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Abstract13

1. Colour in nature presents a striking dimension of variation, though under-14

standing its function and evolution largely depends on our ability to capture15

the perspective of relevant viewers. This goal has been radically advanced16

by the development and widespread adoption of perceptual colour spaces,17

which allow for the viewer-subjective estimation of colour appearance. Most18

studies of colour in camouflage, aposematism, sexual selection, and other19

signalling contexts draw on these colour spaces, with the shared analytical20

objective of estimating how similar (or dissimilar) colour samples are to a21

given viewer.22

2. We summarise popular approaches for estimating the separation of samples23

in colour space, and use a simulation-based approach to test their efficacy24

with common data structures. We show that these methods largely fail to25

estimate the separation of colour samples by neglecting (i) the statistical dis-26

tribution and within-group variation of the data, and/or (ii) the perceptual27

separation of groups relative to the observer’s visual capabilities.28

3. Instead, we formalize the two questions that must be answered to establish29

both the statistical presence and perceptual magnitude of colour differences,30

and propose a two-step, permutation-based approach that achieves this goal.31

Unlike previous methods, our suggested approach accounts for the mul-32

tidimensional nature of visual model data, and is robust against common33

colour-data features such as heterogeneity and outliers.34

4. We demonstrate the pitfalls of current methods and the flexibility of our35

suggested framework using heuristic examples drawn from the literature,36

with recommendations for future inquiry.37
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Introduction38

Humans, as most primates, are an extremely visually-oriented species (Vorobyev,39

2004), and the study of colour in nature has driven fundamental advances in ecol-40

ogy and evolutionary biology (Cuthill et al., 2017). Colour is a subjective expe-41

rience, however, so substantial effort has been dedicated to measuring colours42

“objectively” (Garcia et al., 2014; Johnsen, 2016) through visual models in order43

to explicitly consider the perspective of ecologically relevant viewers (Kemp et al.,44

2015; Renoult et al., 2017). These models have radically advanced the study of45

colour traits by allowing researchers to account for the factors influencing the46

generation and perception of visual information, such as the structure of signals47

and viewing backgrounds, the properties of veiling and incident light, and the48

attributes of receiver visual systems (Chittka, 1992; Endler & Mielke, 2005; Kelber49

et al., 2003; Vorobyev & Osorio, 1998).50

Several forms of visual models exist and are currently used, which vary in their51

assumptions about the psychophysical properties of visual systems and visual pro-52

cessing (Chittka, 1992; Endler & Mielke, 2005; Vorobyev & Osorio, 1998). Despite53

this variation, all models invariably attempt to delimit a colour space informed by54

the number and sensitivity of photoreceptors in an animal’s retina (Renoult et al.,55

2017). Individual colours can then be represented in this space, with their location56

being determined by the degree to which reflected light differentially stimulates57

the viewers’ receptors. Our own trichromatic vision, for example, can be repre-58

sented by a triangle with the “red”, “green”, and “blue” cones as its vertices. Any59

coloured stimulus can then appear as a point in this space, such that a colour that60

exclusively triggers one of these receptors will fall on that vertex, while a white61

or black (i.e. achromatic) colour that stimulates all cones equally will lie at the62

geometric centre.63

Representing colours in dedicated spaces is convenient for several reasons.64

First, it offers an intuitive way of analysing phenotypes that we cannot measure65
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directly: we can instead estimate how animals with different visual systems “see”66

different colours by representing them in a Cartesian coordinate system, thereby67

producing a receiver-dependent morphospace (Kelber et al., 2003; Renoult et al.,68

2017). Second, it allows for the estimation of how similar or dissimilar colours are69

to a given observer, by estimating the distance between colour points in its colour70

space (Endler & Mielke, 2005; Vorobyev et al., 1998; Vorobyev & Osorio, 1998). Fi-71

nally, we can integrate behavioural and psychophysical data into models in order72

to predict whether an observer could effectively discriminate pairs of colours, or73

if they would instead be perceptually indistinguishable (Chittka, 1992; Vorobyev74

et al., 2001; Vorobyev & Osorio, 1998). This final point is critical to many tests of75

ecological and evolutionary hypotheses pertaining to, for example, the efficacy of76

camouflage (Pessoa et al., 2014; Troscianko et al., 2016), the precision of mimicry77

