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We present SALMON, a method for identifying protein targets of compounds using cell-type 

specific protein-gene networks and gene transcriptional profiles. For benchmark datasets from 

three drug treatment studies, SALMON was able to provide highly accurate target predictions, 

with an average area under receiver operating characteristic of 0.82. SALMON was also able to 

reveal the mechanism of action of DNA-damaging compounds in NCI-DREAM drug synergy 

study with high sensitivity and specificity. 
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The identification of the molecular targets of pharmacologically relevant compounds is vital for 

understanding the mechanism of action (MoA) of drugs, as well as for exploring off-target 

effects. While the definition of a target can be quite arbitrary, the term generally refers to a 

molecular structure whose interaction with the compound is connected to the compound’s 

effects1. In this study, we treat proteins, particularly transcriptional factors (TFs) and their 

interacting protein partners, as the drug targets and transcriptional expressions as the drug effects. 

Among existing technologies for protein target discovery (e.g., biochemical affinity purification, 

RNAi knockdown or gene knockout experiments)2, gene expression profiling has received much 

recent attention due to its relative ease of implementation as well as the availability of large-scale 

public databases and well-established experimental protocols and data analytical methods. 

However, a drawback of using gene expression profiling for target discovery is that the data give 

only indirect evidence of the drug action. As illustrated in Fig. 1a, the interactions between a 

compound and its protein target(s) are expected to result in the differential expression of genes 

that are regulated by these proteins. The expression of the protein targets themselves may not – 

and often do not – change because of the drug’s actions3. Consequently, the compound target 

prediction using gene expression profiles requires computational methods, taking into account 

the network of gene regulatory interactions, to delineate the (upstream) targets from the 

(downstream) effects. 

Existing computational methods of gene expression analysis for compound target 

identification can generally be classified into two groups: comparative analysis and network-

based analysis4. Comparative analysis methods use the gene expression profiles as drug 

signatures. Here, the likeness between the differential gene expression from a drug of interest 

and those from reference compounds or experiments with known targets, is used to indicate 
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similarity in the molecular targets and thereby the MoA. A notable example of such an approach 

is the Connectivity Map5, which provides gene expression profiles of human cell lines treated by 

~5000 small molecule compounds as queryable signatures for evaluating drug-drug similarities6. 

The obvious drawback of comparative analysis methods is their dependence on an extensive and 

accurate target annotation of the reference gene expression profiles. 

In network-based analysis, one adopts a system-oriented view by using cellular networks, 

such as gene regulatory network (GRN) and protein-protein interaction network (PIN). A 

number of network-based analytical methods relied on kinetic modeling of the GRN to infer the 

network perturbations caused by a drug treatment7-9. Several network-based analytical methods 

used statistical analysis to score potential drug targets based on the differential expression of 

genes in the network that are interacting with or regulated by these targets10-12. Numerous graph-

based analyses have also been applied to the gene expression data of drug treatments for target 

prioritizations3,13,14. More recent methods combined different types of cellular networks. Notably, 

a method called Detecting Mechanism of Action by Network Dysregulation (DeMAND) 

combines GRN and PIN to create a molecular interaction network, where the drug targets are 

scored based on drug-induced alterations in the joint gene expression distribution between two 

connected nodes in the network15. While recent strategies still have some limitations – for 

example DeMAND could not be used to predict the direction of the drug’s effects (e.g. 

enhancement or attenuation) – the benefit of integrating different biological networks in the 

analysis of gene expression is clear. As expected, the performance of any network-based analysis 

would depend on the fidelity of the underlying network.  

