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Abstract

Current protocols for delivering radiotherapy are based primarily on tumour stage and
nodal and metastases status, even though it is well known that tumours and their microenvi-
ronments are highly heterogeneous. It is well established that the local oxygen tension plays
an important role in radiation-induced cell death, with hypoxic tumour regions responding
poorly to irradiation. Therefore, to improve radiation response, it is important to under-
stand more fully the spatiotemporal distribution of oxygen within a growing tumour before
and during fractionated radiation. To this end, we have extended a spatially-resolved math-
ematical model of tumour growth first proposed by Greenspan (Stud. Appl. Math., 1972) to
investigate the effects of oxygen heterogeneity on radiation-induced cell death. In more detail,
cell death due to radiation at each location in the tumour, as determined by the well-known
linear-quadratic model, is assumed also to depend on the local oxygen concentration. The
oxygen concentration is governed by a reaction-diffusion equation that is coupled to an integro-
differential equation that determines the size of the assumed spherically-symmetric tumour.
We combine numerical and analytical techniques to investigate radiation response of tumours
with different intratumoral oxygen distribution profiles. Model simulations reveal a rapid
transient increase in hypoxia upon re-growth of the tumour spheroid post-irradiation. We
investigate the response to different radiation fractionation schedules and identify a tumour-
specific relationship between inter-fraction time and dose per fraction to achieve cure. The
rich dynamics exhibited by the model suggest that spatial heterogeneity may be important
for predicting tumour response to radiotherapy for clinical applications.

1 Introduction

Cancer continues to be one of the main causes of mortality worldwide, with 8.2 million cancer-
related deaths estimated to have occurred globally in 2012 (Torre et al, 2015). Of the millions of
people diagnosed with some form of cancer each year, about half will receive radiotherapy as part
of their treatment (Fowler, 2006).

Typically, total radiation dose is delivered to the tumour as a series of small doses, or fractions,
administered over a period of several days or weeks in order to limit the toxic side effects to
healthy cell populations. The conventional fractionation schedule for most tumors, where a dose
of approximately 2 Gy (Gray) is delivered once a day Monday to Friday up to a total of 50-70
Gy, has remained the standard of care for many years (Ahmed et al, 2014; Marcu, 2010). Whilst
altered schemes, such as hyperfractionation, accelerated fractionation and hypofractionation, have
been suggested as alternatives for certain indications, the selection of an optimal fractionation
protocol for a particular tumour would clearly benefit from a more individualised approach. In
particular, beyond tumour location and stage, patient-specific factors that may be important in
determining response to a particular treatment are currently not considered. It is in this regard
that mathematical modelling has the potential to play an important role; identifying key factors
that determine treatment outcomes and ultimately identifying patient-specific treatment protocols.
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Radiation damages to a DNA fragment can be either a single- or double-strand break (Hendry,
1979; Thrall, 1997; Muriel, 2006). A normal cell has repair mechanisms designed to correct for
single-strand breaks. However these can fail, with misrepair potentially leading to cell death.
Whilst double-strand breaks are rarer than single-strand breaks, they are more likely to result
in cell death due to increased difficulty in repairing the damaged DNA. Tumours differ in their
responses to irradiation, with radiosensitivity being understood as an intrinsic property of the
cell population that could be estimated from molecular analysis of biopsy samples (Eschrich et al,
2009). Other factors that affect a tissue’s response to radiotherapy include repopulation between
radiation doses, tissue re-oxygenation and redistribution of cells within the cell cycle (Thrall,
1997). For rapidly proliferating tumours in particular, repopulation between fractions of radiation
is important. For tumours containing larger regions of hypoxia, re-oxygenation of the tumour may
play a pivotal role. Ionising radiation interacts with oxygen and water molecules, creating oxygen
free radicals that are then able to cause DNA damage (indirect action). Thus, tumour cells in
hypoxic regions exhibit decreased response to radiotherapy.

Due to the difficulties of studying tumours in vivo, such effects are often investigated exper-
imentally using in vitro multicellular tumour spheroids. Tumour spheroids provide a controlled
study environment of intermediate complexity between 2D culture media and in vivo models in
which important insight can be gained into the biology of the tumour micro-environment and the
effect of therapies on a growing tumour (Carlson et al, 2006; Hirschhaeuser et al, 2010; Mueller-
Klieser, 1987; Sutherland et al, 1981). However, tumour spheroid growth is avascular with a
typical diameter of less than 5mm, so while useful for calibrating mathematical models, parame-
ters derived from tumour spheroids may need adjustment before they can be used to simulate in
vivo tumours.

Clonogenic assays are widely used to determine clonogenic survival for a particular cell type
after acute radiation doses (Joiner and van der Kogel (2009), Chapter 4). Measurements of the
clonogenic surviving fraction for a single cell type across a range of doses can be used to generate
a survival curve. Such curves are of similar shape across most cell types and give rise to the most
widely adopted mathematical model of radiotherapy response, the linear-quadratic (LQ) model
((Joiner and van der Kogel, 2009), Chapter 4). We note that although this model is empirical,
mechanistic models have been proposed to explain it ((Sachs et al, 1997; Nilsson et al, 1990),
(Joiner and van der Kogel, 2009) Chapter 4). In the LQ model, the survival fraction, SFd, of
tumour cells after a dose, d Gy, of radiation is given by

SF (d) = e−αd−βd
2

, (1)

where α (Gy−1) and β (Gy−2) are intrinsic radiosensitivity parameters (Fowler, 2006; Sachs et al,
1997; Withers, 1999; O’Rourke et al, 2009). Values for α and β may differ significantly between
tumours and patients. The α/β (Gy) ratio is often used to characterize the sensitivity of a partic-
ular tissue type to fractionation. Values of α/β can fall as low as 1 Gy for late-responding tissues
such as prostate cancer, and reach as high as 20 Gy for early-responding, rapidly proliferating
tissues such as head and neck cancer (Withers, 1999). The LQ model is frequently incorporated
into more detailed tumour models as an instantaneous effect.

Many different mathematical models and methodologies have been used to study tumour
growth. Among the simplest of these are ordinary differential equation (ODE) models that aim
to qualitatively capture observed growths. Small, initial tumour volumes often exhibit expo-
nential growth dynamics, followed by a deceleration as tumour growth saturates due to micro-
environmental effects, such as limited space and nutrient supply, resulting in sigmoidal growth
curves (Sachs et al, 2001; McAneney and O’Rourke, 2007). Popular ODE models include the
logistic and Gompertz growth models where the volume-saturation limit is represented by the
carrying capacity, K.

Mathematical models are often built on the simplifying assumption that a tumour has a spa-
tially homogeneous composition. Phenomenological models contain few parameters and do not
account for complex underlying biological interactions. Whilst such models may provide limited
biological insight, the ease with which model parameters may be estimated from limited clinical
data makes them attractive for making predictions about radiotherapy response and identifying
personalised fractionation protocols in the clinic (Prokopiou et al, 2015).
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A variety of more complex, spatially-resolved, models have been proposed in order to provide
more mechanistic insight, often reflecting the heterogeneous nature of growing tumours. As a
tumour grows, it will typically develop hypoxia and necrosis in regions where oxygen or nutrient
supply is inadequate. Multicellular, avascular tumour spheroids are used as in vitro models to
study, in a controlled environment, effects observed in in vivo tumours (Carlson et al, 2006;
Hirschhaeuser et al, 2010; Mueller-Klieser, 1987; Sutherland et al, 1981). In a similar manner, it
is natural to develop mathematical models for avascular tumour spheroids before considering the
more complex case of vascular tumour growth.

