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Abstract Multiscale models possess the potential to uncover new insights into infec-
tious diseases. Here, a rigorous stability analysis of a multiscale model within-host
and between-host is presented. The within-host model describes virus replication and
the respective immune response while disease transmission is represented by a simple
susceptible-infected (SI) model.

The bridge of within- to between-host is by considering transmission as a func-
tion of the viral load of the within-host level. Consequently, stability and bifurcation
analyses were developed coupling the two basic reproduction numbers RW

0 and RB
0

for the within- and the between-host subsystems, respectively. Local stability results
for each subsystem, such as a unique stable equilibrium point, recapitulate classical
approaches to infection and epidemic control.

Using a Lyapunov function, global stability of the between-host system was ob-
tained. A main result was the derivation of the RB

0 as a general increasing function of
RW

0 . Numerical analyses reveal that a Michaelis-Menten form based on the virus is
more likely to recapitulate the behavior between the scales than a form directly pro-
portional to the virus. Our work contributes basic understandings of the two models
and casts light on the potential effects of the coupling function on linking the two
scales.

Keywords mathematical modeling · infectious diseases · multiscale · bifurcation ·
coupling functions

1 Introduction

Infectious diseases remain a global concern despite the advance of medicine and
living conditions [28]. Combating with infectious diseases necessitates multidisci-
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2 Almocera et al.

plinary efforts, among which include holistic understandings on the infection mech-
anisms [12]. Infectious diseases dynamics, however, are governed by many intercon-
nected scales, from complex within-host infection processes, to between hosts, vec-
tors, and environments. In this context, mathematical modelling is an essential tool
to untangle the processes, providing understandings of diseases dynamics and public
health policies [17].

Typical infectious diseases models [9,25] restrict their dynamics to one of the two
scales: within-host, focusing on cellular interactions; and between-host, focusing on
transmission and infection statuses (Figure 1). This restriction allows more analytical

Fig. 1 A disease model is usually restricted to one of the following scales: within a host (left) and between
hosts (right). Our multiscale model considers both scales, by focusing on the interaction of the virus and
immune response within a host, while only considering direct contact between susceptible and infected
individuals.

tractability [9] but there are problems where it becomes necessary to consider both
scales [17,15]. The last decade has witnessed the surfaces of models that bridge infec-
tion within- and between-host processes [22,18,11,21,17]. This approach has served
as a framework to understand the within-host evolution [1,24], epidemic control and
prevention [18,22,23], and beyond [25,15,6]. For example, natural selection of a dis-
ease can be investigated by linking pathogen behavior to population dynamics [13].
In [18], the authors investigated the immune responses dynamics in accompany with
a SIR model with vaccination. In another study [21], the vector-borne transmission
was analyzed with an extended SI model and a within-host subsystem. Applications
of multiscale models have broadened the disease modelling landscape and have the
potential to accurately describe disease dynamics [25].

In this paper, we considered a nested model assuming a single coupling direction
from within- to between-host. The within-host dynamics is taken from the model
formulated by Boianelli et al. [4] whereas between-host transmission dynamics are
governed by the susceptible-infective (SI) model [2]. In addition to the quantitative
analysis in [4], our results characterize the within-host reproduction number RW

0 with
the existence of a unique positive steady state having viral load V ∗ (i.e. chronic infec-
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tions). In addition, we obtain the between-host RB
0 assuming the “limiting case” of the

between-host subsystem where the viral load remains at the steady state [13]. Results
of analytical analyses are accompanied by phase portraits and bifurcation diagrams.

2 Materials and Methods

We considered two models that cover the infection dynamics within a host and the
transmission between hosts. Each scale is described below with a two-dimensional
ordinary differential equation.

