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Abstract 

Neuron maturation is a critical process in neurogenesis, during which neurons gain 

their morphological, electrophysiological and molecular characteristics for their 

functions as the central components of nervous system. To better understand the 

molecular changes during such process, we integrated protein-protein interaction 

network and public single cell RNA-seq data of mature and immature neurons to 

identify functional modules whose activities are relevant to neuron maturation process 

in humans. Based on the identified modules, we further developed and validated a 

machine learning based metric of neuron maturity, namely neuron maturity index 

(NMI). This work provides new frameworks for functional module identification as 

well as quantifications of neuron maturity state in single neuron or purified neuron 

RNA-seq data. 

 
Introductions 

Brain, the central organ of the nervous system which controls most of the activities of 

the body and harbors intellectual and cognitive abilities, has a complex 

cyto-architecture containing multiple types of neurons and glia. By means of synaptic 

contacts, neurons form local and long distance networks, which are a key component 

for brain function. Prior to the establishment of neuronal connections, neurons are 

generated from neuronal progenitor cells (NPC) located in the areas near the 

ventricles, and start a long maturation comprising a series of sequential and 

sometimes overlapping steps: neuronal migration, axon elongation, dendrite formation, 

synaptogenesis and refinement of connections (pruning). This complex developmental 

process leads immature neurons to eventually acquiring their mature appearance and 

full electrical excitability (Frank and Tsai, 2009; Lalli, 2012; Rosso and Inestrosa, 

2013). However, while the molecular changes and regulatory mechanisms of NPC 

proliferation have been described in detail (Kintner, 2002; Urban and Guillemot, 

2014), our knowledge of neuron maturation is still relatively sparse. A comprehensive 

investigation of neuron maturation at the molecular level could largely expand our 

understanding not only of brain development and function, but also of 

neurodevelopmental disorders such as autism and schizophrenia. It could also spark 

the quantitative measurement of neuronal maturity status, which may provide a 

powerful tool for future studies. 

Here, we adapted insulated-heat-diffusion-based network smoothing procedure with 

topological overlap matrix based module identification method to analyze difference 

between immature and mature neurons on the transcriptome level, based on the public 

single cell RNA sequencing data of adult and fetal human brain tissues and the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174748doi: bioRxiv preprint 

https://doi.org/10.1101/174748
http://creativecommons.org/licenses/by-nc/4.0/


protein-protein interaction network annotated in Reactome database. With the 

identified functional modules discriminating neurons in different maturity states, we 

develop the machine learning based neuron maturity indices or NMIs, which aim to 

quantify the level of neuron maturity. The NMI models are further applied to multiple 

human and mouse single-cell or purified bulk RNA-seq data from neurons at different 

developmental stages and conditions, verifying its usability and reliability in 

describing and comparing a variety of neuron maturity states. 
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Materials and Methods 

Identification of neuron maturation relevant functional modules in human 

protein-protein interaction (PPI) network 

The human protein-protein interaction network was retrieved from Reactome database 

(v57)(Croft, et al., 2014; Fabregat, et al., 2016), which involves 8,170 proteins and 

200,260 undirected interactions. Proteins encoded by genes whose expression was 

undetectable in brains were excluded, with 5,962 proteins and 125,437 interactions 

remained. 

The single cell RNA-seq (scRNA-seq) data of human brains was retrieved from SRA 

(SRP057196)(Darmanis, et al., 2015). The RNA-seq reads were mapped to the human 

genome hg38 using STAR 2.3.0e (Dobin, et al., 2013)with default parameters. The 

number of reads covering exonic regions of each protein-coding gene annotated in 

GENCODE v21 was counted and normalized using DESeq2(Love, et al., 2014). 

FPKM was calculated for each gene in each sample. Average FPKM of each gene was 

calculated for mature and immature neurons, as the mean FPKM across all cells 

classified as “neurons” and “fetal quiescent”, respectively. Expression level difference 

between mature and immature neurons of each gene was represented by expression 

alteration score s: 

� � log� � � �	 log�� 
�, 

where f is the fold change between average FPKM of mature and immature neurons, 

and p is the P-value of ANOVA with neuron maturity state as the independent 

variable. 

Heat diffusion based network smoothing procedure, as described and implemented in 

HotNet2(Leiserson, et al., 2015), was then applied to the obtained PPI network where 

the above expression alteration scores were assigned to corresponding nodes. In brief, 

a diffusion matrix, which describes the amount of heat diffused between each node 

pair in the network during the insulated heat diffusion process when the system 

reaches equilibrium, was defined as: 

� � 
�� 	 �1 	 
�����. 