One of the simplest spatially-resolved models of avascular tumour growth was proposed by
Greenspan (Greenspan, 1972). In the Greenspan model, the outer tumour radius evolves in re-
sponse to a single diffusible nutrient species, commonly taken to be oxygen. Internal free bound-
aries, decomposing the tumour spheroid into a central necrotic core, an outer proliferating rim
and an intermediate hypoxic annulus, are determined by contours of the oxygen profile across the
tumour.

Under certain simplifying assumptions, Greenspan’s model can be reduced to a coupled system
of ODEs and algebraic equations. Most other spatially-resolved continuum models are formulated
as systems of partial differential equations (PDEs). Such approaches include frameworks from
multiphase modelling and morphoelasticity. Multiphase models consider the tumour environment
as a mixture of two or more separate fluid cell populations, or phases. Systems of PDEs are
obtained by applying mass and momentum balances to each phase and making suitable constitutive
assumptions about their properties and interactions (Breward et al, 2003; Byrne et al, 2003;
Preziosi and Tosin, 2009). Morphoelastic models of tumour growth provide a theoretical framework
within which to study biological tissues for which growth and elasticity are inter-related (Araujo
and McElwain, 2004).

While incorporating more biological detail, these more sophisticated approaches typically in-
volve more parameters that may be difficult to estimate in practice. In this paper we present a
simple spatially-resolved model for tumour spheroid growth and response to radiotherapy in order
to investigate the effects of spatial heterogeneity. In Section 2 we extend Greenspan’s original spa-
tial model for tumour spheroid growth (Greenspan, 1972) to include radiation effects. In Section
3.1 we numerically solve the model equations and discuss key features of the resulting dynamics.
We use a combination of further numerical simulations and analysis of the model equations in
order to explore the tumour dynamics exhibited by the model.

2 Model development

In this section, we introduce a spatial model of avascular tumour growth originally developed
by Greenspan (Greenspan, 1972). We extend Greenspan’s model to account for the effects of
radiation and arrive at a new model for tumour response to radiotherapy.

2.1 Original growth model by Greenspan

Following Greenspan (Greenspan, 1972), we consider the growth of a radially-symmetric, avascular
tumour spheroid in response to a single, growth-rate limiting, diffusible nutrient, here oxygen.
For simplicity, we assume that growth inhibition occurs due to nutrient deficiency rather than in
response to an inhibitory factor. We denote the outer tumour radius by R(t) and let c(r, t) denote
the oxygen concentration at a distance 0 ≤ r ≤ R(t) from the tumour centre. We suppose that the
oxygen concentration is maintained at a constant level, c∞, on r = R(t). Oxygen diffuses on a much
shorter timescale than tumour growth, taking ∼ 10 seconds to diffuse 100 µm by comparison with
a tumour growth period measured in days (Greenspan, 1972). As such we assume that the oxygen
concentration is in a quasi-steady state. Internal free boundaries at r = RH(t) and r = RN (t) are
defined implicitly and denote contours on which the oxygen concentration attains the threshold
values cH and cN , respectively. These interfaces decompose a well-developed tumour into a central
necrotic core (0 < r < RN ) where c ≤ cN , and an outer, oxygen-rich region (RH < r < R) in
which cH < c, these regions being separated by a hypoxic annulus (RN < r < RH) in which
cN < c < cH (see Figure 1 for a schematic).
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(a) Image of an in vitro tumour spheroid
(adapted from (Folkman and Hochberg,
1973)) highlighting the distinct micro-
environments.

(b) Schematic of the cor-
responding model tumour
spheroid geometry.

Figure 1: Diagrams highlighting the distinct regions within a tumour spheroid and how they are
influenced by the oxygen profile. A central necrotic core (0 < r < RN ) is surrounded by a hypoxic
annulus (RN < r < RH) and an outer proliferating rim (RH < r < R). The moving boundaries
r = RN (t), RH(t) and R(t) delineate these regions.

Greenspan’s original model (Greenspan, 1972) describes how the dependent variables c(r, t),
R(t), RH(t) and RN (t) evolve over time and can be written in dimensionless form as follows:

0 =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
︸ ︷︷ ︸

diffusion term

− ΓH(c− cN )︸ ︷︷ ︸
oxygen consumption

, (2)

1

4π

d

dt

(
4πR3

3

)
︸ ︷︷ ︸

rate of change of tumour volume

=

∫ R

0

[ cH(c− cH)︸ ︷︷ ︸
cell proliferation term

−λA − λNH(cN − c)︸ ︷︷ ︸
cell death term

]r2dr, (3)

RH = 0 if c > cH ∀r and otherwise c(RH , t) = cH , (4)

RN = 0 if c > cN ∀r and otherwise c(RN , t) = cN , (5)

∂c

∂r
= 0 at r = 0, (6)

c = c∞ at r = R, (7)

R(0) = R0, (8)

where H(.) is the Heaviside function (H(x) = 1 for x > 0, and H(x) = 0 otherwise), and Γ, λA,
λN , c∞, cH & cN are positive constants. Equations (2)-(8) may be reduced to a system involving
a single ODE for R(t) and algebraic equations for RH(t) and RN (t). Analysis of the resulting
equations and details of the non-dimensionalisation may be found in (Greenspan, 1972; Byrne,
2012), and for further explanation of the underlying model assumptions see Appendix A.1. Figure
2 shows how the size and composition of the tumour spheroid evolve for a typical simulation of
the Greenspan model using the dimensionless parameter values in Table 1. A table of dimensional
parameter values is given in Appendix A.1. Where possible we have obtained parameter estimates
for model simulations from the literature, however we note that some of these values pertain to
estimates used in other modelling scenarios. In this paper though, specific parameter combinations
serve only to highlight the dynamics of the model and, in particular, the resulting model analysis
is independent of the choice of parameter values. The effects of some of the parameters on the
growth dynamics and steady state tumour composition are explored in Appendix A.2.