2.1 Within-host subsystem

We focused on dynamics of virus (V ) and T-cell populations (E) as follows [4]:
dV
dt

= pV
(

1− V
KV

)
− cV EV , V (0)≥ 0,

dE
dt

= (NE −δEE)+G(V )E, E(0)> 0.
(1)

In this model, the virus replicates at a self-limiting rate determined by the in-
trinsic rate p and the carrying capacity KV . The virus is cleared at a per-capita rate
proportional to T-cell populations (cV E). In the absence of virus, T cells stay at a
homeostatic level given by E0 := NE/δE , where NE and δE denote the replenishment
rate and half-life of T cells, respectively. Otherwise, T-cells proliferate following a
continuous function G(V ) of the viral load. To allow generality for our within-host
subsystem, we imposed the following properties:

G(0) = 0, G′(V ) :=
dG
dV

> 0. (2)

A special case of G in the Michaelis-Menten form [4]

G(V ) =
rV

V +KE
(3)

was considered in our analyses.

2.2 Between-host subsystem

We considered the Susceptible-Infected (SI) model [2], where the host population is
divided into susceptible and infected classes with densities S and I, respectively. This
model reads as 

dS
dt

= (NS−δSS)−βSI, S(0)> 0,

dI
dt

= βSI−δII, I(0)≥ 0,
(4)
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where β is the transmission rate. Susceptible individuals entered the population at
a rate NS, and both subpopulations have distinct half-life parameters δS and δI . The
host population attains the equilibrium size S0 := NS/δS in infection-free situations.
For simplicity, we assume all parameters in (4) are fixed.

2.3 Bridging scales

Considering experimental observations of the impact of viral load on disease trans-
mission [3,8], we assumed a multiscale model coupling (1) and (4) where β = β (V )
has the following properties:

β (0) = 0, β
′(V ) :=

dβ

dV
> 0. (5)

As the exact functional relationship between viral load and the transmission rate
can be debatable [15], we considered three different functional forms of the coupling
function, including a linear, logistic, and saturation function that satisfies (5) in our
numerical analyses. In particular, β (V ) = rWV/KW , β (V ) = rWV 2/(V 2 +KW

2), and
β (V ) = rWV/(V +KW ) [4]. The parameter rW is the rate of transmission due to the
viral load. The parameter KW is a threshold of the viral load that a host may need to
cross to transmit the infection.

2.4 Numerical example

To complement our analytical analyses and illustrate infection-transmission dynam-
ics, we obtained numerical results from the two models using the following values:

δE = 2×10−2, KV = 5.6234×105, cV = 1.24×10−6, (6)

E0 = 1×106, r = 3.3×10−1, KE = 2.7×103, (7)

S0 = 1×103, δS = 4.74×10−5, δI = 0.5 (8)

The parameter values in (6) and (7) were taken from [4,19,30], while those in (8)
were chosen judiciously. The value of δI is based on [5,29], where roughly half of the
infected population is removed each day. We assumed that the average life expectancy
of a healthy individual is 80 years, hence our choice of δS.

3 Mathematical analysis of the multiscale model

The basic reproduction number (R0) is used to establish the corner stones for plan-
ning public health initiatives, such as the epidemic threshold and herd immunity [2].
The number is defined as the average number of secondary infections caused by a
typical infected case in a completely susceptible population over its infectious period
[7]. Here, for each of the subsystems, we derived a respective R0 as a bifurcation
parameter of the within-host (RW

0 ) and the between-host (RB
0 ), respectively.
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3.1 Within-host subsystem

The basic reproduction number for the within-host subsystem (1) is given by

RW
0 :=

p
cV E0

=
pδE

cV NE
. (9)

To justify, we have

1
V
· dV

dt
≈ cV E0(RW

0 −1)

for V ≈ 0 and E ≈ E0 (i.e. at the outset of infection). Thus, the virus is cleared when
RW

0 < 1 and persists when RW
0 > 1. According to the differential equation for E, each

equilibrium point of (1) takes the form (V,E) where E > 0. Moreover,

x0 := (0,E0) =

(
0,

p
cV RW

0

)
is the unique infection-free equilibrium for (1).