Here, β is the insulating parameter which was set to 0.55 in this study, and W is the 

normalized adjacency matrix. The smoothed expression alteration score of nodes in 

the network was then calculated as: 

�� � ��, 

where s is the vector of expression alteration scores of all nodes in the network. 
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Weights were assigned to the edges which represent the annotated protein-protein 

interactions: 

��,� � 1 	
�	�
�	�
 �

���
��|	�
 |,�	�
 ��
� �0,1�. 

Topological overlap matrix (TOM) based module identification procedure(Yip and 

Horvath, 2007), as implemented in WGCNA(Langfelder and Horvath, 2008), was 

then applied to resulted weighted PPI network. In brief, TOM was defined as a 

N×Nsquare matrix with N as the number of nodes in the network: 

����,� �
��,��∑ ��,�������,�

������,��������,�
, 

where ai,j is the weight of edge between node i and node j, ki is the degree of node i. 

Hierarchical clustering with average linkage method was applied using TOM as the 

distance matrix, followed by the dynamic tree cutting procedure implemented in R 

package DynamicTreeCut(Langfelder, et al., 2008), requiring minimal module size as 

20. For each identified module, Wilcoxon signed rank test was applied to the 

expression alteration scores of proteins in the module. Modules with 

Benjamini-Hochberg (BH) corrected P<0.05 was defined as discriminable functional 

modules. Discriminable functional modules with positive median expression 

alteration scores were defined as mature-high modules, while the remaining ones were 

defined as immature-high modules. 

Characterization of functional modules 

Gene Ontology (GO) enrichment analysis was done for each identified discriminable 

functional module using parentChild algorithm (Grossmann, et al., 2007) 

implemented in topGO (Alexa and Rahnenfuhrer, 2016), with all genes encoding for 

proteins involved in the PPI network as background. Pairwise functional similarities 

of discriminable modules were calculated using GOSemSim (Yu, et al., 2010), by 

averaging similarities of the three GO categories: cellular component (CC), biological 

process (BP), and molecular function (MF). Hierarchical clustering with complete 

linkage was applied to the distances among discriminable modules defined as one 

minus the calculated similarity. 

Functional pathway annotation was done for each identified discriminable functional 

modules based on the pathway gene set annotation in Reactome using one-sided 

Fisher’s exact test to compare with all genes encoding for proteins in the PPI network. 

Pathways with BH corrected P<0.05 were selected. 

Generation of Neuron Maturity Index (NMI) 
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The NMI models were constructed aiming at the discrimination of mature and 

immature neurons. To objectively build and test the models, the mature and immature 

neuron scRNA-seq data mentioned above was randomly separated into two groups. 

The training set included 99 mature neurons and 82 immature neurons. The test set 

included 32 mature neurons and 28 immature neurons. 

Based on the training set, LASSO logistic regression implemented in glmnet 

(Friedman, et al., 2010) was applied to each identified functional modules, with 

standardized expression levels of genes in the module in each sample as independent 

variables and neuron maturity state as the dependent variable. The expression level 

standardization was done for each gene separated as following: 

�̂ �
����	����������
�������	��
����

	 
�������	��
����
. 

Here, means∈T(log10(es+1)) and sds∈T(log10(es+1)) represent the mean and standard 

deviation of the log10-transformed expression levels (in FPKM) across all samples in 

the training set. The LASSO regularization parameter λ was then determined using 

ten-fold cross-validation to maximize area under curve (AUC) of receiver operating 

characteristic (ROC) of the model. For each sample given the expression levels in 

FPKM, the resulted LASSO logistic regression model of each module predicted the 

probability of the sample being mature neuron in relative to immature neuron, 

therefore it was defined as the modular neuron maturity index (mNMI) of the 

functional module. Those mNMI models were then applied to the test set for 

performance evaluation, as well as other neuron scRNA-seq data or purified neuron 

bulk RNA-seq data for further investigations. 

To integrate multiple mNMIs of different functional modules, a weighted mean of 

multiple mNMIs was calculated for module set S: 

��� ! �
∑ "�#�$%&���


∑ "���

. 

