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ABSTRACT 

Recent advances in the multi-omics characterization necessitate pathway-level abstraction and knowledge 

integration across different data types. In this study, we apply independent component analysis (ICA) to human 

breast cancer proteogenomics data to retrieve mechanistic information. We show that as an unsupervised feature 

extraction method, ICA was able to construct signatures with known biological relevance on both transcriptome 

and proteome levels. Moreover, proteome and transcriptome signatures can be associated by their respective 

correlation with patient clinical features, providing an integrated description of phenotype-related biological 

processes. Our results demonstrate that the application of ICA to proteogenomics data could lead to pathway-level 

knowledge discovery. Potential extension of this approach to other data and cancer types may contribute to pan-

cancer integration of multi-omics information. 

 

INTRODUCTION 

Breast cancer is the most common cancer among women, and while targeted therapies have helped to 

significantly reduced breast cancer mortality rate in the past decade, further improvement will require a 

comprehensive understanding of the molecular mechanisms of the disease1,2. Recently, deep mass spectrometry 

based proteomic characterization of genomically annotated breast cancer samples by the Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) has marked the initial step of an proteogenomic integrative approach, in 

which recurrent mutations and copy number variations on the genomic level, expression profiles on the 

transcriptomic level and protein abundance and functional manifestations on proteomic level were measured for 

the same group of patient samples and examined in the same framework3–5.The collection of high quality multi-

omics data immediately led to the discovery of concordant gene amplification and protein phosphorylation in key 

pathways3. At the same time, there is increasing demand for integrative analysis that could incorporate all data 

types and extract pathway level. Since in all human patients ‘-omics’ data sets the number of features far exceeds 

the number of samples, analysis of any single data type is already susceptible to ‘the curse of dimensionality’, and 

integration by simple concatenation of multi-omics data would be an even less desirable option. Our previous 

work has benchmarked the predictive power of multi-omics datasets for classifying breast cancer patients into 

different survival groups and showed that combined multi-omics datasets produced with data-driven fusion 

techniques were not able to outperform proteomic data alone6. This result highlighted the possible redundancy 

among information contained in different biological levels, and motivates us to explore other data fusion 

techniques that extract both concordant and complementary features from high-dimensional multi-omics data.  

In the current study, we applied independent component analysis to proteomic and transcriptomic data of 

77 breast cancer samples to extract pathway-level molecular signatures. Independent component analysis (ICA) is 

an unsupervised learning method widely used in signal processing and has been applied to cancer genomics with 

notable success7–9. This approach decomposes the molecular profiles into linear combinations of non-Gaussian 

independent sources or components, each of which is comprised of weighted contributions from individual genes. 
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Therefore, ICA reduces the dimensionality of original data by representing the molecular profile of each sample 

as weighted sum of several ‘meta-genes’ or ‘meta-proteins’, and the weight of specific meta-gene/protein (mixing 

scores) in one sample reflects the ‘activity’ of that component in the sample. As clinical features are also available 

for the CPTAC samples, molecular signatures can be constructed from clusters of meta-genes/proteins that show 

activity patterns correlated with these clinical features. Furthermore, taking advantage of a specific clinical feature 

as a ‘anchor’, this method may help extract patterns at different biological levels, which may originate from the 

same cellular functionality (Figure 1). The signatures extracted from different data sets were filtered based on 

their intrinsic stability and association with known clinical features (see Methods), and grouped into modules that 

showed similar correlation patterns to clinical features. Subsequent gene set enrichment analysis revealed the 

biological relevance of these modules to pathways such as HER2 signaling, mitosis and histone modification. Our 

analysis has demonstrated that ICA was able to blindly extract biologically meaningful information at pathway 

level. With input from clinical features or other sample sub-grouping indices, these signatures may be further 

integrated into multi-level models that provide insights into the molecular mechanisms of breast cancer.  