Let x∗ be an equilibrium point of (1) whose coordinates are positive. To determine
x∗, we define a function G0 by

G0(V ) := δE

[
1− KV

(KV −V )RW
0

]
, V 6= KV . (10)

Then the inverse of G0 is given by

G−1
0 (V ) = KV

[
1− δE

(δE −V )RW
0

]
, V 6= δE . (11)

Furthermore, G−1
0 (0) is a zero of G0, i.e. G0(G−1

0 (0)) = 0. The following lemma is a
major step to obtaining x∗.

Lemma 1 There exists a solution V of the following equation

G(V ) = G0(V ), 0 <V < KV , (12)

if and only if RW
0 > 1. This solution is unique and lies in the open interval (0,G−1

0 (0)).

Proof According to the conditions in (2), the function G increases, and G(V ) >
G(0) = 0 for V > 0. On the other hand,

G′0(V ) :=
dG0

dV
=

−δEKV

RW
0 (KV −V )2 < 0,

so that G0 is decreasing. We argue by defining H = G0−G, which is a decreasing
function. Then each solution of (12) corresponds to a root of H on (0,KV ). Note that

H(0) = G0(0) =
δE

RW
0

(
RW

0 −1
)
.
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6 Almocera et al.

Thus, H < 0 on (0,KV ) whenever RW
0 ≤ 1. Consequently, H has a root on (0,KV ),

and (12) admits a solution, only if RW
0 > 1.

Now, suppose that RW
0 > 1, from which H(0)> 0 and 0 < G−1

0 (0)< KV . Observe
that

H(G−1
0 (0)) =−G(G−1

0 (0))< 0

since G−1
0 (0) is a root of G0 and G > 0 on (0,KV ). Since H decreases, H has a unique

root v∗ on (0,G−1
0 (0)) and H < 0 on [G−1

0 (0),KV ). Hence, there exists a solution of
(12) if and only if RW

0 > 1; this solution is uniquely given by v∗ ∈ (0,G−1
0 (0)). ut

Theorem 1 Consider the chronic equilibrium point x∗ = (V ∗,E∗). Then

E∗ =
p

cV KV
(KV −V ∗)> 0, (13)

and V ∗ is the unique solution of (12) in (0,G−1
0 (0)). Moreover, x∗ exists if and only

if RW
0 > 1.

Proof According to the equations of (1), the coordinates of x∗ satisfy:

0 = p
(

1− V ∗

KV

)
− cV E∗, (14)

0 = (NE −δEE∗)+G(V ∗)E∗. (15)

Equation (13) is equivalent to (14), from which 0 <V ∗ < KV . On the other hand, we
transform equation (15) into

G(V ∗) = δE −
NE

E∗
= δE

(
1− E0

E∗

)
. (16)

Applying equations (9) and (13) to equation (16), we get

G(V ∗) = δE

[
1− KV

(KV −V ∗)RW
0

]
= G0(V ∗).

We conclude from Lemma 1 that x∗ exists, where V ∗ is the unique solution of equa-
tion (12) in (0,G−1

0 (0)), if and only if RW
0 > 1. ut

By assuming a specific form of G, we can express V ∗ as a function of RW
0 . To

illustrate, we consider the parameter r in equation (3), assume that r > δE , and intro-
duce the following functions:

α1(x) :=
(

KV

x
+KE

)
δE +(r−δE)KV , x > 0,

α0(x) :=
(

1
x
−1
)

δEKEKV , x > 0,

D(x) := α
2
1 (x)+4(r−δE)α0(x), x > 0.
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We also let D(∞) := limx→∞ D(x). Then we obtain the following:

D(∞) = [δEKE +(δE − r)KV ]
2 ≥ 0,

D(x) = D(∞)+
δEKV

x

[
2α1(∞)+4(r−δE)KE +

δEKV

x

]
,

for x > 0, where α1(∞) = limx→∞ α1(x). In particular, D(x)> 0; hence, the quadratic
polynomial

P(µ,x) = (δE − r)µ2 +α1(x)µ +α0(x)

has two distinct roots, the smaller of which is given by

f (x) :=
α1(x)−

√
D(x)

2(r−δE)
, x > 0. (17)

We establish some key properties of f .