Here, the weight of mNMIi (wi) was defined as AUCi-0.5, where AUCi is the AUC of 

ROC of mNMI during the ten-fold cross-validation in the training dataset. When 

S={all functional modules}, the corresponding iNMIS was defined as transcriptome 

NMI (tNMI). Discriminable NMI (dNMI), on the other hand, was defined as the 

iNMIS when S={all discriminable modules}. Lastly, neuron functionality index (NFI) 

was defined as the iNMIS when S={all mature-high modules}. 
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Results 

Detection of protein-protein interaction modules relevant to human neuron 

maturation 

To comprehensively investigate changes of functional modules during the process of 

neuron maturation in humans, we adapted the module detection algorithm based on 

the topological overlap matrix (TOM) (Yip and Horvath, 2007), from the widely used 

gene coexpression network analysis pipeline WGCNA (Langfelder and Horvath, 

2008), to the protein-protein interaction network annotated by Reactome (Croft, et al., 

2014; Fabregat, et al., 2016). To include gene differential expression information, 

each edge in the network was weighted by the difference of expression level changes 

between linked genes, which were smoothen with insulated heat diffusion procedure 

to reduce influence of noise (see Materials and Methods). Gene expression level 

changes during the neuron maturation process in humans were estimated based on the 

published single cell RNA-seq (scRNA-seq) data of fetal and adult human brains 

(Darmanis, et al., 2015). This pipeline has been implemented as an R package named 

TOMRwModule. 

The analysis resulted in 109 functional modules with size ranged from 21 to 203 

genes, with median size of 38 genes (Fig. 1). Two-sided Wilcoxon signed rank test 

was applied to each module in order to identify functional modules with significant 

expression level changes with concordant direction. 33 functional modules with 

significant directional changes, which were referred to discriminable modules, were 

identified (Benjamini-Hochberg (BH) corrected P<0.05, Supplementary Table 1). 

Among them, 17 modules accounting for 964 genes in the network showed higher 

activity in mature neurons (referred as mature-high modules). On the other hand, the 

remaining 16 modules accounting for 1125 genes showed higher activity in immature 

neurons (referred as immature-high modules). Gene Ontology (GO) enrichment 

analysis by topGO (Alexa and Rahnenfuhrer, 2016) and GOSemSim (Yu, et al., 2010) 

indicated that genes encoding for membrane proteins which participate in cell 

communication, signaling and oxidation-reduction processes for energy generation 

were strongly enriched in mature-high modules (Fig. 1, Supplementary Table 2). On 

the other hand, genes encoding for nuclear proteins related to transcription and 

post-transcriptional processing including splicing and translation were enriched in 

immature-high modules (Fig. 1). 

Although lacking additional data for in vivo transcriptome of human neurons across 

the whole neuron maturation process, it has been reported that neuron maturation 

explains the majority of brain transcriptome changes during prenatal and new-born 

postnatal development (Yu and He, 2017). Therefore, we took the advantage of fetal 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174748doi: bioRxiv preprint 

https://doi.org/10.1101/174748
http://creativecommons.org/licenses/by-nc/4.0/


and early postnatal brain RNA-seq dataset in BrainSpan and another age series 

RNA-seq data (He, et al., 2014), to compare the brain transcriptome before and after 

postnatal day 100. Remarkably, 28 out of the 33 discriminable modules showed 

significant concordant expression level changes (one-sided Wilcoxon signed rank test 

to fold changes (FC), BH-corrected P<0.1) in at least one dataset, while 20 of them 

showed significant concordance in both datasets (Fig. 1). In addition, although not 

significant, another two modules showed consistent direction of changes in both 

datasets. These results suggest that the discriminable modules represent the 

reproducible functional modules discriminating mature and immature neurons. 

Interestingly, a further comparison with PPI functional modules, which were detected 

without integrating with expression level differences, identified six Adversarial 

Functional Module (AFM) pairs. The two modules in one AFM pair were 

corresponding to the same module when the differential expression information was 

not integrated (Fig. 1). Three out of six AFM pairs (M4-M14, M36-M108, M8-M72) 

showed significant expression changes with consistent directions in at least one bulk 

brain RNA-seq data (one-sided Wilcoxon signed rank test, BH corrected P<0.01). In 

addition, consistent discordance in all pairs were observed in both bulk brain datasets 

(one-sided Wilcoxon rank sum test, P<0.01). Further functional analysis revealed 

highly consistent, connected but varied GO term and biological pathway enrichment 

in each pair of adversarial modules (topGO with parentchild algorithm for GO terms, 

one-sided Fisher’s exact test for pathways; BH-corrected P<0.05, Supplementary 

Table 2). This analysis indicated that highly connected biological pathways may play 

distinct roles during neuron maturation in humans. 

Machine learning-based Neuronal Maturity Index successfully estimated 

neuronal maturity status in human single neuron RNA-seq data 

The relevant transcriptome transition observed during human neuron maturation, 

especially for those genes participating in the detected discriminable modules, made it 

plausible to establish a quantitative estimate of neuronal maturity status. In brief, we 

constructed a LASSO-regularized logistic regression model based on the standardized 

expression level of genes involved in each identified module. Each model provided a 

value ranged between zero and one, namely a modular Neuron Maturity Index 

(mNMI), with values closer to 1 indicating higher maturity. Ten-fold cross-validation 

suggested high performances for most of the mNMIs (median AUC=0.87, Fig. 2 and 

Supplementary Fig. 1), including those based on non-discriminable modules. 