2.2 Incorporating radiotherapy into the Greenspan model

We adapt Greenspan’s model to account for radiotherapy by assuming that when a dose of ra-
diotherapy is applied it causes an instantaneous dose-dependent death of viable cancer cells and,
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Parameter Symbol Value Source
Oxygen consumption rate Γ 1.1051 Grimes et al (2014)

Oxygen concentration at tumour boundary c∞ 1 Grimes et al (2014)
Hypoxic oxygen threshold cH 0.1 Grimes et al (2014)
Anoxic oxygen threshold cN 0.008 Grimes et al (2014)

Apoptosis constant λA 0.32 Frieboes et al (2007)
Necrosis constant λN 0.0061 Schaller and Meyer-Hermann (2006)

Table 1: Dimensionless parameter values for Greenspan’s model of tumour spheroid growth.
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Figure 2: Tumour spheroid composition at various stages of tumour growth under the Greenspan
model (Equations (2)-(8)) using the parameter values in Table 3; blue solid line - proliferating
cells, red dashed line - hypoxic region, yellow dot/dashed line - necrotic core
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Parameter Value Source
α (Gy−1) 0.35 Fowler (2006); Muriel (2006); Sachs et al (2001)
α/β (Gy) 10 Withers (1999)

OER (dimensionless) 3 Carlson et al (2006)

Table 2: Typical radiosensitivity parameters

thus, a change in the size and composition of the tumour. The efficacy of the radiation and
subsequent cell death depends on the local oxygen concentration. As such, we determine the
radiation-induced cell death in each tumour region separately. We denote by R±, R±H and R±N the
radii immediately before (-) and after (+) radiotherapy in the proliferating, hypoxic and necrotic
tumor compartments.

2.2.1 Radiation-induced cell death and the Linear-Quadratic model

We use the linear-quadratic model (Fowler, 2006; Joiner and van der Kogel, 2009; Enderling et al,
2010) to account for cell kill due to radiotherapy in the well-oxygenated outer rim, RH < r < R,
so that the volume survival fraction, SF (d), immediately after a dose d of radiation is given by

sfnormoxic =
[volume of normoxic region after radiotherapy]

[volume of normoxic region before radiotherapy]

= exp(−αd− βd2),

(9)

for radiosensitivity parameters α and β. Values of α/β vary markedly, with typical values falling
in the range of 3-10 Gy. However extremal values of 1 Gy and 20 Gy have been reported for
late-responding tissues such as prostate cancer and early-responding, rapidly proliferating tissues
such as head and neck cancer, respectively (Withers, 1999). Typical radiosensitivity parameters
for rapidly-proliferating, early-responding tumours are shown in Table 2.

When exposed to ionising radiation, the potent oxygen free radicals that form in well-oxygenated
regions increase the amount of DNA damage by up to a factor of 3 when compared with hypoxic
tumour regions (Alper and Howard-Flanders, 1956). Following Carlson et al. (Carlson et al, 2006),
we incorporate the oxygen enhancement ratio, OER, to account for this effect. Radiosensitivity
parameters are typically quoted for normoxic conditions. As such we take the common approach
and use the OER as a constant factor (taken to be equal to 3 in the presented simulations) that
reduces the intrinsic radiosensitivity parameters of tumour cells, α and β, in hypoxic regions. This
creates a discontinuity in the response to radiotherapy at r = RH . The volume survival fraction
immediately after a dose of radiation is delivered to a population of hypoxic cells is given by

sfhypoxic =
[volume of hypoxic region after radiotherapy]

[volume of hypoxic region before radiotherapy]

= exp

(
− α

OER
d− β

OER2
d2

)
.

(10)

There is no clear consensus in the literature as to how to modify the ‘quadratic’ component
of cell death, however the form used in Equation (10) affords the interpretation of the OER as
the multiplying factor for the dose escalation required under hypoxia in order to achieve the
same cell kill as under normoxic conditions. We note that, in practice, this effect is likely to
depend continuously on the local oxygen concentration. A continuous functional form for the
OER (OER = OER(c)) was proposed by Alper & Howard-Flanders (Alper and Howard-Flanders,
1956). For realistic parameter regimes, simulations using the continuous OER presented in (Alper
and Howard-Flanders, 1956) and the discrete OER presented here did not significantly vary (results
not shown). For these reasons we restrict attention to the discrete OER stated above.

We assume further that dead material within the necrotic core is unaffected by radiation and
so we impose that R+

N = R−N .
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Figure 3: Schematic of the model tumour spheroid post-radiotherapy. Dashed line represents new
position of the internal contour c = cN and shows the resulting mismatch between this contour
and RN .

Combining these assumptions we deduce that, for a well-developed tumour spheroid (Figure
2, case C) with 0 < R−N < R−H < R−, a dose d of radiation gives a total volume change of

[V ]+− =
4π

3
(R+3

−R+3

N )︸ ︷︷ ︸
viable volume after radiotherapy

− 4π

3
(R−

3

−R−
3

N )︸ ︷︷ ︸
viable volume before radiotherapy

= − 4π

3
(R−

3

−R−
3

H )(1− sfnormoxic)︸ ︷︷ ︸
loss from proliferating rim

− 4π

3
(R−

3

H −RN−
3)(1− sfhypoxic),︸ ︷︷ ︸

loss from hypoxic region

which, on rearrangement, yields the following expression for R+ in terms of R−, R−H , and R±N =
RN :

R+3

=
(
R−

3

−R−
3

H

)
sfnormoxic +

(
R−

3

H −R
−3

N

)
sfhypoxic +R3

N . (11)

The oxygen concentration profile associated with the new tumour structure can be determined
(Equation (2)) and RH defined implicitly as before (see Equation (4)). We note that while not
all hypoxic tumour cells will be killed from a single radiotherapy fraction (sfhypoxic > 0), the
instantaneous volume loss due to irradiation and the subsequent reoxygenation of the tumour
spheroid may result in a post-radiotherapy tumour composition without a hypoxic region.

Two cases can arise when a well-developed, 3-layer tumour is irradiated (see Figure 3):

(i) cN < c(R+
N ) < cH - irradiated tumour is a fully-developed tumour spheroid with 3 layers;

(ii) cN < cH < c(R+
N ) - irradiated tumour has a necrotic core, but no hypoxic annulus.

Since the necrotic core is assumed to be unaffected by radiotherapy, these are the only possible
options. We have already described how a tumour spheroid of case (i) responds to radiation
(Equation (11)). If a tumour with a pre-radiotherapy composition as in case (ii) is irradiated then
the corresponding volume change is given by

[V ]+− = −4π

3
(R−

3

−R
3

N )(1− sfnormoxic),

which, on rearrangement, supplies the following expression for R+ in terms of R− and RN

R+3

=
(
R−

3

−R3
N

)
sfnormoxic +R3

N . (12)
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2.2.2 Reconciling pre- and post-radiation tumour growth

In the normal growth regime without radiotherapy, RN is defined implicitly by the oxygen con-
centration (see Equation (5)). When the tumour volume is reduced due to radiation, the oxygen
concentration at the centre of the tumour increases and the location of the interface on which
c = cN will shift towards the tumour centre or disappear. As the necrotic core is unaffected by
radiation, c(R+

N ) > cN and the growth of the tumour spheroid immediately post-radiotherapy
does not follow the original, control dynamics.

Between fractions of radiotherapy, repopulation of the tumour occurs. The tumour cells pro-
liferate and die as before, however, whilst c(RN ) > cN no new material is added to the necrotic
core, and so the existing necrotic material simply decays at the rate λA + λN . In this case RN
evolves according to

RN = RN (tfraction)exp

(
−1

3
(λA + λN )(t− tfraction)

)
, (13)

where tfraction is the time of the last fraction delivered for which c(RN ) = cN , and RN (tfraction)
is the radius of the necrotic core upon irradiation. As such, prior to treatment with radiotherapy
at t = tfraction the tumour composition is consistent with the control, Greenspan dynamics, while
Equation (13) governs the evolution of RN post-irradiation.