Theorem 2 Assume that r > δE . Then f is an increasing function (i.e. f ′ > 0). More-
over, f (x)> 0 for x > 1.

Proof We compute the derivative f ′ as

f ′ =
−α ′1

(
g2−D

)
2(r−δE)

√
D
(

g+
√

D
) ,

where

g = α1 +2(r−δE)KE > 0.

Note that α ′1 < 0 and D > 0. Moreover, we obtain

g2−D = 4(r−δE)
[
(KEα1−α0)+(r−δE)KE

2] ,
where (KEα1−α0) is a positive constant. Thus, f ′> 0 and f is an increasing function.

Finally, we evaluate
√

D(1) =
√

α2
1 (1) = α1(1), and f (1) = 0. Therefore, we have

f (x)> 0 for x > 1. ut

The following theorem relates V ∗ with RW
0 via the function f .

Theorem 3 Assume the inequality r > δE and equation (3). If RW
0 > 1, then V ∗ =

f (RW
0 ).

Proof By definition, f (RW
0 ) is the smaller root of P(µ) =P(µ,RW

0 ) in µ . Denoting
the larger root by P(+), i.e. P(+) > f (RW

0 ). Appealing to Theorem 1, and applying
(3) to (12), we obtain V ∗ as a root of P(µ) in (0,G−1

0 (0)). Thus, either V ∗ = f (RW
0 )

or V ∗ = P(+).
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8 Almocera et al.

Recalling that 0 < G−1
0 (0)< KV whenever RW

0 > 1, we compute

P(G−1
0 (0)) = G−1

0 (0)
{[

KV −G−1
0 (0)

]
(r−δE)+

δEKV

RW
0

}
> 0

and note that P(µ) is concave down. Thus,

V ∗ < G−1
0 (0)< P(+)

and we must have V ∗ = f (RW
0 ). ut

We establish local stability of (1) as follows.

Theorem 4 The following statements hold:

1. The infection-free equilibrium point x0 = (0,E0) is
(a) asymptotically stable if RW

0 < 1,
(b) nonhyperbolic if RW

0 = 1, and
(c) a saddle point if RW

0 > 1.
2. If RW

0 > 1, then the equilibrium point x∗ = (V ∗,E∗) is asymptotically stable.

Proof Consider the following Jacobian matrix associated with (1):

JW (V ,E) =

[ p
KV

(KV −2V )− cV E −cVV

G′(V )E G(V )−δE

]
.

Then JW (x0) is a lower-triangular matrix. Moreover, recalling (2) and (9), we obtain
the following eigenvalues of JW (x0):

p− cV E0 = cV E0(RW
0 −1), G(0)−δE =−δE < 0.

This establishes statement 1.
Now, we assume RW

0 > 1 and appeal to Theorem 1. Denote the (k,k)-entry of
JW (x∗) by JW

k (x∗). Then equation (13) yields

JW
1 (x∗) =

p
KV

(KV −2V ∗)− cV E∗ =
−pV ∗

KV
,

while equations (10) and (12) (where V =V ∗) yield

JW
2 (x∗) = G0(V ∗)−δE =

−δEKV

RW
0 (KV −V ∗)

.

Thus, JW (x∗) has a negative trace. On the other hand, G′(V ∗)> 0 by (2), from which
JW (x∗) has a positive determinant. Accordingly, each eigenvalue of JW (x∗) has a neg-
ative real part. Therefore, x∗ is asymptotically stable. Statement 2 is proven. ut
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Theorem 4 indicates a unique equilibrium point x̂ for the system (1) that is either
asymptotically stable or is nonhyperbolic; that is,

x̂ =

{
x0 if RW

0 ≤ 1,
x∗ if RW

0 > 1.
(18)

We need the following hypothesis in our forthcoming analysis of the between-host
subsystem (4):

(H) For each solution of (1) with V (0)> 0 and E(0)> 0, we have

lim
t→∞

(V (t),E(t)) = x̂.

Thus, we say that x̂ is globally asymptotically stable.