Applying the models in the test set also resulted in accurate estimations (median 

AUC=0.84, Fig. 2 and Supplementary Fig. 1), with those based on discriminable 

modules performing marginally better (two-sided Wilcoxon rank sum test, P=0.11). 
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The mNMIs were further added to two integrated NMIs to represent the overall 

maturity status, by taking their average weighted by their performance during 

cross-validations. This procedure was done by either including all mNMIs 

(transcriptome NMI or tNMI), or only those based on discriminable modules 

(discriminable NMI or dNMI). Both general NMIs performed perfectly in 

distinguishing mature and immature neurons in the test set (AUC=1, Fig. 2 and 

Supplementary Fig. 1). The NMI model for neuron maturity estimate has been 

implemented as an R package named neuMatIdx. 

The remarkable performance of NMI rose the suspicion of overfitting. Therefore, we 

attempted to test the constructed NMI models in other neuron transcriptome data sets. 

Bardy et al. combined patch clamping and scRNA-seq to investigate the relationship 

between transcriptome and electrophysiology of iPSC-derived neurons (Bardy, et al., 

2016). The estimation of NMIs indicated trend of increased neuron maturity 

accompanying increased action potential, i.e. the electrophysiological maturity, 

especially between the most immature and mature neurons (one-sided Wilcoxon rank 

sum test, P=0.12, Fig. 3 and Supplementary Fig. 2). While this dataset was limited by 

its relatively small number of neurons (N=56), Close et al. applied scRNA-seq to 

interneurons generated by in vitro differentiation of human embryonic stem cells 

(hESCs) to characterize temporal interneuron transcriptome during its maturation, 

generating another dataset which involved 1733 cells (Close, et al., 2017). By 

estimating NMIs for each DCX+ interneuron (N=993), we observed the significant 

increase of integrated NMIs across the time course, especially between 54-day and 

100-day (Wilcoxon rank sum test, P<0.0001, Fig. 3 and Supplementary Fig. 2). We 

also noticed that both tNMI and dNMI did not present significant increase between 

100-day and 125-day interneurons (Wilcoxon rank sum test, P=0.26 for tNMI, P=0.58 

for dNMI), which is consistent with the weak discrimination between them at the 

whole transcriptome level proposed by Close et al. 

It is worth noting that even at the most electrophysiologically mature state (Bardy et 

al. dataset) or at the latest time point (Close et al. dataset), a large proportion of 

interneurons were still within immature state (Fig. 3 and Supplementary Fig. 2). 

These observations may be due to the technical issue that the NMI model failed to 

provide prediction of mature neurons, or reflected the failure to complete the neuron 

maturation process in in vitro environment. To answer this question, we approached 

the human single neuronal nucleus RNA-seq in adult brains (Lake, et al., 2016). 

Estimation of NMIs in this dataset resulted in both tNMI and dNMI significantly 

larger than 0.5 (Fig. 3 and Supplementary Fig. 2), which indicated significant mature 

state and suggested that the NMI model worked well to reveal maturity status of adult 

neurons. As expected, no significant difference of both tNMI and dNMI was observed 
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between excitatory and inhibitory neurons (Wilcoxon rank sum test, P=0.22 for tNMI, 

P=0.27for dNMI, Fig. 3 and Supplementary Fig. 2). Hierarchical clustering based on 

Pearson’s correlation coefficient among samples revealed that cellular cell type makes 

more contributions to sample separation than source of dataset, showing that the 

estimation is less likely to be biased by batch effect (Supplementary Fig. 3). The 

above results suggested the potential maturation arrest of the in vitro differentiated 

neurons. 

Applications of neuron maturity index to mouse neuron RNA-seq data 

Next, we sought to find out whether the human-based NMI estimates can be applied 

to mouse, which is the most widely used animal model for brain development and 

mental disorders. Chen et al. extracted maturing interneurons from mouse embryonic 

medial ganglionic eminence (MGE) and applied scRNA-seq to measure their 

transcriptome (Chen, et al., 2017). Estimation of tNMI suggested a boost of maturity 

status at E17.5, the latest time point across the time course. Interestingly, the three 

subtypes of maturing interneurons identified in the study showed significant 

difference of tNMIs (ANOVA, df1=2, df2=130, F=55.2, P<0.0001, Fig. 4A), 

suggesting that they represented interneurons at distinct stages of maturation. It is also 

worth noting that among the mNMIs, 15 out of 33 which corresponded to 

discriminable modules showed significant difference among the three subtypes of 

maturing interneurons, nine of which were mature-high modules and the remaining 

six were immature-high modules. 

