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Abstract  

One of the major challenges faced in defining clinically applicable and 

homogeneous molecular tumor subtypes is assigning biological and/or clinical 

interpretations to etiological (intrinsic) subtypes. The conventional approach 

involves at least three steps: Firstly, identify subtypes using unsupervised 

clustering of patient tumours with molecular (etiological) profiles; secondly 

associate the subtypes with clinical or phenotypic information (covariates) to 

infer some biological meaning to the redefined subtypes; and thirdly, identify 

clinically relevant biomarkers associated with the subtypes. Here, we report 

the implementation of a tool, phenotype mapping (phenMap), which combines 

these three steps to define functional subtypes with associated phenotypic 

information and molecular signatures. phenMap models meta (unobserved) 

variables as a function of covariates to expose any underlying clustering 

structure within the data and discover associations between subtypes and 

phenotypes. We demonstrate how this tool can more avidly identify functional 

subtypes that are an improvement over already existing etiological subtypes 

by analysing published breast cancer gene expression data. 
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Background 

 

A majority of the cancer types are heterogeneous representing a collection of 

diseases with different prognosis, responses to treatment, cellular-of-origin, 

molecular, metabolic and micro-environmental changes1,2,3,4,5,6,7. To define 

and implement clinically applicable tumor subtypes with associated 

biomarkers, it becomes important to integrate molecular profiles (genomics) 

with phenotypic information (including clinical outcome data such as tumor 

grade, stage and drug response; phenomics). This integrative stratification of 

tumors using genomics and phenomics is based on the principle that any 

phenotypes such as tumour grade and cancer cell survival are built upon 

interactions between multiple macromolecules such as DNA, RNA, proteins 

and metabolites. Studying these interactions thereby linking genomes to 

phenotypes forms a systematic way to understand the functional 

characteristics of patient tumors. Hence, there is a genuine need for robust 

statistical tools to integrate these molecular profiles with phenomics data to 

capture all information for effective implementation of subtypes in the clinic. In 

this study we are interested in combining a single molecular profile (gene 

expression) with associated multiple phenotypic data to identify subtypes and 

their associated phenotypes and biomarkers.  

 

Recent initiatives such as The Cancer Genome Atlas (TCGA)8 and 

International Cancer Genome Consortium (ICGC)9 have lead to the generation 

of hitherto unprecedented levels of data on tumor genomics, metabolomics 
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and phenomics. The conventional approach of tumor stratification involves 

unsupervised clustering approaches such as self-organizing maps (SOM)10, 

hierarchical clustering (HC)11, and non-negative matrix factorization 

(NMF)3,6,12,13. This unsupervised clustering approach uses only single or multi-

omics profiles (as in iCluster14,15) to identify subtypes that have distinct 

features reflective of different biology. Currently, associating the phenotypic 

data such as clinical information to the new subtypes is performed as a 

second step after clustering. Class prediction methods such as statistical 

analysis of microarrays (SAM) and predictive analysis of microarrays (PAM) 

are then used to identify differentially expressed features (genes, microRNA, 

etc), which stratify patients into different subtypes. This multi-stage approach 

can result in loss of statistical power to identify features driving the clustering 

or to discover association between subtypes and phenotypes. To address this 

issue we are proposing a more flexible approach to clustering through, 

phenotype mapping (phenMap), which combines these multiple steps to 

delineate “functional’’ subtypes (i.e. subtypes whose biological meaning and 

clinical implications are known). 

 

Results 

Application of phenMap in cancer 

The phenMap framework can be applied to uncover clustering structure 

underlying the expression data, discover associated phenotypes and 

molecular features (i.e. genes, mRNAs, metabolites, etc.). The workflow of 

phenMap as a clustering framework, shown in Figure 1, requires profile data 

as an input, i.e., gene expression, along with associated phenotypes for a set 
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of samples. Firstly, the framework identifies the optimal number of 

metavariables (MVs), q, driving the clustering of samples within the data using 

the Bayesian information criterion (BIC). Secondly, a fully Bayesian approach 

is taken to fit the model with the optimal number of MVs set at q. This results 

in i) clustering of samples in the q-dimensional MV space, ii) a panel of 

features driving this clustering and iii) associated covariates (phenotypes). 

Finally, model based clustering (MBC)16 is used to assign samples into their 

respective subtypes. Overall, phenMap model, unlike standard clustering 

approaches, identifies subtypes that are associated with sparse molecular 

signatures and biological phenotypes (covariates), hence, termed as 

“functional subtypes”. A complete description of the approach is available in 

methods and supplementary information sections. 