A consequence for those solutions in hypothesis (H) is that

lim
t→∞

V (t) =

{
0 if RW

0 ≤ 1,
V ∗ if RW

0 > 1.
(19)

This reiterates RW
0 as an infection threshold for the system (1): the virus does not sur-

vive when RW
0 < 1, and persists when RW

0 > 1. The phase plane portraits in Figures 2
supports the global stability of x̂ = (V̂ , Ê) in hypothesis (H).
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Fig. 2 Phase plane portraits for the within-host subsystem (1) at two different values of RW
0 . Each curve

represents a solution (V (t),E(t)) for t ≥ 0, with initial time indicated by the blue endpoint. The red curve
represents the heteroclinic orbit that connects x0 to x∗. Red points indicate equilibrium points.The fol-
lowing parameter values were used: cV = 1.24× 10−6; NE = 2× 104; δE = 2× 10−2; r = 3.3× 10−1;
KE = 2.7×103; KV = 5.6234×105; and p = RW

0 cV NE/δE .
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3.2 Coupled within-host and between-host model

Consider hypothesis (H), and assume that RW
0 6= 1. Then, the system (1) equilibrates

to x̂ = (V̂ , Ê), where

V̂ =

{
0 if RW

0 ≤ 1,
V ∗ if RW

0 > 1,
(20)

by (18). Thus, we may assume in (4) that V = V̂ , yielding the following system:
dS
dt

= (NS−δSS)−β (V̂ )SI, S(0)> 0,

dI
dt

= β (V̂ )SI−δII, I(0)≥ 0.
(21)

Let us call (21) the limiting case of the between-host subsystem.
We focus on the case where RW

0 > 1. To justify, suppose that RW
0 ≤ 1 then β (V̂ ) =

β (0) = 0 by (20), and the equations in (21) yield limt→∞(S(t), I(t)) = (S0,0) regard-
less of initial condition and parameter values. If RW

0 > 1, then (21) is rewritten as
follows: 

dS
dt

= (NS−δSS)−β (V ∗)SI, S(0)> 0,

dI
dt

= β (V ∗)SI−δII, I(0)≥ 0.
(22)

We assume that RW
0 > 1 and analyze the limiting case (22). We realize our basic

reproduction number for the limiting case (22) of the between-host subsystem as

RB
0 :=

β (V ∗)S0

δI
=

β (V ∗)NS

δIδS
. (23)

Indeed, from (22) we have

1
I
· dI

dt
≈ β (V ∗)S0−δI = δI(RB

0 −1)

for S≈ S0 and I ≈ 0, i.e. in a disease-free population. Thus, we expect the disease to
be eradicated when RB

0 < 1, and an endemic to occur when RB
0 > 1.

It follows from the differential equation for S that each equilibrium point of the
system (22) is of the form (S, I), where S > 0. Moreover,

y0 := (S0,0)

is the unique disease-free equilibrium point for (22).
Let y∗ = (S∗, I∗) be an endemic equilibrium point of (22), where both S∗ and I∗

are positive. Then y∗ is unique, according to the following theorem.
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Theorem 5 Assume that RW
0 > 1. Then y∗ = (S∗, I∗) exists, with unique coordinates

S∗ =
δI

β (V ∗)
=

S0

RB
0
, I∗ =

NS

δI

(
1− 1

RB
0

)
, (24)

if and only if RB
0 > 1.

Proof From the equations in (22), we obtain the following:

0 = NS−δSS∗−β (V ∗)S∗I∗, (25)
0 = β (V ∗)S∗−δI . (26)

Equation (26) gives the desired expression for S∗. Thus, from equation (25), we have
the following:

I∗ =
NS−δSS∗

δI
=

NS

δI

(
1− S∗

S0

)
=

NS

δI

(
1− 1

RB
0

)
.

Thus, we obtain (24). Consequently, y∗ exists if I∗ > 0, i.e. RB
0 > 1. ut

It is possible for RB
0 → ∞, representing an increased transmission of the disease. In

this case, it follows from equation (24) that S∗→ 0; all the population at the endemic
steady state is infected.