Equations (2)-(4), (6)-(8) & (13) drive growth while c(RN ) > cN , until the necrotic radius is
such that c(RN ) = cN , at which time the standard Greenspan model holds and growth is driven
by Equations (2)-(8).

2.3 Summary: statement of full model (dimensionless)

The tumour growth model combined with fractionated radiotherapy (dose di Gy delivered at times
t = ti, i = 1, 2, ...) can be summarised as follows:

0 =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
− ΓH(c− cN ), (14)

1

4π

d

dt

(
4πR3

3

)
=

∫ R

0

[cH(r −RH)− λA − λNH(RN − r)]r2dr, (15)

RH = RN if c > cH ∀r and otherwise c(RH , t) = cH , (16)

RN = RN (ti)exp

(
−1

3
(λA + λN )(t− ti)

)
if c(RN ) > cN and ti < t < ti+1,

RN = 0 if c > cN ∀r and t < ti ∀i, c(RN , t) = cN otherwise

(17)

∂c

∂r
= 0 at r = 0, (18)

c = c∞ at r = R, (19)

R(0) = R0. (20)

Continuity conditions for c and ∂c
∂r continuous across r = RH , RN are imposed.

Radiotherapy, of dose di applied at times t = ti, effects an instantaneous volume change. The
survival fraction of the normoxic tumour cell population is given by

sfnormoxic = exp(−αdi − βd2
i ), (21)

whilst the survival fraction in hypoxic regions is given by

sfhypoxic = exp

(
− α

OER
di −

β

OER2
d2
i

)
. (22)

The necrotic core of the tumour spheroid is unaffected by radiotherapy. Immediately after a dose
of radiation, the outer tumour radius is given by
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R+3

=
(
R−

3

−R−
3

H

)
sfnormoxic +

(
R−

3

H −R
3

N

)
sfhypoxic +R3

N . (23)

NB: We subtly alter the equation for RH from the original Greenspan model so that RH = RN
if the threshold for hypoxia, cH is not reached. This does not change the dynamics in the case of
untreated tumour growth, but ensures that the ordering of the tumour boundaries is conserved in
the post-radiotherapy regime (0 ≤ RN ≤ RH ≤ R).

3 Investigation of model behaviour

We now consider the effects of various treatment protocols on a given tumour under this model. In
Section 3.1 we solve the model numerically and highlight key features of the simulations for differ-
ent parameter combinations. We explore these features in more detail in the following sections. We
analyse the rapid increase in hypoxia during regrowth of the tumour spheroid post-radiotherapy in
Section 3.2. In Section 3.3 we study tumour regrowth following a single dose of radiation, and in
Section 3.4 we consider the long-term behaviour of a tumour for different fractionation schedules.

3.1 Numerical simulation results

For each tumour growth regime, the oxygen profile c(r, t) may be solved analytically. Equations
(14)-(23) may then be reduced to an ODE for R and two algebraic equations for RH and RN , as
described in Appendix A.1. We solve the resulting system of equations numerically using a finite
difference scheme implemented in MATLAB.

In Figure 4a we present results showing a typical tumour response to a conventional frac-
tionation schedule (2 Gy, 5 days / week) simulated for 6 weeks using the parameter values in
Tables 1 & 2. Cell death induced by the first fraction of radiation delivered at t = 1 results in
the loss of the hypoxic annulus. While c(RN ) > cN , the necrotic core decays exponentially, as
defined by Equation (13). Figure 5a shows how the oxygen concentration in the necrotic core
evolves throughout the first week of the radiotherapy protocol. We see the mismatch between
c(RN ) and cN following delivery of the first fraction (at t = 1). As the tumour grows between
fractions, oxygen concentration in the necrotic core decreases, while each fraction of radiation and
the corresponding volume loss results in reoxygenation.

For this parameter combination, radiotherapy results in a tumour volume at the end of treat-
ment that is sufficiently small such that the spheroid is almost entirely composed of proliferative
cells. In particular, the necrotic core has decayed so that RN � R.

Figure 4b shows how the system dynamics change when a tumour with a much lower apoptotic
rate (λA) is exposed to the standard fractionation protocol. The slower rate of apoptosis results
in a larger steady state tumour in the absence of radiotherapy. Similarly, a larger tumour volume
supported throughout treatment and a more gradual volume reduction. In this case the hypoxic
annulus reappears during treatment (as observed during the weekend breaks in the protocol) since
the necrotic core decays such that c(RN ) = cH before the end of the fractionation protocol. A
rapid transient increase in RH is observed when the hypoxic annulus reappears. We characterize
this behaviour in Section 3.2.

For the simulation in Figure 4b, a tumour spheroid comprising a necrotic core and transient
hypoxia persists at the end of treatment. The tumour volume appears to be evolving towards a
periodic orbit and, as such, the model predicts that continuing the same fractionation schedule
indefinitely will not yield significant further volume reduction.

Since the tumour composition changes dynamically throughout treatment, the efficacy of each
radiation fraction also varies. The survival fraction changes by about 10% from the start to the end
of treatment due to the shrinkage of the necrotic core (Figure 4b). In this case a characteristic
shape within the curve in Figure 5b repeated weekly due to the weekly oscillations in tumour
composition, with the spike associated with the rapid reappearance of hypoxia. Such dynamic
behaviour clearly depends on tumour-specific parameters and highlights the additional details
that can be observed when spatial effects are included in a mathematical model (c.f. difference in
tumour composition between Figures 4a & 4b).
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(a) (b)

Figure 4: Two solution of Equations (14)-(23) in response to a standard fractionation protocol
(2 Gy fractions delivered daily Monday-Friday) simulated for 6 weeks. Overall tumour radius,
R - blue solid line; hypoxic radius, RH - red dashed line; radius of the necrotic core, RN -
yellow dot/dashed line. In (a) we use the parameter values given in Tables 1 & 2 with an initial
tumour radius of 3. In (b) we simulate irradiating a tumour spheroid with lower rates of apoptosis
(λA = 0.1213) and oxygen consumption (Γ = 0.3032) starting from an overall radius of 7.5. The
evolution of the tumour contours R,RH and RN is shown by the blue, red and yellow lines,
respectively.

(a) (b)

Figure 5: Two plots highlighting key behaviours in the simulations shown in Figure 4. (a) Blue
line shows oxygen concentration within the necrotic core during the first week of treatment for
the simulation in Figure 4a. The oxygen thresholds for hypoxia, cH , and necrosis, cN , are shown
by dashed red and yellow lines, respectively. (b) Change in average tumour survival fraction
following successive doses of radiotherapy corresponding to the simulation presented in Figure 4b.
Red points correspond to the survival fraction for each fraction of radiotherapy delivered, blue
line added for ease of visualisation. (NB. y-axis not [0,1])
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Figure 6: Schematic contextualising the scenario in which the rapid transient increase in hypoxia
is observed, corresponding to the different growth phases observed in Figure 7.