 

 

RESULTS 

Stable molecular signatures extracted from proteome and transcriptome data  

For both the proteome and transcriptome datasets we identified 77 clusters of meta-proteins or meta-genes from 

independent components obtained from 50 randomly initiated runs (Method). Centers of the stable meta-gene and 

meta-protein clusters, which could be found by averaging gene coefficients within each cluster, could represent a 

pathway-level signature. The stability of these signatures could be inspected by visualizing all meta-genes and 

meta-proteins with t-Distributed Stochastic Neighbor Embedding (t-SNE), a widely used dimensionality reduction 

technique10 (Figure 2a, c). A large portion of the meta-gene and meta-protein clusters are compact, while the rest 

Figure 1: Data analysis work flow. Coefficients of independent components and their corresponding mixing 
scores are extracted from both proteome and transcriptome data sets for multiple randomly initiated runs. 
Each independent component is a pathway-level representation. Molecular signatures were identified as 
cluster centroids of these components, and clinical features were used to select biologically relevant 
signatures, which were further annotated with pathway analysis. 
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formed a visually indistinguishable mixture, consistent with the observation that the average silhouette width of 

all clusters followed a bimodal distribution (Figure 2b, d). Another metric that could help evaluate the stability of 

extracted signatures is the number of different runs that the members of each cluster originated from. It has been 

proposed that reliable independent components should be highly recurrent, therefore, a cluster the members of 

which were extracted from different runs would be considered as more stable. Indeed, this metric largely agrees 

with silhouette width, such that a lot of compact clusters were also comprised of meta-proteins or meta-genes 

extracted from all 50 runs.  

 

Mixing scores reveal clinical relevance of identified components  

In addition to their numerical stability, the clusters of components representing groups of meta-proteins or meta-

genes identified from different ICA runs can also be evaluated with their relevance to known characteristics of 

breast cancer. For each particular ICA decomposition, the rows of the mixing score matrices represented the 

‘activity level’ of the corresponding independent components in all of the samples. Therefore, it is possible to 

establish associations between the activity patterns of meta-genes and meta-proteins and clinical features available 

for TCGA samples, which would in turn reveal the functional relevance of the signatures. We recoded 22 clinical 

features into ordinal factors and use linear regression to assess their correlation with activity scores of meta-genes 

or meta-proteins in each signature cluster. A stringent threshold of nominal P-value (10-5) was used to correct for 

multiple comparisons and select the most significant associations. Within each cluster, the number of meta-

proteins or meta-genes with activity levels that showed significant linear relation with the 22 clinical features was 

documented. Large number of significant association between a signature cluster and a clinical feature indicates 

that the signature may contain pathway-level information about molecular mechanisms underlying the clinical 

Figure 2: Evaluation of component consistency. a, c, t-SNE representation of components obtained from 50 
randomly initiated runs. Colors represent cluster assignments. b, d, average silhouette widths for the 77 
clusters were plotted against the number of different individual runs from which the members of each cluster 
were extracted. Marginal histograms revealed the distribution of the metrics. Large number indicates that the 
cluster is recurrent and more likely to capture true structures in the data. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2017. ; https://doi.org/10.1101/175687doi: bioRxiv preprint 

https://doi.org/10.1101/175687
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

feature. 33 out of the 77 proteome IC clusters showed significant association with 10 clinical features, while 60 

transcriptome clusters were correlated with 12 clinical features (Figure 3).  

The biological relevance of the identified clusters could be further validated by inspecting the average 

gene coefficients (the centroids of the clusters). For example, the proteome signature cluster that contains 29 

members that were significantly correlated with the HER2 receptor immuno status and 22 members associated 

with the Her2 subtype index (pr_02), was heavily weighted on ERBB4 and ERBB2, two tyrosine receptor kinases 

that mediate the Her2 signaling, and the two proteins were assigned the two largest coefficients (11.13 and 10.68, 

Table 1). Another signature (pr_29) correlated with estrogen receptor (ER) and progesterone receptor (PR) status 

also exhibited high average scores for PGR (7.73) and ESR1 (4.42) proteins. Interestingly, the signature pr_04, 

which displayed strong correlation with the LumA subtype, is enriched with a group of mitosis-related proteins, 

indicating that cell division checkpoint may be differentially regulated in LumA subtype.  

Large value coefficients of known marker genes revealed the biological relevance of a subset of the 

molecular signatures, but more biological information could be exploited on the pathway level. The coefficient 

vector for each signature is a pre-ranked gene list that can be subjected to Gene Set Enrichment Analysis (GSEA) 

on curated gene sets and GO terms11, and the collective effect of genes with coefficients of smaller absolute 

values could contribute to the enrichment metric. GSEA results showed that the clinical-related proteome IC 

clusters retrieved a lot of the breast cancer related gene sets determined by experimental manipulations, as well as 

gene sets that characterized basic biological processes (Table 2). For example, the proteome signatures pr_02 and 

pr_29, which were strongly associated with Her2 and ER status, also exhibited enrichment of the corresponding 

gene sets (Table 2). The transcriptome signature tx_07, which were correlated with Basal subtype, ER and PR 

status, showed negative enrichment of targets of LSD1, a histone demethylase of H3K4 sites, which had known 

links to be poor breast cancer prognostics and ER negative status12,13. Interestingly, the same signature cluster also 

exhibited positive enrichment of genes with H3K27Me3 sites, indicating that epigenetic regulation is highly 

orchestrated in breast cancer.  