The local stability for the system (22) is given by the following result.

Theorem 6 Assuming that RW
0 > 1, the following statements hold:

1. The disease-free equilibrium point y0 is
(a) asymptotically stable if RB

0 < 1,
(b) nonhyperbolic if RB

0 = 1, and
(c) a saddle point if RB

0 > 1.
2. If RB

0 > 1, then the endemic equilibrium point y∗ = (S∗, I∗) is asymptotically sta-
ble.

Proof We begin with the following Jacobian matrix associated with (22):

JB(S, I) =
[
−δS−β (V ∗)I −β (V ∗)S

β (V ∗)I β (V ∗)S−δI

]
. (27)

Then JB(y0) is an upper-triangular matrix, with eigenvalues −δS and

β (V ∗)S0−δI = δI(RB
0 −1).

Thus, statement 1 holds.
To prove statement 2, we assume that RB

0 > 1 and denote the (k,k)-entry of JB(y∗)
by JB

k (y
∗). Note that β (V ∗)> 0 by (5), hence JB

1 (y
∗)< 0. Meanwhile,

JB
2 (y
∗) = β (V ∗)S∗−δI = 0

by Theorem 5. Thus, the matrix JB(y∗) has a negative trace and a positive determinant,
and each eigenvalue of JB(y∗) has a negative real part. Therefore, statement 2 holds.

ut
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12 Almocera et al.

We obtain from Theorem 6 a unique equilibrium point ŷ = (Ŝ, Î) of (22) that is
either asymptotically stable or nonhyperbolic. That is,

ŷ =

{
y0 if RB

0 ≤ 1,
y∗ if RB

0 > 1,

from which Î > 0 if and only if RB
0 > 1. We establish the global stability of ŷ as

follows.

Theorem 7 Assuming that RW
0 > 1, then

lim
t→∞

(S(t), I(t)) = ŷ

for each solution of (22), such that I(0)> 0 whenever RB
0 > 1.

Proof Let us define the following sets

X := {(S, I) : S > 0 and I ≥ 0}, Y := X ∩{if RB
0 > 1, then I > 0}.

Denote by WS(ŷ) the intersection of X with the stable manifold of ŷ. It is enough to
establish

Y ⊆WS(ŷ) (28)

to prove the theorem. We remark that WS(ŷ)⊆Y due to the forward invariance of the
I = 0 plane.

We appeal to the LaSalle invariance principle [20,31] to establish (28). For w =
S, I, we define a function Lw : Y → R by

Lw(S, I) =

{
w− ŵ [1+ ln(w/ŵ)] if ŵ > 0 (from which w > 0),
w if ŵ = 0.

Consider the sum L = LS +LI and its time derivative L ′. Let

h(S, I) = β (V ∗)S−δI = δI

(
RB

0 S
S0
−1
)
.

Then we have

L ′(S, I) =
S− Ŝ

S
· dS

dt
+h(S, I)(I− Î)

= h(ŷ)(I− Î)− NS(S− Ŝ)2

ŜS
, (29)

after some computations. Observe that

h(ŷ)(I− Î) =

{
δI(RB

0 −1)I if RB
0 ≤ 1 (equivalently, Î = 0),

0 if RB
0 > 1,

= min{δI(RB
0 −1),0}I. (30)
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Substituting (30) to (29) yields

L ′(S, I) = min{δI(RB
0 −1),0}I− NS(S− Ŝ)2

ŜS
.

Thus, L is a Lyapunov function, and L ′(S, I) = 0 if and only if the following prop-
erty holds: S = Ŝ, and I = 0 = Î whenever RB

0 < 1.
Now, consider the following set:

S := {(S, I) ∈ Y : L ′(S, I) = 0} ⊆ {(S, I) ∈ Y : S = Ŝ}.