  

Functional gene expression subtypes of breast cancer  

Here, we demonstrate the potential utility of phenMap in identifying functional 

subtypes in cancer using published gene expression data of 36 breast cancer 

cell lines profiled for different cancer drugs17. The top most variable 996 genes 

(standard deviation (SD)>1.2) were selected from 36 BrCa cell lines with 

matched drug inhibitory concentration (-log10 [IC50]) values for four therapeutic 

compounds; etoposide, fascaplysin, bortezomib and geldanamycin that were 

used as covariates (phenotypes).  

   

When applied to this data, the model identified two MVs (Figure 2A) that 

clustered breast cancer cell lines into five “global (G) subtypes” (Figure 2B-C). 

Simultaneously, the model identified significant drugs (p<0.05) – fascaplysin 
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(cyclin-dependent kinase; CDK inhibitor) and etoposide (chemotherapy) as 

well as important genes significantly (p<0.05) associated with the MVs, which 

can be further associated to subtypes using the magnitude and direction of the 

standardized regression and loading coefficients, respectively (Figure 2D and 

E).  

  

Interestingly, these five subtypes were associated with the three known breast 

cancer cell line subtypes17 (p<0.05; Fisher Exact test, Figure 2C). Whilst one 

of the G subtypes is clearly claudin-low subtype, interestingly, luminal and 

ERBB2AMP subtypes combined into two different G-subtypes (named as 

luminal-HER2-1 and -2). In contrast, basal breast cancer cell lines (except for 

one ERBB2AMP sample) split into two G-subtypes. Figure 2F shows that one of 

the basal subtype is enriched for inflammatory colorectal cancer (CRC) 

subtype3 (samples were assigned into CRC subtype with maximum Pearson 

correlation); hence it was named as inflammatory G-subtype. The magnitude 

and direction of MVs in Figure 2C and 2E clearly show that the gene 

characteristics of basal and inflammatory subtypes are in between the other 

three – claudin-low, luminal-HER2-1 and luminal-HER2-2 - breast cancer 

subtypes.    

 

 Moreover, subtype-specific genes were further refined using prediction 

analysis of microarrays (PAM) analysis (dubbed as breast cancer G-Assigner 

“BrCa-G-Assigner” gene signature; Figures 2E). We also applied our 

probabilistic version of principal component analysis with covariates 

(PPCCA)18 and NMF3,6,12,13 to this dataset. Although PPCCA cannot be used 
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for subtype discovery, we found that etoposide and fascaplysin were 

associated with the clustering in the first principal component (this finding is 

similar to what we have shown with phenMap). NMF identified three subtypes 

that correspond to already known breast cancer intrinsic subtypes (data not 

shown). Hence, phenMap identifies unprecedented functional G-subtypes of 

breast cancer cell lines associated with drug response that were not revealed 

using other clustering tools.   

 

Discussion 

 

Currently personalized approaches for diagnosis and treatment of many 

diseases including cancer require stratification of patients into sub-groups 

based on high-throughput molecular and phenotypic data. The conventional 

clustering approaches are employed to identify subtypes in omics data and 

later, phenotypes are associated with the subtypes as a post-clustering step. 

In the past two decades, this approach to subtyping has led to identification of 

subtypes in multiple cancer types that are clinically not in practice. Statistical 

power to discover association between the new subtypes and phenotypes is 

reduced due to several steps involved in this conventional subtyping 

approach. There is need for a new generation of clustering methods that can 

simultaneously cluster and integrate both omics and phenotypic data to 

identify subtypes of clinical importance. 

 

Here we introduce a new concept of “functional subtyping” that involves 

identification of subtypes associated with phenotypes (covariates) using 
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phenMap. This model can be applied to any continuous high-throughput omics 

data with matched covariates information to identify: i) subtypes, ii) covariates 

associated with the subtypes and iii) features driving the clustering. The 

application of this model in cancer is highlighted using a published omics data 

types (transcriptomics) with samples from breast cancer cell lines17. We 

compared the identified functional subtypes to already known and published 

breast cancer subtypes that were identified using the same data by 

conventional clustering approaches.  This approach of functional subtyping 

offers the prospect of identifying robust and clinically important subtypes.  

 

This model can also be extremely useful in other molecular datasets such as 

proteomics data. However, the current scope of phenMap model does not 

accommodate non-Gaussian data as profile data. Research on different link 

functions to allow phenMap to model count and categorical data is underway.  

