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Abstract: 
High-throughput cell profiling experiments are characterizing cell phenotype under a broad variety of microenvironmental 
and therapeutic conditions. However, biological and technical variability are contributing to wide ranges of reported param-
eter values, even for standard cell lines grown in identical conditions. In this paper, we develop a mathematical model of 
cell proliferation assays that account for biological and technical variability and limitations of the experimental platforms, 
including (1) cell confluency effects, (2) biological variability and technical errors in pipetting, (3) biological variability in 
proliferation characteristics, (4) technical variability and uncertainty in measurement timing, (5) cell counting errors, and (6) 
the impact of limited temporal sampling. We use this model to create synthetic datasets with growth rates and measurement 
times typical of cancer cell cultures, and investigate the impact of the initial cell seeding density and the common practice 
of fitting exponential growth curves to three cell count measurements. We find that the combined sources of variability mask 
the sub-exponential growth characteristics of the synthetic datasets, and that researchers profiling the same cell lines under 
different seeding characteristics can find significant (p < 0.05) differences in the measured growth rates. Even seeding the 
cells at 1% of the confluent limit can cause significant (p < 0.05) differences in the measured growth rate from the ground 
truth. We explored the effect of reducing errors in each part of the virtual experimental system, and found the best improve-
ments from reducing timing errors, reducing cell counting errors, or reducing the interval between measurements (to reduce 
the inaccuracy of the exponential growth assumption when fitting curves). Reducing biological variability and pipetting errors 
had the least impact, because any improvements are still masked by cell counting errors. We close with a discussion of 
recommended practices for high-throughput cell phenotyping and cell line identification systems.  

1. Introduction and Background 
As high-throughput experimental systems advance, novel experiments are using them to measure key cell behaviors (e.g., 
migration, proliferation, death, and metabolic activity) across a broad range of microenvironmental conditions (e.g., [1-5]). 
To handle these multicellular phenotypic data and interface them with statistical, mathematical, and computational models, 
projects such as MultiCellDS [6], PharmML [7], and the Cell Behavior Ontology [8] are developing the consistent data models 
necessary to analyze, compare, and share experimental data. In particular, the MultiCellDS project is developing a public 
library of digital cell lines that currently aggregate prior cell phenotypic measurements across a variety of microenvironmen-
tal conditions. Both original high-throughput experiments and data curation activities require quality control. In experiments, 
we must determine whether observed differences in cell behavior can be attributed to experimental variability, rather than 
actual biological differences. When developing community-curated repositories, we must assess whether a submitted meas-
urement is significantly better or worse than an existing measurement. As experimental and informatics platforms merge, 
we envision systems that seek to match new cell measurements against repositories of known values (e.g., to identify an 
unknown breast cell sample as behaving more like relatively benign MCF-10A cells or aggressive MDA-MB-231 cells). This, 
too, will require quantitating the difference between the sample’s measurements and those in the repository.  

It is essential for quantification that we assess the impact of experimental design choices, biological and technical variability, 
instrumentation limitations, and other experimental design choices on the quality of measured parameters. Ideally, we can 
evaluate a proposed experimental protocol (using a specific set of instruments and analysis software) by comparing its 
measurements for known cell lines against accepted “gold standard” values as ground truth. However, considerable varia-
bility in phenotypic measurements has been observed even for widely used cell lines (e.g., see the discordant cell population 
doubling times for MCF-7 breast cancer lines grown in “standard” normoxic conditions in [9-17].) Thus, it is difficult to assess 
the impact of experimental design choices and evaluate the quality of new measurements without well-established ground 
truths for experimental measurements.  

Mathematical modeling can play a role in addressing these experimental challenges by creating idealized systems with fully 
known ground truths. This approach is frequently used to evaluate new data analysis software: we can evaluate a new 
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algorithm by (1) using a mathematical model to create synthetic datasets with prescribed noise, (2) running the synthetic 
data through the new tool to estimate cell line properties, and (3) comparing the estimated cell parameters against the 
original values (the ground truth) (e.g., as in [18]). Recently, mathematicians have used computational models to test the 
limits of experimental assays, as well as to help us better interpret the biological meaning and significance of new meas-
urement types [19]. Poleszczuk et al. used mathematical models to simulate the spatial distribution of sub-clones in heter-
ogeneous tumors, and analyzed this model system to better understand the impact of where and how we perform tumor 
biopsies [20]. Treloar et al. fitted mathematical models to several motility assays to demonstrate that assay geometry can 
have a significant impact on estimated cell proliferation and motility parameters [21]. More recently, Harrison and Baker 
used mathematical modeling to investigate the impact of temporal sampling limits when measuring cell motility [22].  