3.2 Asymptotic analysis of model behaviour post-radiotherapy

When a fully-developed tumour spheroid including a hypoxic annulus and necrotic core is exposed
to fractionated radiation, the composition of the spheroid immediately after irradiation depends
on the dose d, as described in Section 2.2.1. If the dose is sufficiently large, the post-radiotherapy
composition comprises a proliferating rim and a necrotic core, but with the absence of a region
of hypoxia. In this scenario, the oxygen concentration in the necrotic core is greater than the
threshold for hypoxia (i.e. c(RN ) > cH). Upon regrowth, the outer tumour radius, R, will
increase, while RN will decrease as the necrotic core undergoes decay. Since this parameter
regime yields tumour spheroids with proliferating, hypoxic and necrotic compartments prior to
radiotherapy, left untreated the tumour will eventually evolve so that the hypoxic annulus will
start to re-develop (when c(RN ) = cH). This sequence of events is summarised in Figure 6.
Simulation results reveal the re-emergence of hypoxia following radiotherapy via a fast, transient
increase in RH (see Figure 4b). Since hypoxic cells are less radio-sensitive, such a rapid increase
in the hypoxic volume could have implications for the response to further doses of radiation. We
now characterise this behaviour.

The fast initial increase in RH upon regrowth of the tumour spheroid in the Greenspan model
after a radiation fraction (see Figure 7) occurs when the necrotic core is undergoing exponential
decay and a region of hypoxia is about to develop outside the necrotic core. We analyse this
situation by supposing that (without loss of generality at t = 0) c(RN ) = cH . Then solution of
Equations (14), (18) and (19) yields

c =

{
c∞ + Γ

6 (R2
N −R2) + Γ

3R
3
N ( 1

RN
− 1

R ), for 0 < r < RN ,

c∞ + Γ
6 (r2 −R2) + Γ

3R
3
N ( 1

r −
1
R ), for RN < r < R,

(24)

while Equation (15) reduces to give

dR

dt
=
R

3

[
c∞(1− R3

H

R3
)− (λA + λN

R3
N

R3
)

]
+

Γ

6
R3

[
1

5
(1− R5

H

R5
)− 1

3
(1− R3

H

R3
) + 2

R3
N

R3
(
1

6
− 1

2

R2
H

R2
+

1

3

R3
H

R3
)

]
, (25)

and the internal free boundaries RH(t) and RN (t) satisfy

(
1− RH

R

)(
R2

R2
H

+
R

RH
− 2

R3
N

R3
H

)
=

6

ΓR2
H

(c∞ − cH), (26)

RN = RN (0)e−
1
3 (λA+λN )t, (27)
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with RH(0) = RN (0), and R(0) defined by Equation (26).

With RN (t) defined by Equation (27), we seek approximate solutions for R and RH . Differ-
entiating Equation (26) with respect to t we obtain an ODE for RH(t), which is singular in the
limit as RH → RN :

2

R2
H

(R3
H −R3

N )
dRH
dt

= (
R2
H

R2
− 2

R3
N

R3
+ 2)R

dR

dt
+ 2(λA + λN )(R−RH)

R3
N

RRH
. (28)

We investigate the behaviour in this limit by making the change of variables S = RH

RN
with

S = 1 at t = 0. Then Equations (25) and (28) become

dR

dt
=
R

3

[
c∞(1− S3R

3
N

R3
)− (λA + λN

R3
N

R3
)

]
+

ΓR3

6

[
1

5
(1− S5R

5
N

R5
)− 1

3
(1− S3R

3
N

R3
) + 2

R3
N

R3
(
1

6
− 1

2
S2R

2
N

R2
+

1

3
S3R

3
N

R3
)

]
, (29)

(
S2R

2
N

R2
− 2

R3
N

R3
+ 2

)
R
dR

dt
−2

R2
N

S2
(S3−1)

[
dS

dt
− 1

3
(λA + λN )S

]
+2(λA+λN )

(
1− SRN

R

)
R2
N

S
= 0.

(30)
We construct approximate solutions to Equations (29) and (30) in the limit when S is close

to 1. Introducing the small parameter ε (0 < ε� 1), we consider the short timescale t = ε2τ and
propose expansions for S and R in this boundary layer of the form

S(τ) ∼ 1 + εS1(τ) + ε2S2(τ) + o(ε3), (31)

and

R(τ) ∼ R0(τ) + εR1(τ) + ε2R2(τ) + o(ε3). (32)

The choice of timescale can be justified by a dominant balance argument, allowing us to regularise
the ODE for S at leading order. Note that dR

dτ = o(ε2), so we deduce that

dR0

dτ
= 0 =

dR1

dτ
, (33)

dR2

dτ
=
R0

3

[
c∞(1− R3

N0

R3
0

)− (λA + λN
R3
N0

R3
0

)

]
+

ΓR3
0

6

[
1

5
(1− R5

N0

R5
0

)− 1

3
(1− R3

N0

R3
0

) + 2
R3
N0

R3
0

(
1

6
− 1

2

R2
N0

R2
0

+
1

3

R3
N0

R3
0

)

]
(34)

= f(R0, RN0), say. (35)

Hence, R ∼ R0 + ε2R2(τ) + o(ε3), where R0 = const = R(0). We also find that RN has no
o(ε) term, since expanding Equation (27) gives RN ∼ RN0(1 − 1

3 (λA + λN )ε2τ + o(ε4)), where
RN0 = RN (0).

Turning our attention back to Equation (30), we find at leading order

3R2
N0S1

dS1

dτ
=

(
1− R3

N0

R3
0

+
1

2

R2
N0

R2
0

)
R0f(R0, RN0) + (λA + λN )

(
1− RN0

R0

)
R2
N0 (36)

where f(R0, RN0) is defined via Equation (35). Integrating Equation (36) gives

S1 =

[
1

3

(
(

1

R0
− 2

RN0

R2
0

+ 2
R0

R2
N0

)f(R0, RN0) + 2(λA + λN )(1− RN0

R0
)

)] 1
2

τ
1
2 . (37)
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Figure 7: Asymptotic solution given by Equation (38) (dotted line) plotted alongside the numerical
solution to Equations (14)-(23) showing the regrowth of the tumour spheroid after radiotherapy
and the fast initial increase in RH . We note that during regrowth the mismatch in the oxygen
tension on the necrotic core boundary is eventually resolved and the tumour resumes standard
Greenspan growth dynamics.

So for t� 1,

RH(t) ∼ RN0 +RN0

[
1

3

(
(

1

R0
− 2

RN0

R2
0

+ 2
R0

R2
N0

)f(R0, RN0) + 2(λA + λN )(1− RN0

R0
)

)] 1
2

t
1
2 .

(38)

This approximate solution for RH(t) and the numerical solution obtained by solving the full
problem are in good agreement (Figure 7).

As a result of this analysis we conclude that whenever a hypoxic region re-emerges within
a tumour post-radiotherapy, it does so rapidly over a short timescale on which both the outer
tumour radius and the radius of the necrotic core do not change dramatically. This phenomenon
arises naturally from the model. We note that similar analysis was performed on the original,
untreated growth equations by Byrne et al. (Byrne and Chaplain, 1998).