Although the most clinically-relevant clusters (total count of significant association >25) contained 

proteome and transcriptome signatures that are highly recurrent, these clusters were not very homogeneous 

(Supplementary table 1). On the other hand, out of the 20 most consistent clusters with average silhouette widths 

larger than 0.9 and are recurrent in every run for both proteome and transcriptome, only 3 signatures (pr_04, 

tx_46, tx_63) showed direct clinical relevance (Supplementary table 1). The meta-proteins and meta-genes in the 

clusters of pr_04 and tx_46 were both significantly associated with Luminal A subtype index, and showed 

enrichment of genes involved in estrogen response (table 2). The signature tx_63 was associated with the Basal 

subtype and ER status, and its coefficients exhibited significant negative enrichment of genes in 16q24 loci 

(P<0.001, FDR<0.001), a breast cancer risk factor, as well as positive enrichment of genes involved in endocrine 

therapy response (P<0.001, FDR<0.001). The large extent of disagreement between clinical relevance and cluster 

consistency suggest that ICA may serve as a promising approach to knowledge discovery, as stable clusters that 

did not show clinical relevance may provide new insights into the molecular mechanisms of breast cancer.  
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Table 1: Average coefficients of selected proteome signatures 

pr_02 pr_04 pr_29 
positive coefficients negative coefficients positive coefficients negative coefficients positive coefficients negative coefficients 

ERBB4 11.13 HBZ -4.59 CKS1B 7.53 FUCA1 -4.49 GFRA1 9.42 TNRC18 -3.23 
ERBB2 10.68 CKB -4.06 CDK1 7.21 LTF -4.25 PDZK1 8.46   
GRB7 10.10 PIP -3.96 PBK 7.06 S100A1 -4.25 PGR 7.73   
MIEN1 8.87 GP2 -3.91 UBE2C 6.75 FHIT -3.93 SCUBE2 6.97   
CASP14 8.46 CKM -3.56 ANLN 6.29 PPDPF -3.92 STC2 6.48   
FABP7 8.11 TNFSF12 -3.31 TRIP13 6.25 EFCAB4B -3.89 CLEC3A 5.78   
PNMT 6.55 MAPT -3.25 TPX2 6.08 COMP -3.67 IGFBP5 5.00   
CLGN 6.39 CALB1 -3.03 NCAPH 6.07 MUC2 -3.64 MGP 4.95   
AKR1B10 6.02   ECT2 5.78 FABP7 -3.61 PKIB 4.89   
PPP1R1B 5.93   KIF4B 5.74 SUCLA2 -3.59 MAPT 4.84   
AKR1B15 4.91   MCM7 5.66 ALDH6A1 -3.53 AGR2 4.74   
ASRGL1 4.88   PRC1 5.66 TNN -3.38 AKR7A3 4.66   
PRODH 4.71   MCM6 5.51 C1QTNF3 -3.37 AGR3 4.51   
HMGCS2 4.64   KIF4A 5.42 DPP7 -3.35 CLIC6 4.46   
MUCL1 4.64   MCM4 5.42 AZGP1 -3.34 IGFBP2 4.46   
SDR16C5 3.96   NCAPG 5.34 ADIRF -3.24 ESR1 4.42   
S100P 3.91   ZWILCH 5.34 ANO6 -3.09 HGD 4.34   
CRISP3 3.85   RACGAP1 5.28 MAMDC2 -3.02 CPB1 4.34   
CRABP1 3.72   TK1 5.27   NAT1 4.19   
NCCRP1 3.70   MCM5 5.25   PREX1 3.98   
AGR2 3.65   KIFC1 5.22   PEG10 3.92   
KRT72 3.55   MCM3 5.21   SYTL4 3.82   
STEAP4 3.53   KIF2C 5.19   GDAP1 3.51   
CDK12 3.44   UHRF1 5.18   SGK3 3.31   
ZNF573 3.26   SMC2 5.18   GOLM1 3.28   
C19orf33 3.25   UBE2S 5.10   NOS1AP 3.24   
GREM1 3.25   UBE2T 5.09   IL6ST 3.23   
GALNT6 3.14   KIF11 5.08   SEC14L2 3.21   
A1CF 3.10   SMC4 5.05   BST2 3.11   