Interestingly, applying tNMI model to the purified neuron transcriptome of PS2APP 

Alzheimer’s disease mouse model (Srinivasan, et al., 2016) suggested significantly 

weaker maturity state than controls (median dNMIPS2APP=0.782, median 

dNMIcontrol=0.791, two-sided Wilcoxon rank sum test, P=0.003). Further studies on 

mNMIs indicated NMIs based on three discriminable modules (all of them 

mature-high modules) significantly decreased in PS2APP neurons. In addition, among 

the top-ten of the 27 discriminable modules with reliable mNMIs (AUC>0.8 in 

cross-validation in training set) and strongest decrease in PS2APP comparing to 

control neurons, eight were mature-high modules. Considering that the mature-high 

modules are more likely to be responsible for mature neuronal function maintenance, 

the biased changes implied that the lower tNMI of PS2APP neurons represented 

impairment of neuronal function rather than maturation. Therefore, we constructed the 

third integrated index, the neuron functionality index (NFI), which integrated mNMIs 

from only the mature-high discriminable modules. As expected, the estimated NFIs of 

PS2APP neurons were significantly lower than those of control neurons (median 

NFIPS2APP=0.836, median NFIcontrol=0.850, Wilcoxon rank sum test, P=0.05, Fig. 4B). 
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On the other hand, the integrated NMIs of immature-high discriminable modules did 

not show any significant difference (Wilcoxon rank sum test, P=0.58, Fig. 4B). For 

comparison, no significant difference of either dNMI or NFI was observed between 

purified neuron transcriptome of a lipopolysaccharide-treated neuroinflammation 

mouse model and control mouse (Fig. 4B). 
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Discussion 

In this study, we studied the transcriptome changes during neuron maturation in 

humans and those functional pathways participating in it. We also described a 

summarized metrics for the quantitative estimation of neuron maturation state. For 

this purpose, we developed a new bioinformatics framework, by integrating module 

identification in protein-protein interaction (PPI) network and differential expression 

(DE) analysis. Our strategy revealed 33 functional modules, each of which represents 

distinct biological pathways, which may be relevant to neuron maturation. 

In general, the 17 modules whose genes show significantly higher expression levels in 

mature neurons, namely mature-high modules, tend to participate in processes 

relevant to neuronal function and electrophysiology. For instance, there are six 

discriminable functional modules, all of which mature-high modules, which show 

enrichment of synaptic genes and have been reported to be relevant to 

electrophysiological maturity of in vitro differentiated neurons (Bardy, et al., 2016). 

Genes in M90, the module enriched for voltage-gated potassium channel complex 

components, also show higher expression levels in mature neurons. Directly checking 

those genes in Bardy et al. dataset suggests higher expression level in neurons with 

higher action potential than neurons with lower action potential in marginal 

significance (permutation test, P=0.052). Furthermore, energy consumption is 

suggested to grow during neuron maturation, as genes in functional modules related to 

both respiratory chain (M24) and tricarboxylic acid cycle (M37) show higher 

expression levels in mature neurons. As previously reported, higher neuronal activity 

increased mitochondrial oxidative phosphorylation (Schuchmann, et al., 2005). 

Therefore, the increasingly active energy generation machinery in mature neurons we 

observed may be an adaptive strategy of mature neurons to its higher 

electrophysiological activity. 

On the other hand, it is interesting that the 17 immature-high modules whose genes 

show significantly higher expression levels in immature neurons tend to show 

enrichment for nuclear functions, which are mainly related to housekeeping processes 

including RNA and protein metabolism. Indeed, genes in the immature-high modules 

are significantly overlapped with human housekeeping genes (Eisenberg and Levanon, 

2013), especially when comparing with genes in the mature-high modules (one-sided 

Fisher’s exact test, odds ratio (OR)=2.1 P<0.0001 compared to all genes in the 

network; OR=3.0, P<0.0001 compared to genes in mature-high modules). There are 

two possible explanations. The decreased activities of housekeeping processes may be 

an artificial observation due to the increased activities of pathways related to neuronal 

functions, since the quantification of expression assumes constant amount of 
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transcripts in samples. In such case, genes in the immature-high modules share similar 

expression level differences which are not relevant to significances of modular 

expression level differences. However, ANOVA suggests that genes in different 

immature-high modules show different amplitude of changes (F=6.37, P<0.0001). 