3.3 Single hit regrowth

We now consider the effect of irradiating a small tumour spheroid composed entirely of proliferating
cells and its subsequent regrowth. This situation is relevant for tumours of radius R such that

0 < R2 < 6
Γ (c∞−cH) and RH = RN = 0, since when R =

√
6
Γ (c∞ − cH), c(0) = cH and therefore

larger tumours will contain a hypoxic region and/or necrotic core. Solving Equation (14) subject
to boundary conditions (18)-(19) we deduce that the oxygen profile for this tumour composition
is given by

c(r, t) = c∞ −
Γ

6
(R2 − r2). (39)

Substituting from Equation (39) into Equation (15), with RH = RN = 0, we arrive at the following
ODE for R(t):
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dR

dt
=
R

3

(
c∞ −

ΓR2

15
− λA

)
, (40)

with solution
R

R0
=

√
c∞ − λA

ΓR2
0

15 +A0e−
2
3 (c∞−λA)t

(41)

where A0 = c∞ − λA − ΓR2
0

15 .
We can use Equation (41) to calculate the time taken for a tumour spheroid of radius 0 <

R̃2 < 6
Γ (c∞ − cH) following a single fraction of radiation of dose d to regrow to its initial (i.e.

pre-radiotherapy) size. The tumour radius immediately after irradiation is given by γ(d)R̃, where
γ(d) = exp(− 1

3 (αd + βd2)) is the survival fraction given by the linear quadratic formula. It is
straightforward to show that the time, ∆t, until the tumour regrows to its original size is given by

∆t =
3

2(c∞ − λA)
log

[
c∞ − λA − γ2ΓR̃2

15

γ2(c∞ − λA − ΓR̃2

15 )

]
, (42)

where γ = γ(d). We assume that the parameters are such that the tumour spheroid was growing
pre-irradiation and therefore R2 < 15

Γ (c∞ − λA) (from (40)). In this parameter regime, the
logarithm in Equation (42) is defined and ∆t > 0. By extension, we require that c∞ > λA since
otherwise the tumour spheroid shrinks for all values of R̃ and a viable tumour of any size cannot
be supported. We note for future reference that

∆t→ αd+ βd2

c∞ − λA
as R̃→ 0. (43)

Differentiating Equation (42) with respect to R̃, we obtain

d∆t

dR̃
=

ΓR̃

5

(1− γ2)

(c∞ − λA − ΓR̃2

15 )(c∞ − λA − γ2 ΓR̃2

15 )
. (44)

Therefore, at least for small R̃, d∆t
dR̃

∣∣∣
γ(d)

> 0, and so the regrowth time, ∆t, is an increasing

function of R̃ for fixed dose d. This holds for all 0 < R̃2 < 6
Γ (c∞ − cH) if the inequality 3c∞ −

5λA+2cH > 0 is satisfied. Then Equation (42) represents an increasing family of curves where the

minimum bounding curve is given by Equation (43). That is, for 0 < R̃1 < R̃2 <
√

6
Γ (c∞ − cH)

and fixed dose d, ∆t(d;R1) < ∆t(d;R2).
Returning to Equation (42), we see that for an initial radius R̃, a strategy that combines

a dose d with an inter-fraction time less than ∆t will result initially in a net shrinkage of the
tumour throughout treatment (i.e. the tumour volume is smaller at the delivery of each radiation
fraction). Conversely, if we wait longer than ∆t to re-irradiate then the tumour will have grown
larger than its original size. Thus, Equation (42) defines a curve in the (d,∆t)-plane for treatment
protocols which give rise to periodic behaviour for a given initial tumour radius R̃, since the cell
kill induced by radiotherapy is exactly balanced by the regrowth between fractions. This curve is
indicated in Figure 8. We note that the curve describing protocols that yield periodic behaviour
becomes concave for large R, and in particular, as R tends to its steady state value, R∗ say, then
for a given dose, d > 0, ∆t(d)→∞.

3.4 Periodic surface in ‘treatment space’

In the previous section we investigated the response of tumours of fixed initial radius R̃ to different
fractionation protocols as specified by a dose, d, and inter-fraction time, ∆t. The (d,∆t)-plane can
be partitioned into regions in which the tumour volume increases or decreases during treatment.
However, we note that the location of these regions depends on the tumour radius at the time of
irradiation, R̃. As such, when considering the behaviour of a tumour throughout an entire course
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Figure 8: Radiation dose and fractionation-dependent behaviour for a tumour spheroid composed
of proliferating cells. Line for periodic behaviour given by Equation (42). Plots on the right show
response to 5 fractions of radiotherapy given by the protocols corresponding to points P1, P2 &
P3.

of radiotherapy, it is not a line in the (d,∆t)-plane that we are interested in, but a surface in
‘treatment space’, T ⊂ R3, with components (R, d,∆t).

For a protocol delivering n fractions of radiation, we can identify the response of a given tumour
with a discrete trajectory, (R(ti), di,∆ti) ∈ T, through treatment space. Note, we consider the
trajectory as discrete points pre-irradiation so that R(ti) = R(ti)

− in our previous notation. Here
ti, di and ∆ti are the time, dose and inter-fraction time, respectively, of the ith fraction, for
i = 1, ..., n. The union of the curves in the (d,∆t)-plane determining periodicity define a surface,
S, in T (see Figure 9). Now, as a tumour progresses through the course of radiotherapy, points on
its trajectory that lie above this surface indicate net growth of the tumour by the time of delivery
of the next radiation dose, whilst points below the surface result in a more desirable decrease in
tumour volume. Therefore, for a given tumour spheroid, S defines a surface that partitions T into
treatment protocols that cannot halt tumour progression and those that lead to tumor decay.

With this understanding more general statements about the outcome of different fractionation
protocols can be made. We first consider dosing schedules in which the same dose d is administered
at constant intervals ∆t. In this case, if a point in T lies above S, then the tumour spheroid will
grow until it converges to a point on S, at which time it becomes periodic (Figure 9).

Below S, then the outcome of radiotherapy depends on the boundary curve of S as R→ 0 (see
Equation (43)). If the fractionation schedule lies above this curve in the (d,∆t)-plane then the
system will eventually converge to the corresponding point on S. However, d and ∆t below this
can be chosen such that the tumour decays to arbitrarily small volumes (Figure 9). We note that
Equation (43) still holds for this analysis even though its derivation requires an initial tumour
composed entirely of viable cells. This is the case since, in the model, necrotic material is only
created via nutrient starvation and not as a result of irradiation. As such, for ongoing treatment
protocols that result in a decreasing tumour volume, as t→∞, R� RN .

We can extend this concept to more general treatment schedules. If there exists m ∈ N such
that for all i > m the point (di,∆ti) of the ith fraction lies below the curve given by Equation
(43), then treatment is sufficient to drive the tumour volume arbitrarily close to 0. However, using
Figure 4b as an illustrative example, we observe a simulation in which the weekend break of the
standard fractionation protocol corresponding to ∆t = 3 days gives rise to the periodic orbit.