In this paper, we used a similar approach to investigate the impact of experimental variability and design in estimating cell 
proliferation rates, as well the role of variability in recognizing when exponential growth models are unsuitable for fitting. 
Starting with a logistic model of population growth, we developed a technique to create synthetic experimental replicates 
which account for (1) cell confluency effects in cell culture systems, (2) biological variability in the underlying proliferation 
parameters, (3) technical variability in micropipetting along with biological variability in cell plating success, (4) technical 
errors in measurement times along with the impact of sampling limits, (5) technical errors in cell counting accuracy, and (6) 
technical errors in not accounting for measurement time uncertainties. We used the widespread practice of fitting exponen-
tial growth curves to the synthetic data, and noted where experimental variability would be expected to mask the differences 
between exponential and non-exponential growth.  

For a variety of seeding conditions (the number of pipetted cells, as a fraction of the maximum confluent cell population) 
and experimental variability, we found that the synthetic data would be very difficult to distinguish from exponential growth 
kinetics, even when analytically we would expect confluency effects to slow growth below exponential. In these cases, 
experimentalists have justification to fit exponential growth curves to the data and perform standard statistical tests on the 
differences in estimated growth rates. This can lead investigators to wrongly conclude that the cells had significantly different 
growth characteristics (p < 0.05), even though they actually performed experiments on identical cells. In the scenario where 
an unknown cell sample is tested against a library of known growth values, an investigator could plausibly but incorrectly 
conclude that the sample does not match any in the library, even if the library contained the same cell line. We close with 
an examination of which sources of variability contribute most to misinterpreting data as exponential, and we discuss lessons 
on improving the robustness of existing experimental protocols.  

2. Results 
We created a simplified digital cell line with a ground truth pro-
liferation rate α = 1/30 hr-1 ~ 0.033 hr-1, giving a mean cell di-
vision time of 30 hours and a population doubling time of 
~20.8 hours; this value is comparable to many human cancer 
cell lines [6]. To emulate a physical experimental system (e.g., 
a well on a multi-well plate or a culture dish), we assigned a 
fixed population carrying capacity K for all numerical experi-
ments. Because we scale the cell counts by K and expressed 
as fractions of the maximum cell capacity, the actual value of 
K does not impact the following results.  

Using the ground truth (α, K), we then generated synthetic ex-
perimental data (See Methods below) to investigate the im-
pact of the initial the initial cell seeding density N0/K. For each 
level of N0/K, we generated 5 biological replicates, and for 
each biological replicates we generated 20 technical repli-
cates. Each replicate was sampled at 3 times (1, 2, and 3 days 
after plating) to give synthetic time-course measurements. We 
used a relatively modest value (5%) for all biological and tech-
nical variability and error, and we assumed that all timing er-
rors (the discrepancy between the intended measurement 
time and its actual measurement time) was normally distrib-
uted with a 1 hour standard deviation. See Methods.   

In Fig. 1, we plotted the synthetic data for each level of the 
experiment. Note that we used a logarithmic scale, where ex-
ponential growth data will appear as straight lines.  

As first observation, we note that even for the highest cell 
seeding densities (and even when viewed on a logarithmic 
scale), it is difficult to tell by graphical inspection that these 

 
Fig. 1: For initial seeding conditions ranging from 10-5K to 0.5K 
(where K is the maximum or confluent cell population), we gen-

erated synthetic datasets that simulated biological and technical 
variability in seeding, growth, and measurements.  
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data are not exponential. It would be entirely reasonable (and 
common practice) to fit exponential growth curves to these 
data to quantitate the growth rates. See the colored lines in 
Fig. 1. In the following analyses, we fitted exponential growth 
curves to the synthetic data to simulate widespread practice. 

For each synthetic time course dataset (three simulated cell 
measurements and measurement times for a given replicate), 
we fitted an exponential growth curve to estimate the repli-
cate’s growth rate. Over all the 60 replicates for each seeding 
condition, this allowed us to generate a histogram of fitted 
growth rates (see the inset figures in Fig. 2). For each seeding 
condition, we used these histograms to generate the mean 
fitted population growth rate with error bars. See the details in 
Methods and the main part of Fig. 2, where the ground truth 
of 1/30 hr-1 is shown as red lines for comparison. Notice that 
for any seeding value over 0.1% of the carrying capacity (10-

3K), there was substantial discordance from the ground truth. 
Indeed, applying a standard statistical test (Student’s t-test) 
for differences in the growth rate between lowest seeding den-
sity (10-5 K) and the other growth rates showed significant (p 
< 0.05) difference between the rates.  