Partial Pearson correlation (PPC) between statistical significances (log-transformed P) 

and modular expression level changes (average expression alteration score) given the 

module sizes as condition (PPC=0.57, P=0.025) suggest dependency between them. 

Therefore, although this possibility cannot be completely ruled out, there is  another 

scenario, where at least parts of these “housekeeping” processes may play more 

important roles in the maturation process comparing to the final mature stage. This 

hypothesis is supported by previous studies where mRNA metabolism has proven 

relevant to some neuronal diseases such as spinal muscular atrophy (SMA) (Linder, et 

al., 2015), and many regulators of transcription, mRNA translation and protein 

synthesis have been reported to be related to neurodevelopmental disorders such as 

autism (Kroon, et al., 2013). 

One interesting observation obtained after integrating PPI network topological 

analysis with DE information is the so-called Adversarial Functional Module (AFM) 

pairs. Each of the six AFM pairs consists of two highly connected modules with 

opposite expression level changes during the neuron maturation process. While some 

of the AFM pairs are only weakly supported by other data, others seem to be 

promising and may reflect decoupling of components in the same pathway during the 

neuron maturation process. 

A good example is the AFM pair M4-M14 (Fig. 5). Genes in both modules participate 

in signaling by Rho GTPases, and more specifically, activating Rhotekin and 

Rhophilins pathway according to the Reactome annotation. Interestingly, this pathway 

splits in two parts: RHOB/C and RTKN in mature-high M4, and RHOA, RHPN1/2 

and TAX1BP3 in immature-high M14. This partition implies that, although Rhotekin 

and Rhophilins both participate in Rho GTPases signaling, they interact with different 

members of Rho protein family and play different roles in the process of neuron 

maturation. Rhophilins interact with RhoA and take part in neuron maturation 

including neuron migration, which is supported by previous studies suggesting 

interaction between them (Peck, et al., 2002) as well as the role of Rhophilins in cell 

migration (Nakamura, et al., 1999). Rhetekin, on the other hand, while being 

important in neural differentiation and neurite outgrowth, is also required for neuron 

survival (Iwai, et al., 2012). This may explain why the expression level of RTKN gene 

remains high in mature neurons. 

Another AFM pair, M32-M39, represents another scenario. While both modules show 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174748doi: bioRxiv preprint 

https://doi.org/10.1101/174748
http://creativecommons.org/licenses/by-nc/4.0/


significant enrichment of pathways related to endocytosis, genes in the two modules 

also participate in distinct pathways (Fig. 5). Spry regulation of FGF signaling 

pathway, which has been reported to be required for cortical development (Faedo, et 

al., 2010), only appears in the immature-high module M32,whereas EPH-ephrin 

mediated cell repulsion, whose role extends from development to adulthood 

regulating neuronal plasticity (Kania and Klein, 2016), only appears in the 

mature-high module M39. In summary, the pleiotropy of genes and pathways leads to 

the separation of the two modules. 

Based on identified discriminable modules, we generated the LASSO logistic 

regression based neuron maturity index (NMI) model to estimate overall maturity 

states of neuronal samples. By applying NMI to the public data, we observed that 

neurons in vitro generated from neuronal progenitor cells (NPC) are likely undergoing 

maturation arrest, as their estimated maturity states hardly attain complete maturation. 

In a previous study comparing transcriptome of in vitro neuron models to 

spatiotemporal human brain transcriptome, in vitro neuron models were suggested to 

be similar to fetal brains (Stein, et al., 2014). However, the comparison between bulk 

neural samples with both neurons and proliferative cells can hardly tell whether this 

similarity is due to the similar NPC:neuron combination, or similar maturity states. 

Our results suggest that in vitro neuronal models are likely to be far from full 

maturation, which may be due to the lack of environmental stimulation that has been 

shown to be relevant to neuronal development (Liu, et al., 2012). 

Results of applying the NMI model in the mouse medial ganglionic eminence (MGE) 

single cell RNA-seq data suggests that the three subtypes identified by the study 

represent neurons with distinct maturity states (Chen, et al., 2017). In the original 

study, three neuronal subtypes were identified on a spatial distinction basis: neurons 

from lateral ganglionic eminence (LGE) expressing LGE markers, neurons from 

MGE expressing MGE markers, and LGE/MGE neurons expressing both markers. 

Our study suggests that neurons expressing LGE markers tend to be more mature, and 

those expressing MGE markers tend to be immature. This observation provides an 

alternative explanation on a developmental sequential basis, which reconciles with 

spatial distinction basis explanation, as a previous study has reported that interneurons 

are generated in MGE and migrate to LGE during their maturation (Hansen, et al., 

2013). Together, they provide a more comprehensive description about the origin of 

interneurons during brain development. 

