007). FlyBase Curators, Swiss-Prot Project Members InterPro Project Members. Gene Ontology
	70.	
584 585	77	annotation in FlyBase through association of InterPro records with GO terms. (2004).
586	77.	Babu, K., Bahri, S., Alphey, L. & Chia, W. Bifocal and PP1 interaction regulates targeting
	70	of the R-cell growth cone in <i>Drosophila</i> . <i>Dev. biol</i> . 288 , 372–386 (2005).
587	78.	Bennett, D., Szoor, B., Gross, S., Vereshchagina, N. & Alphey, L. Ectopic expression of
588		inhibitors of Protein phosphatase type 1 (PP1) can be used to analyze roles of PP1 in
589	70	Drosophila development. Genetics 164, 235–245 (2003).
590	79.	Gaudet, P., Livstone, M. & Thomas, P. Gene Ontology annotation inferences using
591	00	phylogenetic trees. GO Reference Genome Project. (2010).
592	80.	Giagtzoglou, N. et al. dEHBP1 controls exocytosis and recycling of Delta during
593	0.1	asymmetric divisions. J. Cell Biol. 196, 65–83 (2012).
594	81.	Cronin, S. J. F. <i>et al.</i> Genome-wide RNAi screen identifies genes involved in intestinal
595		pathogenic bacterial infection. <i>Science</i> 325 , 340–343 (2009).
596	82.	Newton, I. L. G., Savytskyy, O. & Sheehan, K. B. Wolbachia utilize host actin for efficient
597		maternal transmission in <i>Drosophila melanogaster</i> . <i>PLoS Pathog</i> 11 , e1004798 (2015).
598	83.	Chiba, A. Early development of the <i>Drosophila</i> neuromuscular junction: a model for
599		studying neuronal networks in development. Int. Rev. Neurobiol. (1999).
600	84.	Yampolsky, L. Y. & Stoltzfus, A. The exchangeability of amino acids in proteins. <i>Genetics</i>
601		170, 1459–1472 (2005).
602	85.	Creixell, P., Schoof, E. M., Tan, C. S. H. & Linding, R. Mutational properties of amino acid

603		residues: implications for evolvability of phosphorylatable residues. <i>Philos. Trans. R. Soc. B</i>
604		367, 2584–2593 (2012).
605	86.	Leone, A. et al. Evidence for nm23 RNA overexpression, DNA amplification and mutation
606		in aggressive childhood neuroblastomas. Oncogene 8, 855-865 (1993).
607	87.	Ishiko, A. et al. A novel leucine to valine mutation in residue 7 of the helix initiation motif
608		of Keratin10 leads to bullous congenital ichthyosiform erythroderma. J. Inv. Dermatol. 116,
609		991–992 (2001).
610	88.	Mahowald, A. P. Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203, 187–213
611		(2001).
612	89.	Kose, H. & Karr, T. L. Organization of Wolbachia pipientis in the Drosophila fertilized egg
613		and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech. Dev. 51, 275–288
614		(1995).
615	90.	Serbus, L. R. et al. A feedback loop between Wolbachia and the Drosophila gurken mRNP
616		complex influences Wolbachia titer. J. Cell Sci. 124, 4299–4308 (2012).
617	91.	Ballard, J. W. O. Comparative genomics of mitochondrial DNA in Drosophila simulans. J.
618		<i>Mol. Evol.</i> 51 , 64–75 (2000).
619	92.	Vinh, D. B. N., Ko, D. C., Rachubinski, R. A., Aitchison, J. D. & Miller, S. I. Expression of
620		the Salmonella spp. virulence factor SifA in yeast alters Rho1 activity on peroxisomes. Mol.
621		<i>Biol. Cell</i> 21, 3567–3577 (2010).
622	93.	Brumell, J. H., Goosney, D. L. & Finlay, B. B. SifA, a type III secreted effector of
623		Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along
624		microtubules. <i>Traffic</i> 3 , 407–415 (2002).
625	94.	Siozios, S. et al. The diversity and evolution of Wolbachia ankyrin repeat domain genes.
626		<i>PLoS ONE</i> 8 , e55390 (2013).
627	95.	Bork, P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules
628		that cross phyla horizontally? Proteins 17, 363–374 (1993).
629	96.	Habyarimana, F. et al. Role for the Ankyrin eukaryotic-like genes of Legionella
630		pneumophila in parasitism of protozoan hosts and human macrophages. Environ. Microbiol.
631		10, 1460–1474 (2008).
632	97.	Veneti, Z., Clark, M. E., Karr, T. L., Savakis, C. & Bourtzis, K. Heads or Tails: Host-
633		Parasite Interactions in the Drosophila-Wolbachia System. App. Env. Microbiol. 70, 5366-
634		5372 (2004).
635		