These differences largely stem from fitting non-exponential 
growth data to an exponential growth model, which underes-
timates the growth rate as the cell population approaches its 
confluent limit. For the standard logistic growth model (see the 
Methods section for the equation), the growth rate decreases 
from the theoretical maximum value of α towards zero as the 
population increases towards its logistic carrying capacity.   

We repeated this synthetic experiment to examine the impact 
of improving parts of the experimental pipeline, in particular to 
find experimental improvements could best improve the 
chances for recognizing when the experimental measure-
ments are experiencing significant confluency effects.  

2.1 Reducing pipetting error  
We first reduced the variability in the initial cell count N0/K to 0.5% (rather than 5%) to simulate improvements in pipetting 
accuracy, user training, robotic platforms, or other techniques that could potentially be developed. Interestingly, we found 
that there was little graphical change in the data, as cell counting and measurement timing errors continued to dominate 
See Fig. 3a.  

2.2 Reducing biological variability  
Next, we reduced the variability in the growth rates α for each biological replicate from 5% to 0.5%, simulating improvements 
such as robotic-controlled environmental conditions, improved process control (e.g., frequent genetic and proteomic se-
quencing of feeder cells, molecular profiling of growth media for better consistency), or robotic control of growth medium 
replacement. As with reducing pipetting error, we found that such theoretical process improvements do little to reduce the 
apparent noise in the measurements. See Fig. 3b. 

2.3 Reducing timing errors  
We reduced the error in timing the samples to a 0.1 hour standard deviation, to simulate improvements in record-keeping 
or robotic-controlled imaging. This had a greater effect on the appearance of the data. In particular, we note that the sub-
exponential character of the data for higher seeding densities was much more apparent with reduced timing errors. See 
Fig. 3c.  

2.4 Reducing cell count errors 
To simulate improvements to image quality and cell segmentation, we simulated the experiment with the measurement 
errors reduced from 5% to 0.5%. Of all single process improvements, this yielded the greatest improvement to the data. 
See Fig. 3d.  

 
Fig. 2: top and insets: For initial seeding condition, we fitted ex-

ponential growth to each synthetic replicate to get a histogram 
of the apparent growth rates (insets). As the initial seeding den-
sity increased, the deviation between the mean growth rate 
(green and blue error bars in the main plot) became increasingly 
discordant from the ground truth rate (red bar).  

bottom: Standard statistical test (Student’s t-test) comparing the 
observed growth rates to the ground truth growth rate showed 
significant differences (p < 0.05) for seeding densities greater 
than 0.1% of the maximum cell population (10-3 K). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2017. ; https://doi.org/10.1101/175703doi: bioRxiv preprint 

https://doi.org/10.1101/175703
http://creativecommons.org/licenses/by/4.0/


4 
 

2.5 Reducing all errors  
We simulated reducing all the errors (See 
Sections 2.1-2.4). In this case, the data were 
much more recognizable as non-exponential. 
See Fig. 4a. 

2.6 Reducing delays between 
samples  
Lastly, we simulated the same 5% relative er-
rors (and 1 hour timing errors) with more fre-
quent, 12-hour imaging intervals. While this 
did not improve the overall data appearance, 
it did improve the concordance of estimated 
growth rates with the ground truth, because 
the exponential growth approximation holds 
better for shorter times. See Figs. 4b-c. 

2.7 Fitting with errors in time and 
cell counts. 
Examining exponential fits to the synthetic 
data either taking into account measurement 
errors in both time and cell counts or just cell 
count measurement errors, we can see that 
standard linear regression in logarithmic 
space produces sufficiently close results to 
not justify the additional coding expense that 
we used. See Fig. 2, comparing the two dif-
ferent data points in the top part of the figure. 

2.8 A computational thought ex-
periment: high-throughput cell 
phenotyping  
These results can also be considered as a 
computational thought experiment: suppose 
six different groups were given identical but 
unlabeled cell lines and asked to profile them 
in identical conditions (identical oxygenation, 
growth medium, and culture dishes, but with 
without specifying the initial seeding density) 
and compare their results. Would the groups 
replicate the correct proliferation rates (the 
ground truth)? And would they correctly identify that they likely had worked with the same cell lines, if they used mismatched 
cell proliferation rates as a simple rejection criterion?  