Figure 3: Clinical associations of IC clusters. Number of significant associations found between corresponding 
mixing scores and clinical features for ICs in each cluster. Only non-zero columns and rows were shown.  
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    DHFR 5.03   CAP2 3.10   
    MCM2 5.01   SEC14L3 3.09   
    SPC24 4.99   PLAT 3.00   
    FANCI 4.90       
    TOP2A 4.89       
    NCAPD2 4.80       
    CDK3 4.79       
    RRM2 4.77       
    ATAD2 4.77       
    MKI67 4.77       
    HMGCS1 4.74       
    IGFBP5 4.71       
    KIF23 4.71       
    CENPF 4.59       
    S100P 4.54       
    PLEKHS1 4.31       
    FEN1 4.24       
    MT1M 4.18       
    KPNA2 4.17       
    STMN4 4.13       
    CHAF1A 4.12       
    TG 4.03       
    PHGDH 4.03       
    STMN2 3.95       
    RRM1 3.93       
    LIG1 3.92       
    CLEC3A 3.91       
    STMN1 3.88       
    DSCC1 3.82       
    NME4 3.81       
    PRIM2 3.80       
    HAT1 3.71       
    NASP 3.63       
    GINS2 3.61       
    POLD3 3.61       
    NCAPG2 3.60       
    CHTF18 3.58       
    KNTC1 3.46       
    KRT27 3.43       
    ASNS 3.42       
    CHEK2 3.42       
    KIAA1524 3.41       
    WDHD1 3.36       
    PCNA 3.35       
    SIGLEC1 3.31       
    MT1X 3.28       
    MT2A 3.26       
    FAM111B 3.24       
    TACC3 3.22       
    MRFAP1 3.21       
    NCAPD3 3.20       
    DHTKD1 3.17       
    EPCAM 3.15       
    DUT 3.14       
    CETN3 3.10       
    AIM1 3.02       
    TONSL 3.01       

 

Table 2: GO terms and curated gene sets enrichment of selected signatures 

clinical relevant signatures (significant total count >25) 

 top enriched GO terms top enriched curated sets 

 negative positive negative 

pr_
02 

GO_MYOSIN_II_COMPLEX GO_ERBB2_SIGNALING_PATHWAY REACTOME_RESPIRATORY_ELECTRON_TRANSPORT 

pr_
04 

GO_BRANCHED_CHAIN_AMINO_ACID_METABOLIC_PROCESS GO_DNA_REPLICATION WOO_LIVER_CANCER_RECURRENCE_DN 

pr_
18 

GO_CILIARY_TIP 
GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_THE_CH_OH_GROUP
_OF_DONORS_NAD_OR_NADP_AS_ACCEPTOR 

SMID_BREAST_CANCER_LUMINAL_B_UP 

pr_
29 

GO_MITOCHONDRIAL_TRANSLATION GO_ANCHORED_COMPONENT_OF_MEMBRANE REACTOME_LIPOPROTEIN_METABOLISM 

pr_
48 

GO_ACTIN_MYOSIN_FILAMENT_SLIDING GO_CELLULAR_MONOVALENT_INORGANIC_CATION_HOMEOSTASIS 
REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_CO
UPLING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS_ 

pr_
49 

GO_MICROBODY_LUMEN GO_RIBOSOME_BIOGENESIS SMID_BREAST_CANCER_BASAL_DN 

tx_
07 

GO_CYTOSOLIC_LARGE_RIBOSOMAL_SUBUNIT GO_EMBRYONIC_HINDLIMB_MORPHOGENESIS WANG_LSD1_TARGETS_DN 
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tx_
19 