When predicting how a tumour may respond to radiotherapy, two quantities of interest are
the potential volume doubling time, Tpot, and the survival fraction after 2 Gy of radiation, SF2,
of the tumour. We translate these definitions into the model and identify tumour characteristics
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Figure 9: Simulated trajectories (green lines) in T for two different constant dosing schedules
(fractions plotted as red points) applied to the same tumour spheroid (i.e. same model parame-
ters). A dose of 3 Gy every 3 days (top trajectory) results in a tumour that grows until it reaches
a periodic state, while a dose of 2 Gy delivered daily (bottom trajectory) is sufficient to drive the
tumour volume arbitrarily close to zero. Surface describes treatment protocols which give rise to
periodic behaviour.

for which this model would eventually predict regrowth over the weekend.
The survival fraction at 2 Gy, SF2, for normoxic tumour cells is given by the linear-quadratic

formulation. In order to find an expression for Tpot, we consider the tumour dynamics for small
tumour volumes that are in an ‘exponential growth’ phase. For small R,

dR

dt
∼ (c∞ − λA)

R

3
,

which yields a volume doubling time of

Tpot =
log2

c∞ − λA
.

Substituting these expressions into Equation (43) for a standard 2 Gy dose we obtain

∆t = −log(S2Gy)
Tpot
log2

. (45)

We note that this expression holds for tumour growth models in which the growth of small tumours
is exponential and radiation-induced cell death is modelled as an instantaneous volume loss.

If we now consider Equation (45) in the context of the weekend break (∆t = 3) within the
standard fractionation protocol, then we see that −Tpotlog(S2Gy) < 3log2 defines a class of tumour
characteristics for which regrowth of the tumour over the weekends impedes tumor decay (Figure
10).

4 Discussion

In vivo tumours are highly heterogeneous cellular entities characterised by high inter-patient vari-
ability. Allied to this, the local efficacy of radiotherapy delivered to the tumour site is affected
by a number of variables associated with the tumour’s heterogeneous composition and micro-
environment. In particular, the local oxygen concentration can significantly influence radiation-
induced cell death, with well-oxygenated regions being shown to exhibit up to threefold greater
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Figure 10: Region for which tumours will eventually exhibit net growth over the weekend (shown
in red).

radiosensitivity than hypoxic tumour populations. With this in mind, in this paper we have pre-
sented a simple, spatially-resolved model in order to investigate the effects of tumour composition
on radiotherapy response. The discussed model builds on the tumour growth model first proposed
by Greenspan (Greenspan, 1972). We extend this to incorporate the effects of radiotherapy taking
into account spatially-varying radiosensitivities.

Numerical simulations and mathematical analysis of the model reveal how the tumour’s growth
dynamics and spatial composition change throughout treatment. Heterogeneity within the tumour
not only affects the initial response to radiotherapy, but also how this response changes throughout
the duration of the treatment protocol (see Figure 5b). For parameter regimes in which hypoxia
reemerges during treatment, a rapid transient increase in the width of the hypoxic annulus that
is observed. This behaviour arises naturally from the model and the underlying process driving
this phenomenon remains to be elucidated. The model more generally also classifies protocols
that may result in tumour progression, a non-zero periodic tumour volume, or tumor decay. We
identify a surface in ‘treatment space’ dependent on tumour-specific growth and radiosensitivity
parameters and determine that successful protocols correspond to those that remain below this
surface throughout treatment. The wide variety of dynamics observed suggests that spatial het-
erogeneity may be important for simulating tumour response to radiotherapy and, in particular,
for making clinical predictions.

The model presented in this paper makes numerous assumptions and simplifications about the
underlying biology. For radiation-induced cell death we take the common approach of modelling
this process as an instantaneous effect. However, the linear-quadratic model was established to
determine long-term clonogenic survival after radiotherapy. Biologically, cell death after radiation
may occur via a number of different mechanisms, with many irradiated cells dying only after
attempting mitosis one or more times (Joiner and van der Kogel (2009), Chapter 3). Consequently,
radiation-induced cell death may not elicit the instantaneous volume reduction modelled here.
In future work we will model this process in more detail in order to describe the short term
response to radiotherapy and the corresponding spatial changes in tumour composition more
accurately. Additionally, a more detailed model will allow us to relax the restrictions of the
spherically symmetric geometry associated with the current model, making it more applicable to
modelling vascular tumour growth and in vivo responses to radiotherapy.

However, for a model to be useful in making patient-specific predictions in the clinic, param-
eters must be identifiable with respect to the limited clinical data typically available. As such,
current research in this area often focusses on phenomenological ODE models with few parameters
to be estimated. Typically these models contain no information about the spatial heterogeneity
in tumour composition and radiotherapy response. With this in mind, we also propose a compar-
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ison of the developed spatially-resolved model with these phenomenological approaches as future
work. We aim to identify situations in which the spatially-resolved and spatially-averaged models
agree well, and those in which there is a significant difference. The tumour composition changes
observed in model simulations suggests that averaged parameter values in simple, phenomenolog-
ical models may not sufficiently capture the tumour dynamics during treatment for some tumour
compositions and parameter combinations.

While more sophisticated models may be difficult to parametrise in practice, they have the
potential to increase biological insight and inform further modelling studies. Spatially-resolved
models, such as the one presented in this paper and the future work proposed to generalise some
of the simplifying assumptions made here, may aid in the development of alternative clinically-
focussed models which capture more of the key features than existing phenomenological models.
More complex models incorporating more biological detail may also be used to generate data for
in silico testing of ODE models and model selection paradigms; comparing the quality of fit and
future predictions of a range of simple models against a known ‘ground-truth’.
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A Appendix

A.1 Explanation of Greenspan’s original growth model

Here we provide further explanation of Greenspan’s original model for the nutrient-limited growth
of tumour spheroids (Greenspan, 1972). We restate the equations for the evolution of the nutrient
concentration profile, c, and the tumour radii, R, RH and RN .

0 =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
︸ ︷︷ ︸

diffusion term

− ΓH(c− cN )︸ ︷︷ ︸
oxygen consumption

, (46)

1

4π

d

dt

(
4πR3

3

)
︸ ︷︷ ︸

rate of change of tumour volume

=

∫ R

0

[ cH(c− cH)︸ ︷︷ ︸
cell proliferation term

−λA − λNH(cN − c)︸ ︷︷ ︸
cell death term

]r2dr, (47)

RH = 0 if c > cH ∀r and otherwise c(RH , t) = cH , (48)

RN = 0 if c > cN ∀r and otherwise c(RN , t) = cN , (49)

∂c

∂r
= 0 at r = 0, (50)

c = c∞ at r = R, (51)

R(0) = R0. (52)

In (46), we assume that the oxygen concentration within the tumour is regulated by its diffusion
across the tumour (with diffusion constant D) and consumption by the tumour cells. We make the
further assumption that both normoxic and hypoxic cells consume oxygen at the same constant
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rate, Γ, and that cells in the necrotic core do not consume oxygen. Since oxygen diffuses on a much
shorter timescale than tumour growth we assume that the oxygen concentration is in a quasi-steady
state. Hence, c(r, t) satisfies (46), where H(.) is the Heaviside function, with associated boundary
conditions (50) and (51) imposing symmetry at r = 0 and a Dirichlet boundary condition at
r = R(t).