As we see in Fig. 2, groups with different cell seeding choices could easily observe significantly different (p < 0.05) cell 
proliferation rates. These groups would falsely conclude that they had profiled different cell lines, given the simple rejection 
criterion. In Figs. 3-4, we see that repeating this exercise with improved instruments, software, and handling consistency 
would not change the results, due to fitting simple exponential growth models. However, for sufficiently small experimental 
variability (Fig. 4), the hypothetical groups would be much more likely to determine that they were fitting exponential models 
to non-exponential data and correct their comparisons. (Note that the p-values for the bottom of Fig. 4 exceeded 0.5 and 
were off the plotted scale for cells seeded at 0.001%, 0.1%, and 1% of the confluent cell population.) 

3. Discussion 
The simulated high-throughput screening experiments demonstrated that the choice of initial cell seeding density can have 
a substantial impact on the measured cell proliferation rate, even when all the profiled cells are identical. This arises largely 
from fitting exponential growth models to proliferating cell populations experiencing confluency effects. Mathematical models 
that do account for confluence effects (e.g., logistic and Gompertzian models) show that proliferation slows from its hypo-
thetical exponential rate even for low cell populations. Biological and technical variability introduced by real experimental 
systems mask the differences between exponential and sub-exponential growth, making it difficult for experimentalists to 
graphically recognize the situation and choose more appropriate growth models for fitting.  

 

 
Fig. 3. Impact of experimental improvements on the synthetic data.  
(top): Reducing pipetting errors and variability (left) and biological variability (right) 
had little impact on the overall visual quality, as measurement and timing errors 
were still dominant. These data would likely still be interpreted as exponential.  

(bottom) Reducing errors in measurement timings (left) and cell counts (right) had 
a much greater impact on the data appearance; these data have a greater 
likelihood of being recognized as non-exponential.  
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Our simulations also show that investing resources to reduce pipetting error (Section 2.1), biological variability (Section 
2.2) are less likely to “unmask” sub-exponential growth than improvements to measurement timing errors (Section 2.3) or 
cell counting (Section 2.4). However, even reducing all sources error in the experimental pipeline still yields data that 
graphically appear exponential (Section 2.5) when sampled three times. However, reducing the delay between measure-
ments (Section 2.6) did reduce the error in estimated proliferation rates, largely because the exponential growth assumption 
is most valid for small times.  

These results have broad implications for implementing, interpreting, and comparing proliferation assays. First, the differ-
ences in population growth rates from early growth (far from the confluent limit), mid-term growth (approximately half of the 
population limit) and growth near the confluent rate are indeed real; proliferation slows as cell populations approach the 
confluent limit, even without other sources of biological variability. This could help explain the large heterogeneity of meas-
ured proliferation rates for commonly used cell lines.  

We found that the estimated growth rates were most accurate (closest to the ground truth) for very low seeding densities, 
on the order of 0.1% of the confluent limit. For high-content screening platforms with growth areas on the order of 0.5 cm2 
(e.g., the Corning #3094 96-well plate, with 0.32 cm2 growth area [23]), if the confluent cell density is on the order of 105 
cells/cm2 [24], then such high-throughput systems have confluent cell counts on the order of 104 to 105 cells. If a 0.1% 
seeding density is necessary for an accurate growth estimate, then we must seed each well with approximately 10 to 100 
cells. However, such low seeding populations may not successfully grow. Thus, high-throughput platforms with small well 
areas will require either (1) cell counting techniques with less than 1% relative error, (2) larger growth areas to accommodate 
the necessarily low relative seeding density, (3) shorter sampling times to improve the accuracy of the exponential growth 
assumption when fitting data, or (4) automated fitting to more appropriate growth models that account for confluency effects 
[18]. Otherwise, such high-throughput profiling experiments may detect confluency differences among different cells, rather 
than the sought proliferation differences in response to changing drug exposures or other microenvironmental conditions. 
We do note that shorter sampling times (on the order of 12 hours) allowed our virtual system to estimate the growth rate 
with less than 5% relative error when seeding at 1% of the confluent limit; but even in this case, seeding at 10% of the 
confluent limit still gave a relative error of approximately 25%.  