Previous studies have developed statistical tools to evaluate maturity status of neural 

samples, e.g. CoNTExT (Stein, et al., 2014). Our NMI model, however, aims for a 

different purpose. Present tools such as CoNTExT were designed to be used for bulk 
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tissue samples, e.g. dissected brain samples and in vitro neural cultures, which consist 

of multiple cell types including neuronal progenitor cells, immature and mature 

neurons, as well as non-neuronal glial cells. The NMI model, on the other hand, 

serves homogeneous neuronal samples, including single neurons and purified neuron 

populations. In the era of single cell biology, pseudo-time construction analysis, e.g. 

TSCAN (Ji and Ji, 2016), is commonly used to study transcriptome trajectory of cell 

development, and may be applied also to study neuron maturation (Close, et al., 2017). 

This analysis, however, is limited by lacking benchmark of maturation stages. 

Although expression of several biomarkers may be helpful in a rough manner, the 

quantitative description is still missing. The relatively large sample size required to 

reconstruct a reliable pseudo-time series is also one limitation (although with less 

significance). In such scenario, our model can be implemented in the existed 

framework to complement each other, which can potentially benefit upcoming 

research. 
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Figures 

 

Figure 1. Neuron maturation relevant functional modules in protein-protein 

interaction (PPI) network. The left panel shows the network of PPI functional 

modules. Nodes represent distinct modules and are scaled to reflect the number of 

proteins in each. Colors of nodes represent directions of expression changes during 

neuron maturation: red – higher in mature neurons, blue – higher in immature neurons, 

and grey – no significant tendency. Nodes are connected if proteins within the 

respective modules interact with significantly high frequency. Ellipses mark the 

functional clusters of modules identified based on hierarchical clustering of Gene 

Ontology (GO) similarity among discriminable modules using GOSemSim, as shown 

at the right panel. In the right panel, labels are colored to represent directions of 

expression changes of the respective modules during neuron maturation. Colors of the 

two columns next to labels show gene expression changes of the respective modules 

in two brain RNA-seq data (left: He Z, et al. 2014; right: BrainSpan) during prenatal 

and early postnatal development: red – increase during development, blue – decrease 

during development. Color darkness indicates whether the change is significant 

according to Wilcoxon rank sum test. Boxes mark adversarial module pairs. 
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Figure 2. Performance of NMI to estimate neuron maturity state. Bars on top show 

performance of tNMI, dNMI and each of the mNMIs in prediction of neuron maturity 

state using Darmanis et al. dataset, as indicated by Area under curve (AUC) of 

Receiver operating characteristic (ROC). AUC of the training set is calculated based 

on ten-fold cross-validations. The heatmap shows the estimated NMIs for each neuron 

in the test set, with each column represent one of tNMI, dNMI and mNMIs of 

discriminable modules. Module labels are colored based on expression changes of 

genes in the modules during neuron maturation: red – higher in mature neurons, blue 

– higher in immature neurons. The real neuron maturity states are shown by the every 

left column: red – mature neurons, blue – immature neurons. 
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Figure 3. Applications of dNMI in human brain single cell RNA-seq data of neurons 

to investigate neuron maturity dynamics. It shows the estimated dNMI of each neuron 

sample, as represented by the y-axis, in four public single cell/nucleus RNA-seq data 

sets. Each dot represents one cell. The dash line represents NMI=0.5 as the boundary 

of estimated immature and mature state. For each of the four data sets, cells are 

grouped based on the respective metadata: Bardy et al. 2016 dataset: action potential 

(AP) type; Close et al. 2017 dataset: differentiation time; Darmanis et al. 2015: cell 

donor ages; Lake et al. 2016: neuron subtypes (excitatory and inhibitory neurons). P 

values of Wilcoxon rank sum test are shown for comparisons of dNMIs between 

neuron subgroups in each dataset. Purple label on top marks the dataset used to train 

the NMI model (Darmanis et al. 2015 dataset). 
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Figure 4.Applications of NMI/NFI in mouse brain neuron RNA-seq data to 

investigate neuron maturity dynamics. (A) Estimated dNMI of dissected single 

neurons in mouse medial ganglionic eminence (MGE) based on Chen et al. 2017 

dataset. Each dot represents one cell, with color darkness showing maturity states 

estimated by dNMI. Darker color represents higher level of maturity. Cells are 

grouped based on the dissection time (x-axis) and cell groups identified by Chen et al. 