We assume that rates of cell proliferation and death within the tumour are determined by the
local oxygen concentration. Proliferation occurs at a rate proportional to c where there is sufficient
oxygen supply (c > cH). Both apoptosis and necrosis contribute to cell death within the tumour,
with apoptosis occurring at a constant rate throughout the tumour and necrosis localised to the
necrotic core (where c < cN ). Degradation of the necrotic core is assumed to result in material
that is freely permeable throughout the tumour spheroid. We assume that adhesion and surface
tension forces acting on the tumour cells maintain the shape of the tumour spheroid, and that
these same forces push cells inwards to compensate for the outward flux of necrotic material from
the necrotic core. The evolution of R(t) is then given by the mass balance in Equation (47), with
λA, λN > 0, accompanied by the initial condition (52).

The radii at which the tumour becomes hypoxic and necrotic, RH and RN , respectively,
are determined as contours of the oxygen concentration profile (Equations (48) and (49)). For
situations in which the tumour spheroid is small enough that one or both of these contours do not
exist, we define the corresponding radius to be 0.

An analytic solution can be found for c(r, t) that depends on R,RH and RN , and so this system
can be reduced to an ODE for R and algebraic equations for RH and RN . The resulting equations
in the case of a fully developed, 3-layer tumour spheroid are given in Equations (53)-(57). The
system of equations for the earlier growth phases are similar and can be obtained in the same
manner.

c =

{
cN 0 < r < RN

cN + Γ
6r (r −RN )2(r + 2RN ) RN < r < R,

(53)

dR

dt
=
R

3

[
cN

(
1− R3

H

R3

)
−
(
λA + λN

R3
N

R3

)]
+

ΓR3

6

[
1

5

(
1− R5

H

R5

)
− R2

N

R2

(
1− R3

H

R3

)
+
R3
N

R3

(
1− R2

H

R2

)]
,

(54)

(
1− RN

R

)2(
1 +

2RN
R

)
=

6

ΓR2
(c∞ − cN ), (55)(

1− RN
RH

)2(
1 +

2RN
RH

)
=

6

ΓR2
H

(cH − cN ), (56)

R(0) = R0. (57)

Figure 2 (main text) demonstrates the growth and various stages (labelled C1, C2 & C3) of
tumour spheroid composition under the Greenspan model using the parameter values in Table 3.
In using partial pressures of oxygen rather than concentration, we follow Grimes et al. (Grimes
et al, 2014) and use Henry’s law to convert between the two, so that p = Ωc, with Ω = 3.0318x107

mmHgkgm−3. The oxygen concentration profile at each time point is a monotonic function in-
creasing outwards from the tumour centre. Initially, for very small, avascular tumour spheroids,
the entire tumour is made up of viable, proliferating cells (case A). We notice that as the tumour
grows and so the oxygen concentration at the centre of the tumour decreases, a hypoxic region
within the tumour begins to develop (case B) followed by a central necrotic core when the oxygen
concentration falls so low as to be unable to support viable cells (case C). These different regions,
and their varying responses to radiation, require careful consideration when extending Greenspan’s
model to account for radiotherapy. Further discussion of the different phases of growth is given in
(Byrne, 2012).
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Parameter Symbol Value Source
Oxygen consumption rate, m3kg−1s−1 Γ 7.29x10−7 Grimes et al (2014)

Partial pressure at tumour boundary, mmHg p∞ 100 Grimes et al (2014)
Hypoxic partial pressure, mmHg pH 10 Grimes et al (2014)
Anoxic partial pressure, mmHg pN 0.8 Grimes et al (2014)

Oxygen diffusion constant, m2s−1 D 2x10−9 Grimes et al (2014)
Apoptosis constant, m3kg−1 λA 1.0555x10−6 Frieboes et al (2007)
Necrosis constant, m3kg−1 λN 2x10−8 Schaller and Meyer-Hermann (2006)

Cell birth/death constant, kgm−3s−1 s 3.509 Frieboes et al (2007)

Table 3: Parameter values for Greenspan’s model of tumour spheroid growth. (Note: dimensional
apoptosis and necrosis rates, s−1, are given by sλA and sλN , respectively. p∞, pH and pN are
partial pressures which, for consistency, are then converted into concentrations c∞, cH and cN ,
respectively. For further details see Appendix A.1.)

A.2 Parameter sweep of Greenspan growth dynamics

We initially investigate the sensitivity of the standard Greenspan growth dynamics to some of
its key parameters. In particular, as we sweep over a region of parameter space, we observe the
resulting long-time, steady-state properties of the tumour spheroids. Specifically, we investigate
how the availability of oxygen, c∞, the oxygen consumption rate of the cells, Γ, and the rates of
apoptosis and necrosis, λA and λN , respectively, affect the growth of the tumour under this model.
We choose appropriate intervals for each parameter, in each case encompassing the corresponding
value shown in Table 3, and systematically explore the resulting region of parameter space, solving
the model numerically. We plot heatmaps in parameter space in order to observe the behaviour
of a variety of quantities of interest of the tumours at steady state (Figures 11 & 12). We have
omitted here the results of varying both c∞ and λN since, in the case of c∞, increasing the
parameter value simply has the effect of an increase in overall tumour size and the width of the
corresponding proliferating rim as might be expected, while, for the range of values swept over,
λN had little effect on the observed tumour characteristics.

Broadly speaking, we see in Figure 11 that relatively increasing the amount of oxygen available
to the tumour cells (by decreasing the consumption rate Γ), or decreasing the death rate, λA,
results in larger steady state tumours, as we might expect. Point A marks the location of the
parameter values from Table 3. Extreme points in the region of concern in parameter space are
labelled B, C and D and the corresponding tumour evolution profiles shown. We see that the
greater relative availability of oxygen and the low death rate at point B results in a large, fully-
developed tumour spheroid, whereas the high rate of apoptosis at D is such that a viable, tumour
cell population cannot be sustained.

For a given Γ, we can determine the onset of necrosis as the radius R̄ =
√

6
Γ (c∞ − cN ). At the

point C, and any other point on a vertical line through C, the rate of apoptosis is such that the
tumour reaches a steady state of radius R̄, and is given by λA = 1

5 (3c∞+2cN ). Beyond C, at lower
death rates (eg B), we enter a new phase of growth that includes hypoxia and necrosis. The rapid,
transient increase in RH/RN at onset of hypoxia/necrosis (c.f. asymptotics in Section 3.2) means
that for each tumour the width of the proliferating rim decreases until it reaches a steady state
and as such C represents a ‘local maximum’. Figure 12 shows the corresponding heatmaps for
both the steady state volumes and volume fractions for each constituent of the tumour spheroid.
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Figure 11: Results of a parameter sweep for the steady state tumour radius and width of prolifer-
ating rim with corresponding tumour growth profiles at points of interest in parameter space, A,
B, C and D.

Figure 12: Heatmaps for the steady state volumes of proliferating, hypoxic and necrotic cells, and
the corresponding volume fractions.
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