For any experimental system (high-throughput or not), it is important to profile cells at a variety of seeding densities, partic-
ularly if the confluent limit is unknown. Then the measured growth rates could be plotted against the seeding density (e.g., 
as in Fig. 2), and the confluent effects would be evident. As a best practice, we would recommend that researchers report 
the maximum proliferation rate when comparing different cell lines, or the same cell line in different drug or microenviron-
mental conditions. This way, they can avoid confounding confluency effects. Such practices could help reduce the wide-
spread lack of consensus in finding consistent, “gold standard” ground truths for comparing standard cell lines. 

This work highlights the importance of (1) fully recording the experimental design (especially the cell seeding density) and 
(2) fitting appropriate mathematical models for estimating the population growth rates. Not only will recording the experi-
mental protocols (e.g., using Protocols.io [25]) help to reduce biological and technical variability, but it will also help ensure 
that we design and apply appropriate analyses to interpret the data. If this allows us to narrow the currently large range in 
reported cell proliferation and other phenotypic characteristics, then we can improve the quality of curated cell line resources 
that consistently record the phenotypes of well-characterized, standardized cell lines. This will improve the feasibility and 
robustness of any high-throughput cell identification platforms, which would seek to match unknown biological samples to 

 
Fig. 4. Impact of experimental improvements on the synthetic data (continued).  
(left): If we could reduce all errors and variability by an order of magnitude, it may be more likely to graphically identify the data as 
non-exponential. (middle-right) However, reducing time interval between measurements (middle) reduces the error in the exponential 
growth approximation when fitting the growth rates, and so even the 1% seeding density comes close to the ground truth (right). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2017. ; https://doi.org/10.1101/175703doi: bioRxiv preprint 

https://doi.org/10.1101/175703
http://creativecommons.org/licenses/by/4.0/


6 
 

the best fit in a library of cell lines. More broadly, we can begin to identify and eliminate the remaining causes of variability 
in cell line measurements, such as differences in cell growth media, oxygenation, or culture splitting procedures.  

Lastly, this works highlights the potential for mathematical modeling beyond typical uses in forming and testing biological 
hypotheses. Mathematical models of experimental protocols and scientific instruments can help us to better identify the 
most important sources of error, while assessing where we can most easily make high-impact improvements. In the future, 
we propose mathematical modeling as an integral part of experimental design.   

4. Method  
The main method creates a simplified digital cell line [6] with two parameters (its birth rate α and its confluent density ρK, 
equivalent to a cell carrying capacity K on a fixed plate size), and uses analytical solutions to the logistic growth equation 
as a ground truth for examining the impact of experimental errors and variability. This computational study focuses on 
estimating the cell population growth rate, and so we leave K fixed for the duration of the study. In all this work, α is the 
ground truth. Starting with the ground truth, we create synthetic replicates that simulate the impact of: (1) technical and 
biological variability in seeding the experimental replicate, (2) variability in the timing of measurements, (3) cell counting 
errors during measurements, and (4) the limited temporal sampling of an experiment.  

4.1 Creating a synthetic biological replicate 
To account for a biological variability (and to generate a biological replicate), we choose a birth rate α* ~ N(α,ε), where 
N(α,ε) is the normal distribution with mean α and standard deviation ε. In our work, we set ε = 0.05α for a 5% relative 
variability. For greater generality, we could similarly choose the carrying capacity K* ~ N(K, 0.05K), but we took K* = K for 
each synthetic replicate to focus our intention on the impact of biological variability in α. We set an initial cell population 0 < 
N0 < K*, which will be varied below to simulate technical variability.  

Defining the ground truth for a single biological replicate  
For any synthetic replicate with actual birth rate α* and successfully seeded initial cell population N0, we model the popula-
tion growth rate with the standard logistic growth model: 

𝑑𝑁

𝑑𝑡
= 𝛼∗ (1 −

𝑁

𝐾
) 𝑁, 𝑁(0) = 𝑁0          (1)  

whose analytical solution is 

𝑁(𝑡)

𝐾
=

𝑅

𝑅+(1−𝑅)𝑒−𝛼∗𝑡 
,     𝑅 =

𝑁0

𝐾
.          (2) 

This analytical solution can be evaluated at any time t for the actual number of cells in the experimental replicate at that 
time. We then modify this analytical cell count to obtain a measurement (observation) that accounts for other technical errors 
(see below).  

4.2 Creating a synthetic technical replicate 
For any biological replicate, we create one (or more) technical replicates to simulate technical variability in experiments.  