In this work, we leveraged comprehensive maps of protein-protein and protein-DNA 

interactions to construct, when possible, a tissue or cell type-specific protein-gene network 
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(PGN). Our method, called Systems Analysis and Learning for inferring Modifiers of Networks 

(SALMON), considers a PGN with directed edges (see Fig. 1a), describing direct and indirect 

gene transcriptional regulation by TFs and their protein partners. The edge weights in the PGN 

are determined by applying regularized regression (ridge regression) using the gene expression 

data, based on a kinetic model of the gene transcriptional process (see Fig. 1b and online 

method). Here, a positive weight indicates gene activation, while a negative weight implies gene 

repression. Because of the underlying kinetic model, SALMON is able to incorporate dynamical 

gene expression data; a common type of data from drug treatment studies5,16-18. The scoring of 

drug targets is based on the enhancement or attenuation of protein-gene regulatory interactions 

caused by the drug treatment. A drug-induced enhancement occurs when the expression of genes 

that are positively (negatively) regulated by a candidate target, becomes higher (lower) in drug 

treated samples than what is predicted by the PGN model (see Fig. 1c). A drug-induced 

attenuation describes the opposite scenario, where the expression of positively (negatively) 

regulated genes of a target is lower (higher) than expected from the model. For any given drug 

sample, a target is scored based on the overall enhancement and/or attenuation of its regulatory 

influence on the downstream genes (see Fig. 1d and online method). Thus, a protein with a 

more positive (negative) score is considered a more likely target of the drug, in which the drug 

treatment enhances (attenuates) the gene regulatory activity. 

We tested SALMON’s performance in predicting drug targets using gene expression data 

from three drug treatment studies using human and mouse cell lines. The first dataset came from 

the NCI-DREAM drug synergy study using human diffuse large B cell lymphoma OCI-LY316, 

the second from the compound genotoxicity study using human liver cancer cells HepG217, and 

the third from the chromatin-targeting compound study using mouse pancreatic cells18. We 
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compared SALMON to the state-of-the-art network-based analytical method DeMAND15, and to 

traditional differential expression (DE) analysis (see online method). For the analysis of the first 

two datasets, we constructed human cell-type specific PGNs by combining human PIN from 

STRING19 and Enrichr database20 and cell-type specific protein-DNA networks from Regulatory 

Circuit resource21. Meanwhile, for the construction of mouse pancreatic cell-specific PGN, we 

used PIN from STRING19 and mouse protein-DNA interactions from CellNet22 (see online 

method). 

In assessing the performance of SALMON and the other methods, we compared the 

ranked list of protein target prediction for each compound with the reference drug targets 

compiled from the literature (see online method and Supplementary material 1). More 

specifically, we computed the area under the receiver operating characteristic curve (AUROC), 

i.e. the area under the true positive rate versus the false positive rate curve, where a higher 

AUROC value indicates a more accurate target prediction. Fig. 2a (also see Supplementary 

Table S1-3) summarizes the AUROCs of the target predictions from SALMON, DeMAND, and 

DE analysis, showing SALMON significantly outperforming DeMAND and DE analysis in all 

three studies. Here, the drug target predictions from DE analysis had the lowest AUROCs with 

an overall average below 0.67. Meanwhile, the target predictions of DeMAND were slightly 

better than the DE analysis, averaging at 0.74 for the three datasets. Meanwhile, SALMON gave 

the highest average AUROCs among the methods with an average of 0.82. 

Besides high AUROCs, SALMON also provided accurate and specific indications on the 

MoA of the compounds. In the NCI-DREAM synergy study, roughly half of the compounds are 

known to cause DNA damages, including DNA topoisomerase inhibitors (camptothecin, 

doxorubicin and etoposide), DNA crosslinker (mitomycin C), oxidative DNA damaging agent 
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(methothrexate), and histone deacetylase (HDAC) inhibitors (trichostatin A). In demonstrating 

SALMON’s ability to reveal the compound MoA, we focused on the canonical p53 DNA 

damage response pathway15, as illustrated in Fig. 2b. Here, the activation of p53 in response to 

DNA damage is expected to induce the transcription of Cyclin Dependent Kinase Inhibitor 1A 

(CDKN1A) and Growth Arrest and DNA Damage Inducible Alpha (GADD45A)23,24. In turn, 

CDKN1A and GADD45A – through their interactions with Proliferating Cell Nuclear Antigen 

(PCNA) – regulate the DNA replication and repair process25. GADD45A also inhibits the 

catalytic activity of Aurora Kinase A (AURKA)26, leading to a lowered activation of Polo-like 