Then each solution taking values in S satisfies

NS−δSŜ−
[
β (V ∗)Ŝ

]
I(t) = 0 = NS−δSŜ−

[
β (V ∗)Ŝ

]
Î

and I(t) = Î for all t ≥ 0; that solution is necessarily (S(t), I(t)) = ŷ. Consequently,
{ŷ} is the largest invariant subset of S . Therefore, equation (28) holds by the LaSalle
invariance principle. ut

In addition to Theorem 7, the forward invariance of the I = 0 plane yields limt→∞(S(t), I(t))=
(S0,0)= y0 (regardless of RB

0 ) whenever I(0)= 0. Figures 3 illustrates the phase plane
portraits of the system (22), showing the global stability of ŷ = (Ŝ, Î) established in
Theorem 7.
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Fig. 3 Phase plane portraits for the between-host subsystem (22) at two different values of RB
0 . Each

curve represents a solution (S(t), I(t)) for t ≥ 0, with initial time indicated by the blue endpoint. The
red curve represents the heteroclinic orbit that connects y∗ to y0. Red points indicate equilibrium points.
The simulation reveals a slow manifold near the S-axis, to which each blue-colored solution curve is
asymptotic. The following values were used: NS = 4.74×10−2; δS = 4.74×10−5; δI = 0.5; and β (V ∗) =
RB

0 δSδI/NS.
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3.3 Relating the two basic reproduction numbers

It is useful to describe the dynamics of both systems (1) and (22) with respect to a
single basic reproduction number. Assuming that RW

0 > 1, we have

RB
0 =

(
cV NENS

pδEδIδS

)
β (V ∗)RW

0 (31)

by equations (9) and (23). Here, we do not consider the dependence of V ∗ on RW
0 .

With further assumptions, we establish below that RB
0 is an increasing function of

RW
0 .

Theorem 8 Assuming that r > δE , define a function F on (0,∞) by

F(x) =
(

cV NENS

pδEδIδS

)
(β ◦ f )(x)x, (32)

where f is given by equation (17). Then F ′(x)> 0 for x > 1. Furthermore, if equation
(3) holds, then

RB
0 = F(RW

0 ) =

(
NS

δIδS

)
(β ◦ f )(RW

0 )

for RW
0 > 1.

Proof For x > 1, we have

F ′(x) =
(

cV NENS

pδEδIδS

)[
(β ◦ f )(x)+(β ′ ◦ f )(x) f ′(x)x

]
. (33)

Observe from (5) and Theorem 2 that β , β ′, and their derivatives are positive on the
interval (1,∞). Thus, we have F ′(x) > 0. Under the assumption of (3), Theorem 3
yields V ∗ = f (RW

0 ) for RW
0 > 1, from which RB

0 = F(RW
0 ) by equation (31). ut

Figure 4 depicts the relationship between basic reproduction numbers, given by
the equation RB

0 = F(RW
0 ) in Theorem 8. Here, three examples for β are considered.

Aside from validating the increasing property of F , this figure shows that the rela-
tionship depends on the definition of β .

4 Discussion

Multiscale models have shown capable to generate hypotheses and new insights into
infectious disease mechanisms [15]. Linking the two scales has led to the identifica-
tion of missing pieces in infectious disease research and is the only way to capture
effects of the feedback between two scales [24]. While there exist many obstacles
in the approach [15,24,14], multiscale modeling is a promising approach that would
improve our understandings on the epidemic control and prevention.
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Fig. 4 The relationship between the
two basic reproduction numbers, as
given by the equation RB

0 = F(RW
0 ) in

Theorem 8. This relationship depends
on the definition of the transmission
rate: β (V ) = rWV/(V + KW ) (black
curve); β (V ) = rWV 2/(V 2 + KW

2)
(blue curve); and β (V )= rWV/KW (red
curve). In all examples, rW = 0.005 and
KW = 100.

In this paper, we analyzed a multiscale model that comprises a within-host viral
infection model, nested in a simple SI transmission model. A rigorous stability anal-
ysis and numerical simulations for the multiscale model were performed. We derived
stability analyses considering that the stimulation of the immune system by the virus
(V ) is represented by any function G(V ) with the properties G(0) = 0 and G′(V )> 0.