GO_NECROPTOTIC_PROCESS GO_OLIGODENDROCYTE_DIFFERENTIATION KOHOUTEK_CCNT1_TARGETS 

tx_
21 

GO_RESPONSE_TO_PH GO_STEROID_BINDING SMID_BREAST_CANCER_BASAL_UP 

tx_
31 

GO_VASODILATION GO_MHC_PROTEIN_COMPLEX BIOCARTA_NO1_PATHWAY 

tx_
34 

GO_VOLTAGE_GATED_CALCIUM_CHANNEL_COMPLEX GO_MUSCLE_CELL_MIGRATION VANTVEER_BREAST_CANCER_METASTASIS_UP 

tx_
40 

GO_REGULATION_OF_ENDOCRINE_PROCESS GO_EPIDERMIS_DEVELOPMENT NIKOLSKY_BREAST_CANCER_12Q13_Q21_AMPLICON 

tx_
46 

GO_NEGATIVE_REGULATION_OF_CALCIUM_ION_TRANSPORT GO_CHROMOSOME_SEGREGATION SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_DN 

tx_
63 

GO_CALCIUM_DEPENDENT_CELL_CELL_ADHESION_VIA_PLASMA
_MEMBRANE_CELL_ADHESION_MOLECULES 

GO_CILIUM_ORGANIZATION NIKOLSKY_BREAST_CANCER_16Q24_AMPLICON 

tx_
64 

GO_INNER_EAR_RECEPTOR_CELL_DEVELOPMENT GO_POSITIVE_REGULATION_OF_INTERLEUKIN_2_PRODUCTION PID_WNT_SIGNALING_PATHWAY 

tx_
72 

GO_PROTEIN_LIPID_COMPLEX GO_NEUROEPITHELIAL_CELL_DIFFERENTIATION FARMER_BREAST_CANCER_CLUSTER_3 

    

    

    

    

 

 

Integrative pathway analysis of proteomic and transcriptomic components guided by clinical features 

The correlation between mixing scores and clinical features provided a valuable opportunity to find the link 

between independently extracted components from different data types. For example, in both proteome and 

transcriptome analyses, there was a highly consistent signature (pr_04 and tx_46), such that meta-proteins and 

meta-genes in the two clusters were recurrent in all 50 randomly initiated runs and the corresponding mixing 

scores all showed significant correlation with index of Luminal A subtype (Figures 2 and 3). To integrate the 

proteomic and transcriptomic information with guidance from clinical relevance, we applied the hierarchical 

clustering algorithm to the vectors of clinical association counts for the most clinically relevant meta-protein and 

meta-gene clusters. Proteome and transcriptome signatures could therefore be grouped based on their similarity in 

functional indications, as the metric of direct correlation between gene coefficients of different signatures was 

limited by noise introduced by high dimensionality (Supplementary Figure 1). Combined network visualization of 

GO terms enriched in proteome and transcriptome signatures allowed us to examine complementary functional 

modules on different biological levels. For example, the pr_04 and tx_46 clusters may characterize Luminal A 

subtype specific processes from protein and RNA perspectives (Figure 4b). While majority of the gene set 

networks consisted of nodes and edges between proteome and transcriptome, specific networks could be 

identified for both data modes, with tx_46 showed specific enrichment in a DNA replication-related network, and 

pr_04 showed specific enrichment in polysaccharide metabolism (Figure 4c).  
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DISCUSSION 

We have utilized independent component analysis to gain pathway-level insights into the mechanisms of breast 

cancer and develop protein/gene modules as clinical signatures. Meta-proteins and meta-genes are extracted from 

the data in an unsupervised manner, and signatures are further selected based on consistency of meta-gene/protein 

clusters or the association between their activity scores and known clinical features. Gene set annotation revealed 

that several selected signatures contained biologically relevant information. A proteome signature (pr_02) 

characterizing strong activation of the Her2 pathway was recovered as a Her2-related meta-protein cluster. On the 

transcriptome level, meta-genes enriched for genes in the 16q24 risk loci formed a stable signature that showed 

correlation with both ER status and Basal subtype. Stable signatures on both proteome and transcriptome levels 

(pr_04 and tx_46) were found to be heavily associated with the LumA index, suggesting that cell division and 

growth is specifically regulated in this subtype. 

Figure 4: Integrative analysis of proteome and transcriptome signatures. Only clinically relevant IC clusters are 
shown (total count of significant associations >0). a, hierarchical clustering of the clinical association of all signatures. 
b, GSEA enrichment map of the combined network of cluster centers of pr_04 and tx_46 indicated in a. c, zoomed-in 
view of a transcriptome-specific (top) and a proteome specific subnetwork highlighted in b.  
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As an unsupervised blind source separation method, independent component analysis has been applied to 

multiple biological data types. Consistent with previous reports, our results demonstrated that ICA is able to 

extract biological meaningful information solely based on the intrinsic structures of the transcriptome and 

proteome data. The success of the method suggested that ICA have captured some aspects of the processes 

underlying proteome and transcriptome profiles. It is reasonable to assume that the observed RNA and protein 

levels are the sum of several up-regulation and down-regulation modules, in which the distribution of individual 

gene levels deviate radically from the normal distribution that characterizes a noisy background.   