Kinase 1 (PLK1) and Cyclin B1 (CCNB1) in a phosphorylation cascade27,28. As shown in Fig. 2c, 

except for trichostatin A, the six proteins in the canonical p53 pathway above were ranked highly 

by SALMON among the genotoxic compounds (median rank <500) in the dataset, consistent 

with their known MoA. Note that the same six proteins were ranked much lower among the non-

DNA damaging compounds (median rank >500), signifying a high specificity of SALMON 

predictions. Equally important, SALMON was able to accurately identify the direction of the 

drug-induced alterations caused by the DNA damaging compounds. The signs of protein target 

scores from SALMON indicated drug-induced enhancement (positive scores) of CDKN1A, 

PCNA, and GADD45A, and attenuation (negative scores) of CCNB1, AURKA, and PLK1 (see 

Supplementary Table S4), consistent with the expected response of these proteins to DNA 

damage in Fig. 2b. 

As illustrated in Fig. 2c, DeMAND and DE analysis also performed reasonably well in 

predicting the compounds’ MoA. But, the directions of the drug perturbations were not predicted 

by DeMAND, and those from DE analysis were not always consistent with the expected 

response to DNA damage (see Supplementary Table S5-6). Besides the canonical p53 response 
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pathway, we further looked at the ranking of proteins involved in the overall DNA damage repair 

(DDR) and its associated pathways29 (see Supplementary material 2). As depicted in Fig. 2d, 

SALMON ranked these proteins much higher than DeMAND and DE analysis, with DE 

performing the poorest among the methods considered. Moreover, in comparison to DeMAND 

and DE analysis, SALMON was further able to detect a specific MoA of mitomycin C, whose 

DNA crosslinking activity is expected to prompt a particular DNA repair process called the 

fanconi anemia pathway30. The fanconi anemia pathway relies on a specific protein complex to 

ubiquitinate Fanconi Anemia Group D2 Protein (FANCD2) and Fanconi Anemia Group I Protein 

(FANCI), as well as two homologous recombination (HR) repair proteins, namely Breast Cancer 

Type 1 Susceptibility Protein (BRCA1) and RAD51 Recombinase (RAD51)31. SALMON 

analysis assigned FANCD2, FANCI, BRCA1, and RAD51 among the top 100 protein targets for 

mitomycin C, and not for the other DNA damaging agents (see Supplementary Table S7). The 

specific activation of the fanconi anemia pathway by mitomycin C was not detected by 

DeMAND or DE analysis. Thus, SALMON provided more sensitive and specific indications for 

the mechanism of action of compounds than DeMAND and DE.   

In summary, SALMON is a novel and highly effective network-based analytical method 

for inferring the protein targets of compounds from gene expression profiling data. Using gene 

expression profiles of drug treatments, SALMON generates protein target scores, whose 

magnitudes reflect the confidence that the drug interacts with a particular protein and whose 

signs indicate how the drug alters the gene regulatory activity of its targets (enhancement or 

attenuation). The application of SALMON to gene expression profiles from three drug treatment 

studies demonstrated the capability of SALMON in predicting targets and MoA of compounds 

with high sensitivity and specificity across different cell types and species.  
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METHODS 

Protein-Gene Network  

The protein-gene network (PGN) is a bipartite graph with directed edges, pointing from a protein 

to a gene. The edges describe the regulation of gene expression by transcription factors (TFs) and 

their protein partners. As illustrated in Fig. 1a, the PGN is constructed by combining two types 

of networks, namely the TF-gene network and protein-protein interaction network (PIN). For the 

construction of human tissue-specific PGNs, we relied on the Regulatory Circuit resource21 that 

provides 394 cell type and tissue-specific TF-gene interactions. In the analysis of the NCI-

DREAM drug synergy dataset, we used the TF-gene network of human lymphoma cells, while 

for the genotoxic compound study dataset, we employed the TF-gene network of pleomorphic 

hepatocellular carcinoma cells. Here, we included only TF-gene interactions with a confidence 

score greater than 0.1. Meanwhile, for the mouse gene expression dataset, we obtained the mouse 

pancreatic TF-gene interactions from CellNet22. In the construction of human and mouse PGNs, 

any TF-gene interactions involving unmeasured genes were excluded. In summary, the TF-gene 

network for human lymphoma and hepatocellular carcinoma cell lines included 31,392 and 3,868 

interactions (edges) among 515 TFs – 5,153 genes and 413 TFs – 953 genes, respectively. On the 

other hand, the mouse pancreatic PGN contained 2,922 interactions, involving 95 TFs and 588 

genes. 