With a specific expression for G(V ), we obtained an expression V ∗ = f (RW
0 ),

which consequently provides a relationship between the basic reproduction numbers.
We conjecture that the existence of f holds in general. Meanwhile, the global stability
of the between-host system (Theorem 7) was established through the construction of
a Lyapunov function. We derived two basic reproduction numbers,

RW
0 =

p
cV E0

, RB
0 =

β (V ∗)S0

δI
,

for the within-host level and between-host, respectively. Viral infections with RW
0 be-

low unity would derive to clear the infection within a host; otherwise, a chronic state
could be established (Figure 2). For viruses with a very high replication rate, such
as avian influenza [16] and Ebola virus [26], the virus replication likely outpaces the
developing immune response [16,27]. Early interventions to stem down viral repli-
cation rate could promote survival and recovery from infection [16,27]. Notable ex-
amples are the use of neuraminidase inhibitors in containing influenza infection [22,
10] and the use of antiretroviral treatment (ART) as a public prevention measure for
HIV [17].

Furthermore, given the same disease and similar intervention approaches are in-
place, i.e. δI and β (V ∗) are fixed, the epidemic size then depends on the influx of new
susceptible individuals (Equation (24)). Approaches, such as childhood vaccinations,
diverge the influxes into non-susceptible classes and thus could lead to a disease erad-
ication. As per the SI model’s assumption of a constant population, equation (24) also
shows that the epidemic size will saturate regardless of RB

0 . As RB
0 will also saturate

as RW
0 crosses a certain value (Figure 4), it follows that epidemic interventions aim

at controlling viral replication would need to be highly effective to influence the epi-
demic size. In other words, if an intervention can largely reduce the RW

0 but this value
is still above a certain threshold then the intervention would have a negligible impact
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on the epidemic size. For our set of parameter values (Section 2.4), this threshold is
approximately 1.5 (Figure 5).
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Fig. 5 The trajectories V (t) and I(t) depend on the within-host reproduction number. Each curve denotes
the same solution, colored according to a unique value of RW

0 ; see the legend on the right. The saturation
function β (V ) = rWV/(V +KW ) was used, where rW = 0.005 and KW = 100. The initial conditions are
V (0) = 50, E(0) = 106, S(0) = 999, and I(0) = 1.
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Fig. 6 The solution trajectory of the multiscale model depends on the definition of the transmission rate
β (V ). The same examples of β (V ) are considered as in Figure 4: saturation (blue), linear (red), and logistic
(black). In each case, the solution describes a peak in the infected cases (circle), followed by a peak in
the viral load (square), before the viral load reduces to less than the detectable threshold of 50 PFU/mL
(diamond). The initial conditions are V (0) = 50, E(0) = 106, S(0) = 999, and I(0) = 1.

The above results could still hold when the coupling function between the two
scales was varied (Figure 4). The correct link function for many diseases is still de-
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batable because empirical data are lacking [24,15,14]. For this reason, we tested
three functional forms expressing the transmission rate based on viral load including
a linear, logistic, and Michaelis-Menten function as discussed elsewhere [15]. Fig-
ure 4 shows that while the effect of RW

0 on RB
0 is qualitatively indifferent among the

functions, there is a marked difference quantitatively. Linearly coupling led to the
transmission increased roughly triple compared to the others. Thus, coupling using a
linear function for a pathogen may lead to an overestimation of a disease transmis-
sion. This is illustrated in more details in Figure 6, for the same set of parameter, the
linear function would lead to a much faster and stronger epidemic trajectory.

The analysis of the dynamics from within- to between-host of infectious disease
requires the coupling of systems that are usually studied in isolation. The high level of
detail involved in this approach entails greater efforts. As of now a complete frame-
work to study multiscale infectious diseases has not prevailed, but it is a constant
target. This work contributes basic understandings of the two models in considered
and casts light on potential effects of the coupling function on linking the two scales.
Future experimental studies are needed to verify our results to improve multiscale
models within-host and between-host.
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