(O’Hanlon et al., 2014; White et al., 2017), the extent of signal variability among78

populations or species (Delhey & Peters, 2008; Rheindt et al., 2014), the presence79

of polymorphism or dichromatism (Schultz & Fincke, 2013; Whiting et al., 2015),80

or the effect of experimental treatments (Barry et al., 2015). At the heart of these81

diverse inquiries lies the same question: how different are these colours (or more82

precisely, these samples of colours) to the animal viewing them? Note that while83

a further distinction is often drawn between questions dealing with colours that84

are very similar (’discriminability’ near-threshold) and very different (’perceptual85

distance’ supra-threshold; Kemp et al., 2015), accruing empirical evidence sug-86

gests this is largely artificial (Fleishman et al., 2016; van der Kooi et al., 2016). We87

thus refer to both as questions of discriminability hereafter, and while the below88

discussion largely centres on near-threshold scenarios, the presented methods are89

broadly applicable.90

Challenges in estimating the discriminability of colour samples91

The receptor noise-limited model of Vorobyev & Osorio (1998) has proven par-92

ticularly useful for addressing questions of discriminability. The model assumes93
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that that chromatic and achromatic channels operate independently and that the94

limits to colour discrimination are set by noise arising in receptors and during95

subsequent neural processing (Vorobyev et al., 1998; Vorobyev & Osorio, 1998).96

This noise is dependent on the receptor type and abundance on the retina, as97

well as being more generally defined by Weber’s law of just noticeable differences98

k = ∆I/I — that is, the difference threshold k is a constant determined by the99

difference between two stimuli ∆I relative to the intensity of the baseline stimulus100

I. For example, if the difference threshold is k = 0.1, then a stimulus IA will only101

be perceived as different from IB in that channel if it is at least 10% greater than102

IA (the value of k for any species and receptor usually being determined from103

behavioural experiments; Vorobyev et al., 2001). Further, the noise e in receptor i104

is defined by ei = k/
√

N, where N is the relative abundance of receptor i in the105

retina. The more abundant a receptor is in the retina relative to the other receptor106

types, then, the lower the relative noise will be on that channel.107

The Weber fraction thus establishes a unit of Just Noticeable Differences (JND’s),108

and distances in colour space can be weighted by photoreceptor noise and ex-109

pressed in what are essentially units of signal:noise. Values lower than 1 JND110

represent situations where
signal
noise

< 1 and are predicted to be indistinguishable,111

while distances close to but greater than 1 JND lie at the very threshold of colour112

discrimination (conventionally interpreted as the point in which two colours can113

be distinguished 75% of the time when simultaneously presented against a neutral114

background; Vorobyev & Osorio, 1998). Values greatly above this threshold (say,115

above 2 or 4 JND’s) are likely so different that they can be told apart with virtually116

no errors. This provides a useful guide to estimating the similarity of points or117

groups of points in colour space: the greater the distance between colours, the less118

alike they are to a given viewer. It follows that if differences between sample A and119

sample B are, on average, above an established threshold, then we can consider120

the groups different: sexes dichromatic, subspecies distinct, mimetism imperfect,121

and so on. This powerful approach allows for a clear link between variation and122
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classification within a perceptual framework, and has for that reason been used123

in a vast number of studies seeking to answer such questions (Barry et al., 2015;124

Delhey & Peters, 2008; O’Hanlon et al., 2014; Schultz & Fincke, 2013; White et al.,125

2017).126

This framework, however, raises an important methodological issue: how to127

adequately compare samples of colours, and estimate if the average distance be-128

tween them is both statistically and perceptually meaningful (i.e. above-threshold;129

Endler & Mielke, 2005). Two methods are commonly used. In the first, an “aver-130

age colour” for each group is derived by averaging their reflectance spectra before131

modelling the visual system, or by averaging their location in colour space. In132

either case, this mean quantum catch per-receptor per-group — the centroid for133

that group in multivariate space — is then used to calculate the colour distance134

between groups (Fig. 1, bold arrow). There are two issues with this approach.135

First, since colour distances are perceived in a ratio scale, the centroid obtained136

from arithmetic means of receptor coordinates is not an appropriate measure of137

central tendency. Instead, the geometric mean (or the average reflectance of log-138

transformed spectra, as suggested by Cardoso & Gomes, 2015) must be used. This139

can be demonstrated by converting perceptual distances into Cartesian coordi-140

nates (Pike, 2012), in which case the distance between arithmetic means in this141

perceptual space matches the distance between geometric means in the untrans-142

formed scale. Second, since the result is a single value representing the multivari-143

ate distance between group means, there is no associated measure of uncertainty144

or precision that would allow for the statistical testing of differences between sam-145

ples (e.g. Avilés et al., 2011; Burns & Shultz, 2012; Maia et al., 2016).146

The second approach calculates the pairwise distances between all points in147

group A and group B (or between group A and the mean of group B if, for ex-148

ample, group B consists of samples from the background), then using the average149

of these distances to represent the mean distance between groups ( Fig. 1, thin150

arrows; e.g. Barry et al., 2015; Dearborn et al., 2012). In cluster analyses, this is151
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called the “average linkage” between groups (Hair et al., 1998). This is an ap-152

pealing method because it allows the calculation of measures of variation such as153

the standard error of the distances, and thus a t-test or equivalent can be used to154

test if these differences are greater than the threshold value. The average linkage,155

however, is also inadequate because it conflates within- and among-group varia-156

tion. This is because Euclidean distances (and by extension JND’s) are translation-157

invariant: they ignore the position of points in colour space and the direction of the158

distance vector, reflecting only the magnitude of differences between two points.159