For the PIN in human, we combined the information from two databases, namely 

Enrichr20 and STRING19. Meanwhile, for mouse pancreatic cells, we used STRING database. 

We used the PINs to identify protein partners of the TFs, defined as proteins that are within a 

network distance of 2 from the TFs in the PIN. When using STRING, we included all direct 

protein partners of TFs, and proteins with a network distance of 2 from TFs with a score larger 
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than 500. For human lymphoma cells, we found 10,649 protein partners for a subset of 499 TFs 

(out of 515 TFs), while for human hepatocytes, we found 10,488 protein partners for a subset of 

403 TFs (out of 413 TFs). For mouse pancreatic cells, we identified 6,598 protein partners for a 

subset of 89 TFs (out of 95 TFs).  

Finally, in the construction of the PGNs, we assigned a directed edge from a TF or from a 

protein partner of a TF, to every gene regulated by the TF. In summary, the cell-specific PGN for 

human lymphoma cells included 21,490,181 regulatory edges among 11,161 TFs/proteins and 

5,153 genes. For hepatocellular carcinoma cells, the cell-specific PGN comprised 3,726,671 

edges among 10,893 TFs/proteins and 953 genes. For mouse pancreatic cells, the cell-specific 

PGN consisted of 1,418,067 edges among 6,661 TFs/proteins and 588 genes. 

Gene Transcription Model  

The edges in the PGN have weights, whose magnitudes represent the strength of the gene 

regulation and whose signs indicate the direction or the mode of the regulation (positive for gene 

activation and negative for gene repression). The weights are inferred from the gene expression 

dataset by adapting a procedure described in our previous method DeltaNet9,32. The inference of 

the edge weights is based on an ordinary differential equation (ODE) model of the mRNA 

production of a gene:  

1

( )
( ) ( )kj

n
ak

k j k k
j

d r t
u r t d r t

d t =

= −∏      (1) 

where rk(t) is the mRNA concentration of gene k at time t, uk and dk denotes the mRNA 

transcription and degradation rate constants respectively, and akj denotes the gene regulatory 
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influence (or edge weight) of  the j-th protein on the k-th gene. The model is based on the 

assumption that the regulatory activity of a protein is concomitant with its mRNA expression.  

While the regulatory edges in the model above usually describe TF-gene interactions, in 

SALMON, we further accounted for the (indirect) regulation of a gene by proteins that interact 

with the TFs. For this purpose, we considered a modified ODE model: 

1 1

( )
TF P

kj kjq

n n
a bk

k j j q k k
j q

d r
u r r r d r

d t = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏ ∏     (2) 

 

where a positive (negative) bkjq describes the activation (repression) of the k-th gene by a protein 

q through its interaction with the TF j. The variables nTF and nP denote the numbers of TFs and 

their protein partners, respectively. The multiplication of two variables rj and rq implies that the 

regulation of gene k by protein q requires the TF j (a non-zero rj). The model in Equation (2) can 

be simplified into: 

1 1

1 1
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   (3) 

where *
kja  denotes the overall regulatory influence of each protein j, including TFs and their 

protein partners, on the expression of gene k. Note that the model in Equation (3) is 

mathematically equivalent to that in Equation (1), and thus the inference of the weights could be 

carried out using the same procedure as in DeltaNet9,32.  
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By taking the pseudo-steady state assumption, the above model equation can be 

linearized using a logarithmic transformation (see derivation in ref. 9). The inference of the 

weights from the gene expression dataset involved the following linear regression problem:  

*

1

TF Pn n

ki kj ji ki
j

c a c p
+

=
= +∑      (4) 

where cki denotes the log2 fold-change (log2FC) expression for gene k in sample i. The variable 

pki represents the part of log2FC of gene k expression in sample i that cannot be accounted for by 

the log2FC of its protein regulators. In other words, pki indicates the dysregulation of the 

expression of gene k. As detailed below, SALMON relies on the magnitude and directions of 

such network dysregulations to identify proteins with altered gene regulatory activity.  