Using clinical association or signature stability as selection criterion gave rise to two lists of potential 

signatures with only a few overlapping members (pr_04, tx_46, tx_63), suggesting that the most clinically 

relevant signatures are not very stable under the current method. Other clustering method such as density based 

clustering may be used to improve the estimation of stable signatures14,15. On the other hand, it is possible that the 

most stable signatures described the housekeeping processes common in all samples, but they may also help 

reveal novel molecular mechanisms of breast cancer that are not previously linked to any phenotype. As a feature 

construction procedure, ICA could also facilitate knowledge integration from multiple data types. In addition to 

the integration of proteome and transcriptome signatures as demonstrated in this work, future studies could further 

apply ICA on omics data sets of multiple cancer types. Extracted molecular signatures may be grouped in another 

round of clustering procedure to reveal pan-cancer and cancer type specific mechanisms. 

 

METHODS 

DATA SETS. Transcriptome and proteome data of 77 breast cancer patients were collected as part of the TCGA and 

CPTAC projects3,16. Transcriptome was characterized with the Agilent mRNA expression array platform and 

global protein abundance data were obtained with iTRAQ 4-plex LC-MS/MS technique3,16. For the proteome data, 

peptides mapped to the same gene (in total) were collapsed by taking the mean value. Expression levels of genes 

and abundance of proteins were included in the transcriptome and proteome matrices. Clinical and demographic 

features were associated with each tumor sample. 

INDEPENDENT COMPONENT ANALYSIS. Data were presented in a p×n matrix X with genes in rows and samples in 

columns. The goal of ICA is to decompose the p×n data matrix into the product of a source matrix S (p×k) and a 

mixing matrix A (k×n). The ith column of the source matrix represents coefficients of each of the p genes for the 

ith independent component. The coefficient vector of each component could be considered as p random samples 

that revealed probability distribution of a specific random variable. The mutual information between any pair of 

such variables is minimized, and the components are therefore statistically independent. Genes with coefficients 

of positive or negative values in the same component indicated that their levels may be enhanced or suppressed in 

the same biological process. The ith row of the mixing matrix represents contributions of the ith component in the 

source matrix to profiles of each of the n samples. Rows of the mixing matrix therefore record the activity of each 

components (or meta-genes/ meta-proteins) across n samples.  

The stochastic nature of most ICA algorithms entails that different randomly initiated runs would give 

rise to different results, and there is no guarantee that the true structure of the data could be correctly estimated 

from any single run14,17. To assess the statistical reliability of ICA results, table components were filtered based on 

an approach adapted from Engreitz et al., which cluster components obtained from different runs with K-medoids 

method8. In brief, ICA was run with k=n for 50 times to extract as much information as possible. For each 

individual component, the larger tail was designated as positive. All 50×n components were then considered as 

data points in p dimensional space and subjected to K-medoids clustering with Spearman correlation as the 

dissimilarity measure. For each cluster, the number of different runs that its members were extracted from was 

documented as a measure for cluster consistency, alongside with the average silhouette width. In general, clusters 

that with members appeared in more than 50% of all runs (25) were considered as likely to contain true biological 

signals (see component annotation section below). 
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All computations were carried out on the R platform. Package ‘fastICA’ which implements the iterative 

FastICA algorithm18 was used to extract non-Gaussian independent components with logcosh as contrast function. 

Components were subsequently assigned to 77 clusters using the ‘cluster’ package. Clusters were visualized with 

2d t-SNE using the R package ‘tsne’.    

SIGNATURE ANNOTATION. Component clusters were annotated with GO terms by running Gene Set Enrichment 

Analysis against centroid coefficients as the pre-ranked gene lists11,19. Enrichment map of components were 

visualized with Cytoscape 320. Each cluster was also associated with clinical features as following: First, 22 

clinical features were recoded into ordinal variables (supplementary table). Second, ordinary linear regression 

models were built with corresponding mixing scores for members in a component cluster to predict each of the 

ordinal responses. Counts of significant associations between components and clinical features (P-value for the 

slope coefficient < 10-5) were tabulated. Hierarchical clustering with complete linkage was applied to the clinical 

associations of independent components clusters extracted from both transcriptome and proteome data.  

DATA AVAILABILITY. All data analyzed during this study are included in a published article3 and its 

supplementary information files. 
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