 

Methods 

Datasets and samples 

We used our already published gene expression microarray data for 36 

breast cancer cell lines and four drug response (IC50) data17. 

 

 
References 

1. Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically 
relevant subtypes of glioblastoma characterized by abnormalities in 
PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010). 

2. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 
406, 747–752 (2000). 

3. Sadanandam,  a et al. A colorectal cancer classification system that 
associates cellular phenotype and responses to therapy. Nat Med 19, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/175307doi: bioRxiv preprint 

https://doi.org/10.1101/175307


Nyamundanda, et al.  

619–625 (2013). 
4. Sadanandam, A. et al. A cross-species analysis in pancreatic 

neuroendocrine tumors reveals molecular subtypes with distinctive 
clinical, metastatic, developmental, and metabolic characteristics. 
Cancer Discov. 5, 1296–1313 (2015). 

5. Isella, C. et al. Stromal contribution to the colorectal cancer 
transcriptome. Nat. Genet. 47, 312–319 (2015). 

6. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma 
and their differing responses to therapy. Nat. Med. 17, 500–503 (2011). 

7. Calon, A. et al. Stromal gene expression defines poor-prognosis 
subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015). 

8. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The Cancer Genome 
Atlas. Nature 458, 719–724 (2009). 

9. Cancer, T. International Cancer Genome Consortium. Cancer 2011, 1–
20 (2011). 

10. Ritter, H. & Kohonen, T. Self-organizing semantic maps. Biol. Cybern. 
61, 241–254 (1989). 

11. Moore,  a. K-means and Hierarchical Clustering. Stat. Data Min. 
Tutorials 1–24 (2001). at 
<http://www.cs.cmu.edu/afs/cs/user/awm/web/tutorials/kmeans11.pdf> 

12. Cancer Genome Atlas Network & Cancer Genome Atlas Research 
Network. Comprehensive molecular portraits of human breast tumours. 
Nature 490, 61–70 (2012). 

13. TCGA. Comprehensive molecular characterization of gastric 
adenocarcinoma. Nature 513, 202–209 (2014). 

14. Shen, R., Olshen, A. B. & Ladanyi, M. (iCluster)Integrative clustering of 
multiple genomic data types using a joint latent variable model with 
application to breast and lung cancer subtype analysis. Bioinformatics 
25, 2906–12 (2009). 

15. Shen, R. et al. Integrative subtype discovery in glioblastoma using 
iCluster. PLoS One 7, e35236 (2012). 

16. Fraley, C. & Raftery, A. E. Model-Based Clustering, Discriminant 
Analysis, and Density Estimation. J. Am. Stat. Assoc. 97, 611–631 
(2002). 

17. Heiser, L. M. et al. Subtype and pathway specific responses to 
anticancer compounds in breast cancer. Proc. Natl. Acad. Sci. 109, 
2724–2729 (2012). 

18. Nyamundanda, G., Brennan, L. & Gormley, I. Probabilistic principal 
component analysis for metabolomic data. BMC Bioinformatics 11, 571 
(2010). 

 
 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/175307doi: bioRxiv preprint 

https://doi.org/10.1101/175307


Nyamundanda, et al.  

Figure Legends  

 

Figure 1: Modeling high dimensional data using phenMap model. A 

flowchart highlighting several steps involved in the phenMap framework when 

clustering samples.  

 

Figure 2: Applying phenMap to the gene expression data of breast 

cancer cell lines. A-B. Plots of BIC values to identify the optimal number of 

MVs and subtypes, respectively, for this dataset. The red dashed lines identify 

the optimal number of MVs and subtypes to be two and five, respectively. C. A 

plot showing subtypes in the MV space spanned by the two MVs. D-E. Plots 

showing D) the standardized regression coefficients (the red dashed lines 

represent 5% significance level) and E) the standardized loadings coefficients 

for LV 1 and 2 (the red dashed lines represent 0.01% significance level). The 

red dots denote covariates and genes with positive effect on LV-1, i.e. 

sensitive drugs and up-regulated genes in luminal-HER2 1 and 2. The green 

dots denote covariates and genes with negative effect on LV-1, i.e. sensitive 

drugs and up-regulated genes in claudin-low. F. Heatmap of hypergeometric 

test of enrichment between the five functional subtypes and the CRCassigner 

subtypes3 (towards red colour identifies significant association). The Heatmap 

shows that the claudin-low global functional subtype is a stem-like CRC 

subtype whilst luminal-HER2-2 and basal-2 are enriched for goblet-like and 

inflammatory CRC subtypes, respectively.  
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