As previously discussed in ref. 32, dynamical information of the PGN contained within 

time-series gene expression profiles, could greatly improve the inference of the edge weights. 

Such information could be accounted for by adding the following linear constraint on the linear 

regression problem: 

*

1

TF Pn n

ki kj ji
j

s a s
+

=
= ∑        (5) 

where ski is the time derivatives (slope) of the log2FC of gene k in sample i. The slopes of the 

log2FC at each sampling time point were computed using a second-order accurate finite 

difference approximation33. In summary, the estimation of edge weights in SALMON involved 

the following linear regression problem:  

kk k R kc = a c +p       (6) 

kk k Rs = a s       (7) 
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where ck and sk are the 1× m vectors of log2FC expressions and time-derivatives of gene k across 

m samples, the subscript Rk refers to the set of (nTF,k+nP,k) protein regulators of gene k in the cell-

specific PGN, kRC  and kRS  denote the (nTF+nP,k)× m matrices of log2FCs and their slopes across 

m samples, ak is the 1× (nTF+nP)  vector of weights for edges in the PGN pointing to gene k, and 

pk is the 1× m vector of dysregulation impacts of gene k over m samples.  

In SALMON, the vectors ak and pk for each gene k in Equations (6) and (7) were 

estimated by ridge regression. The ridge regression provides a solution to an underdetermined 

linear regression problem of the standard form: β ε+y = X , using a penalized least square 

objective function: 

2 2

2 2
min + 

β
β λ β−y X  

where λ  is a shrinkage parameter for the L2-norm penalty. Equations (6) and (7) are rewritten 

into the standard linear regression problem with  y = [Ck  Sk]
T, X = [ [ kRC  kRS ]T,  [Im   0]T ], β = 

[Ak  Pk]
T. Before applying the ridge regression, we normalized the vectors of log2FCs and slopes 

to have a unit norm. In the applications of SALMON, we employed 10-fold cross validations to 

determine the optimal λ, one that gives the minimum average prediction error. Here, we used the 

GLMNET package34 for both the MATLAB and R versions of SALMON.  

Drug target scoring 

In SALMON, each candidate protein target is assigned a score based on the deviation of 

the expression of its downstream genes. More specifically, we computed the residuals of the 

linear regression problem in Equations (6) for each gene k, i.e. 

= −
kk k k Rr C A C      (9) 
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where rk is the 1× m vector of residuals for m samples. For each drug treatment, there often exist 

multiple gene expression profiles, taken at different time points or different doses. 

Correspondingly, we evaluated the z-score 
 zlk

 for each drug treatment l and for each gene k, 

according to 

 

z
lk

=
rlk

σ k nl

      (9) 

where 
 rlk

 denotes the average residual of gene k among the drug treatment samples, 
 σ k

 denotes 

the sample standard deviation of the residuals in all samples besides the drug treatment, and nl 

denotes the number of samples from the drug treatment. A positive (negative) z-score indicates 

that the expression of gene k in the particular sample was higher (lower) than expected based on 

the expression of its regulators. The greater the magnitude of the z-score, the more significant is 

the gene dysregulation.  

The target score of a TF or protein for a drug is calculated by combining the z-scores of 

the target genes in the PGN, as follows: (ref. 35) 