Simulating micropipetting and plating 
To simulate variability in how many cells are successfully plated during pipetting, we set the initial cell count for each repli-
cate according to N0

*~N(N0, 0.05N0), giving a 5% relative variability (standard deviation) in pipetting and plating.  

Simulating observations with temporal and measurement errors  
ATCC [26] and Roche [27] both describe cell proliferation assays as having multiple phases in the following order: lag 
phase, exponential (logarithmic) growth phase, stationary phase, and death phase. Both methodologies attempt to measure 
cell growth during the exponential phase by using at least three data points, though many measurements use only two time 
points (see the growth curves [10] in the NCI Physical Sciences in Oncology Network’s resource of standard operating 
protocols). To simulate these practices, we choose intended observation times 0 < T1 < T2 < T3; three observations allows 
us to distinguish between exponential growth (log(N) vs. time appears linear) and growth near the confluent limit (log(N) vs. 
time appears sub-linear). Typically for cancer cell culture experiments, T1 ~ 1-2 days, giving cells time to adhere to the plate 
and re-enter the cell cycle (i.e., to start measuring past the “lag” phase), and the measurements are on the order of 1 day 
apart [1, 2, 18]. To simulate timing variability (e.g., an experimentalist needed to wait to access an instrument), we choose 
T1

* ~ N(T1, 1 hr), T2
* ~ N(T2, 1 hr), and T3

* ~ N(T3, 1 hr).   

The simulated “true” cell counts (scaled by K) at each of these sampling times are given by:  

𝑁𝑖
∗ =

𝑁(𝑡)

𝐾
=

𝑅∗

𝑅∗+(1−𝑅∗)𝑒
−𝛼∗𝑇𝑖

∗
 
,     𝑅∗ =

𝑁0

𝐾
,       𝑖 = 1,2,3.       (3) 

The simulated measurements (observations) Mi
* are obtained choosing a single measurement from a normal distribution 
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centered around the true count Ni
* with a relative standard deviation of 5%: Mi

* ~ N(Ni
*, 0.05Ni

*) for each observation time 
Ti

*. This simulates technical variability in the measurements, such as image segmentation errors.  

4.3 Putting it all together: a simulated experiment  
Each simulated experiment varies the factor N0/K with levels {10-5, 10-4, 10-3, 0.01, 0.1, 0.5}, with a fixed (biological) ground 
truth α and K. To simulate a level (with a fixed choice of initial cell count N0, intended sampling times T1, T2, T3, and ground 
truth α, K), we simulate 5 biological replicates (each with a different value α*). For each biological replicate, we simulate 20 
technical replicates (each with different values for N0

*, T1
*, T2

*, T3
*), and generate synthetic measurements as indicated 

above. Thus, each level had 100 total replicates, observed at 3 times, for 300 synthetic measurements. There were six 
levels of the factor N0/K with values, so each computational experiment generated 1,800 synthetic measurements.  

4.4 Growth analysis of synthetic data 
When fitting the data for each replicate, we used an exponential growth curve on the noisy logistic growth data; this approx-
imates (1) the widespread practice in experimental biology of fitting exponential growth curves, and (2) the general trend 
that noisy exponential and logistic growth data cannot readily be distinguished graphically. In log space, fitting an exponen-
tial curve to data is equivalent to fitting a straight line. Our data though had uncertainties in both time and log(N/K), so we 
used a technique that would allow us to fit in both dimensions [28]. We also performed the same calculation, ignoring the 
uncertainties in time and log(N/K), as that only requires the use of traditional linear regression, a more widely known and 
used technique than that of [28]. We then made histograms of all of the replicates’ growth rates and compared those to the 
ground truth growth rate (the red vertical line). We also averaged all of the replicates’ growth rates to calculate the “experi-
mental” growth rate over all the replicates.  

As part of our analysis, we needed to calculate p-values for determining if the “experimental” data could have come from 
the same distribution as “ground truth” data. We performed a Student’s t-test on two distributions of the calculated growth 
rates done with technique of [28]: One distribution from the lowest seeding density and another distribution from a different 
seeding density. (Hence, there is no p-value for the lowest seeding density).  

4.5 Numerical details and code availability 
All numerical experiments were performed in Python 3.6, using the Anaconda distribution (64-bit Version 4.4.0) [29]. All 
calculations were done using a fixed random seed to ensure that rerunning the synthetic experiment would result in the 
same result. All code is available at https://github.com/SamuelFriedman/synthetic_replicates under the BSD 3-clause li-
cense.  
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