(y-axis). (B) Changes of neuron functionality indicated by neuron functionality index 

(NFI) in mouse purified neurons responding to neuroinflammation and 

neurodegeneration, based on Srinivasan et al. 2017 dataset. The left panel shows the 

estimated NFI, and the right panel shows the integrated NMI of immature-high 

modules. Each dot represents one purified neuron bulk sample, grouped by the 

treatment conditions. 
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Figure 5. Two examples of adversarial functional module (AFM) pairs. Each circle 

represents one gene. Edges show annotated PPIs in Reactome among genes in the two 

functional modules. Colors of circles show expression alteration scores. The upper 

panel shows the AFM pair M4-M14. Circles with grey border show genes in the 

network which participate in the pathway “RHO GTPases activates rhotekin and 

rhophilins”, with PPIs among them shown by the wider grey lines. The lower panel 

show the AFM pair M32-M39. Circles with grey border show genes which participate 

in the pathway “Clathrin-mediated endocytosis”. Interactions connecting genes 

participating in the pathway “Spry regulation of FGF signaling” are shown as blue 

lines, and interactions connecting genes in the pathway “EPH-ephrin mediated 

repulsion of cells” are shown as pink lines. 
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Supplementary Figures 

 

Supplementary Figure 1. Modular and integrated NMIs of samples in Darmanis et al. 

dataset. (A) Performance of NMI to estimate neuron maturity state. Bars on top show 

performance of tNMI, dNMI and each of the mNMIs in prediction of neuron maturity 

state using Darmanis et al. dataset, as indicated by Area under curve (AUC) of 

Receiver operating characteristic (ROC). AUC of the training set is calculated based 

on ten-fold cross-validations. The heatmap shows the estimated NMIs for each neuron 

in the test set, with each column represent one of tNMI, dNMI and mNMIs of 

discriminable modules. Module labels are colored based on expression changes of 

genes in the modules during neuron maturation: red – higher in mature neurons, blue 

– higher in immature neurons. The real neuron maturity states are shown by the every 

left column: red – mature neurons, blue – immature neurons. (B) NMIs of 

discriminable modules perform better than other mNMIs. Y-axis shows ratio between 

the number of discriminable modules among the top-N modules ranked by their 

mNMI performance in the test set, to the number of discriminable modules among the 

top-and-bottom-N (in total 2N) modules. X-axis shows variable N. Dots show the 

observed ratios, with the curve showing the smoothen pattern (natural spline, df=5). 

Grey arrows show the 90% confident intervals based on 1000 permutations of module 

ranks. 
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Supplementary Figure 2. Applications of tNMI in human brain single cell RNA-seq 

data of neurons to investigate neuron maturity dynamics. It shows the estimated tNMI 

of each neuron sample, as represented by the y-axis, in four public single cell/nucleus 

RNA-seq data sets. Each dot represents one cell. The dash line represents NMI=0.5 as 

the boundary of estimated immature and mature state. For each of the four data sets, 

cells are grouped based on the respective metadata: Bardy et al. 2016 dataset: action 

potential (AP) type; Close et al. 2017 dataset: differentiation time; Darmanis et al. 

2015: cell donor ages; Lake et al. 2016: neuron subtypes (excitatory and inhibitory 

neurons). P values of Wilcoxon rank sum test are shown for comparisons of dNMIs 

between neuron subgroups in each dataset. Purple label on top marks the dataset used 

to train the NMI model (Darmanis et al. 2015 dataset). 
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Supplementary Figure 3. Transcriptome signatures of single neurons are driven by 

maturity states rather than batch effect across datasets. (A) Origins and datasets of 

single neurons in the two neuron clusters identified by hierarchical clustering based 

on standardized expression levels of signature genes for NMI estimations. The two 

columns show neurons grouped in the two neuron clusters, with the two rows show 

their origins (red – from fetal brains or in vitro cultures) and datasets (red – Bardy et 

al. dataset; blue – Close et al. dataset; green – Darmanis et al. dataset; purple – Lake 

et al. dataset). (B) Normalized pairwise mutual information among the neuron clusters, 

neuron origins and datasets across different single neurons. Darkness of red shows the 

strength of dependency. (C) Conditional mutual information between neuron clusters 

and either neuron origins or datasets, under the condition of the other one. The first 

two columns show the corresponding conditional mutual information and mutual 

information, with the third column showing the ratio of the first two columns. 

Darkness of red shows proportions of conditional mutual information among mutual 

information. 
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Supplementary Table 1. Characteristics of the identified functional modules 

Supplementary Table 2. Gene ontology and pathway enrichment of the 

discriminable functional modules 
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