  

s
ji

=
w

kj
z

kik=1

nD

∑

w
k
2

k=1

nD

∑
     (10) 

where zki denotes the z-score of gene k and sji denotes the score of the TF/protein j in the drug 

treatment sample i. The weighting coefficients wkj are set equal to the edge weights akj divided by 

the maximum magnitude of akj across all j. In other words, the weight wkj reflects the fraction of 

the regulation of gene k expression that could be attributed to protein j. When wkj (or akj) and zki 

have the same signs, wkjzki thus takes a positive value. As illustrated in Fig. 1c, a positive wkjzki 

implies an enhanced regulatory activity of protein j on gene k, since the activation (inhibition) of 
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gene k expression by protein j is stronger in this sample than expected by the PGN model. In 

contrast, a negative wkjzki indicates an attenuation in the regulatory influence of protein j on gene 

k, since the activation (inhibition) of gene k expression by protein j is weaker than predicted by 

the PGN model. Consequently, a highly positive (negative) score sji is an overall indicator of 

strongly enhanced (attenuated) regulatory activity of protein j by the drug treatment in sample i 

(see Fig. 1d). The protein targets in each drug treatment sample are ranked in decreasing 

magnitude of the scores sji. 

Implementation of DeMAND and differential expression analysis 

For DeMAND analysis, we employed the R subroutines from 

http://califano.c2b2.columbia.edu/demand. Following the procedure of DeMAND15, we 

computed the RMA (Robust Multi-array Average) normalized gene expression values as inputs 

to the analysis. In addition, we used the same cell-specific PGNs in DeMAND as in SALMON. 

For each candidate protein target, DeMAND evaluated the p-value of the deviations in the gene 

expression relationship between the protein target and each of the genes connected to this protein 

in the PGN. The drug targets were ranked in increasing magnitude of the combined p-values.  

In differential expression (DE) analysis, we calculated the log2FC differential expression 

of each protein in the PGN, as described in section Gene expression data below. Here, we used 

the log2FC values directly as the target scores. Correspondingly, we ranked the candidate protein 

targets in decreasing magnitude of the log2FC gene expression values.  

Performance assessment 

For comparing the performance of different methods, we computed the area under the 

receiver operating characteristic curve (AUROC) following the procedure adopted in DREAM 
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challenges36,37, i.e. the area under the plot of true positive rate against false positive rate. For 

each method and each drug treatment, we generated a ranked list of protein targets according to 

decreasing magnitudes of the protein scores in SALMON, increasing p-values of network 

dysregulation in DeMAND, and increasing magnitudes of log2FC gene expression in DE 

analysis.  

Gene expression data 

For NCI-DREAM drug synergy data, we obtained the raw Affymetrix Human Genome 

U219 microarray data from Gene Expression Omnibus (GEO) database38 (accession number: 

GSE51068). The raw data were first normalized and transformed into log2-scaled expressions 

using justRMA function in the affy package of Bioconductor39. Then, the log2FC differential 

expressions and their statistical significance were calculated using a linear fit model and 

empirical Bayes method in the limma package of Bionconductor. Three samples from the drug 

treatment using low concentration of Aclacinomycin were dropped because the log2FC 

expressions were close to 1 and not statistically significant. The probe sets were mapped to gene 

symbols using hgu219.db annotation package (Entrez Gene database as of 27th September 2015). 

In the case of multiple probe sets mapping to a gene symbol, we assigned the log2FC from the 

probe set with the smallest average p-value over the samples.  

The raw microarray data from genotoxicity study17 in human HepG2 cell line were 

obtained from GEO database (accession numbers: GSE28878 using Affymetrix GeneChip Human 

Genome U133 Plus 2.0 array and GSE58235 using Affymetrix HT Human Genome U133+ PM 

array). As with the drug synergy data, the microarray data were first normalized using justRMA, 

and the log2FCs and their p-values were calculated using limma in Bioconductor. Because the 

data came from different microarray platforms, the gene symbols were matched separately for 
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each platform using hgu133plus2.db annotation package (Entrez database of 27th September 

2015) and HT_HG-U133_Plus_PM annotation file in Affymetrix, respectively. Likewise, in the 

case of multiple probe sets matching a gene symbol, the probe set with the smallest averaged p-

value across all samples was chosen.  

The raw data from the chromosome-targeting study18 on mouse pancreatic alpha and beta 

cells were again obtained from GEO (ascension number: GSE36379). The raw data were 

normalized using justRMA, and the log2FCs and their p-values were again calculated by limma. 

The probes were mapped to the corresponding gene symbols using moe430a.db package (Entrez 

database as of 27th September 2015) in Bioconductor. Again, in the case of multiple probe sets 

mapping to a gene symbol, we selected the probe set with the smallest average p-value among 

the samples.  

Compilation of known drug targets 

The reference protein targets of the drugs were compiled from 5 different public 

databases of chemical-protein interactions: DrugBank40, Therapeutic Target Database (TTD)41, 

MATADOR42, Comparative Toxicogenomics Database (CTD)43, and STITCH44. DrugBank and 

TTD provide information on the mechanism of drug actions as well as the proteins that have 

physical binding interactions with drugs. Meanwhile, MATADOR, CTD, and STITCH give 

comprehensive interactions between proteins and chemical compounds, curated from text mining 

and experimental evidences. When retrieving the protein targets of drugs from these databases, 

we only collected proteins that directly bind to the queried drugs. The reference drug targets for 

each dataset in this study are provided in Supplementary material 1. 

Code availability 
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MATLAB and R versions of SALMON can be downloaded from the following website: 

https://github.com/CABSEL/SALMON. 

 

 

SUPPLEMENTARY INFORMATION  

supplementary_tableS1-7.pdf, supplementary_material1.xlsx, and supplementary_material2.xlsx 
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Figure 1. Protein target prediction by SALMON. (a) The protein-gene network describes 
direct and indirect regulations of gene expression by transcription factors (TF) and their protein 
partners (P), respectively. A drug interaction with a protein is expected to cause differential 
expression of the downstream genes in the PGN.  (b) Based on a kinetic model of gene 
transcriptional process, SALMON infers the weights of the protein-gene regulatory edges, 
denoted by akj, using gene expression data. The variable akj describes the regulation of protein j 
on gene k, where the magnitude and sign of akj indicate the strength and mode (+akj: activation, -
akj: repression) of the regulatory interaction, respectively. (c) A candidate protein target is scored 
based on the deviations in the expression of downstream genes from the PGN model prediction 
(Pj: log2FC expression of protein j, Gk: log2FC expression of gene k). The colored dots in the 
plots illustrate the log2FC data of a particular drug treatment, while the lines show the predicted 
expression of gene k by the (linear) PGN model. The variable zk denotes the z-score of the 
deviation of the expression of gene k from the PGN model prediction. A drug-induced 
enhancement of protein-gene regulatory interactions is indicated by a positive (negative) zk in the 
expression of genes that are activated (repressed) by the protein (i.e. akjzk > 0). Vice versa, a 
drug-induced attenuation is indicated by a negative (positive) zk in the expression of genes that 
are activated (repressed) by the protein (i.e. akjzk < 0). (d) The score of a candidate protein target 
is determined by combining the z-scores of the set of regulatory edges associated with the 
protein in the PGN. A positive (negative) score indicates a drug-induced enhancement 
(attenuation). The larger the magnitude of the score, the more consistent is the drug induced 
perturbations (enhancement/attenuation) on the protein-gene regulatory edges.  
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Figure 2. Protein target and MoA prediction by SALMON. (a) AUROCs of protein target 
predictions from SALMON, DeMAND and DE methods for the NCI-DREAM drug synergy 
(human B-cell lymphoma), the compound genotoxicity (human HepG2) and the chromatin 
targeting study (mouse pancreatic cell) datasets (*: p-value < 0.01, **: p-value <0.001 by paired 
t-test). (b) Canonical p53 DNA damage response pathway: GADD45A, CDKN1A, PCNA are 
activated, while AURKA, CCNB1, and PLK1 proteins are inhibited in response to DNA 
damage15. (c) The rank distribution of the canonical p53 DNA damage response proteins in the 
drug target predictions of SALMON, DeMAND and DE for the NCI-DREAM drug synergy 
dataset. (d) The rank distribution of proteins involved in the core DNA-damage repair (DDR) 
and DDR-associated pathways29 in the target predictions of SALMON, DeMAND, and DE for 
the DNA damaging compounds in the NCI-DREAM drug synergy study (**: p-value <0.001 by 
Wilcoxon signed rank tests). 
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