Therefore, the average linkage reduces to a measure of spread, rather than one of160

relative position, and will scale with both within- and between-group distances.161

We can demonstrate this by considering the Euclidean distance in one dimension,162

in which the distance between points x1 and x2 is
√
(x1 − x2)2, which reduces to163

the absolute difference |x1 − x2|. The mean absolute difference, in turn, is a mea-164

sure of dispersion, so if we have two N = 2 identical samples A = B = {10, 20},165

the average linkage between these samples would be 5, not zero as expected from166

comparing two identical samples (Fig. 1).167

These methods highlight the fact that appraising hypotheses of discriminabil-168

ity has centred on tests of whether the difference between samples is above a169

perceptual threshold. However, the ready convenience of such threshold value be-170

lies fact that simply comparing mean distances between groups is not sufficient to171

infer, statistically, whether the samples being compared are different. In order to172

answer if two groups are different, one must compare the level of between-group173

variation relative to within-group variation. This is particularly problematic in the174

case of colours that function as signals, such as those used in social interactions175

(e.g. Kemp & Rutowski, 2011). For a trait to function as a signal in this context, an176

observer must be able to tell the difference between signals of "low quality" and177

"high quality". This means, by definition, that individuals within a statistical popu-178

lation should be readily distinguishable — they must be highly variable and colour179

distances between them should be above the threshold of discrimination (Delhey180
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et al., 2017), otherwise no information can be extracted by a viewer when compar-181

ing phenotypes.182

This is readily appreciable by considering a hypothetical species that uses183

colour in mate choice, but is not sexually dichromatic (Fig. 1). In this species184

colour will be highly variable and, on average, differences among individuals of185

the same sex will fall above the threshold of discrimination, but there is no con-186

sistent difference between males and females. Therefore, if a researcher took a187

sample from this species and calculated the average distance between all pairs188

individuals, regardless of sex, these differences should be largely greater than 1189

JND. However, it also follows that if the researcher took separate samples of males190

and females from that species, then all pairwise distances (the average link dis-191

tance) between sexes will be also greater than 1 JND, despite them being sampled192

from the same (statistical) population.193

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

Distances
0 5

0
30

Figure 1: The link distance (i.e. average pairwise distance between groups in a
colour space) conflates among- and within-group variation. Here, two samples
were drawn from the same distribution. Thin arrows indicate the distances be-
tween a random point in the first sample (blue) and all points from the second
sample (red), almost all of which are much greater than the distance between the
geometric means of the two samples (“x”, bold line). The inset shows a histogram
of all pairwise distances among groups, and how their average (dashed line) is
greater than the mean distance (bold line).
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The limitations of current methods for comparing colour space distributions194

The issues raised above highlight the fact that identifying differences between195

groups as lying above or below a perceptual threshold, even with an adequate196

measure of uncertainty, is still not sufficient to tackle questions of discriminabil-197

ity — it is also essential to consider how the sample are distributed relative to198

one another in colour space. The importance of considering the distribution of199

colour points relative to each other when comparing colours has been noted be-200

fore (Eaton, 2005; Endler & Mielke, 2005). Eaton (2005), for example, noted that201

within-group variation would influence his conclusions about the extent of avian202

dichromatism using avian visual models. His solution to the problem was to test203

for intersexual differences in photon catches separately for each receptor. How-204

ever, this approach ignores the multivariate nature of visual model data, and may205

thus inflate Type I errors by failing to account for multiple comparisons and ignor-206

ing correlations among receptor catches (which is critical, since any visual system207

defined by n receptors can be represented in n− 1 dimensions; Kelber et al., 2003).208

Further, unless quantum catches are made relative to their sum, this univariate209

approach also fails to consider that visual models ignore the achromatic dimen-210

sion of colour and the absolute value of receptor-specific quantal catches (Endler211

& Mielke, 2005; Vorobyev & Osorio, 1998). That is, a colour that stimulates a bird’s212

four receptors {u, s, m, l} by {1, 2, 3, 4} should have a distance of zero to a colour213

{10, 20, 30, 40}, but univariate analyses that ignore the multivariate structure of214

colour spaces might conclude otherwise. (Note that this only holds if the Weber215

fraction is constant, such as under the assumption of a bright illuminant; other-216

wise the noise is not constant and is indeed influenced by the irradiant intensity.217

However, even in such case differences would result from signals evoking differ-218

ent noises in the receptor, and thus still making a univariate approach problematic219

Osorio et al., 2004).220

An alternative, multivariate metric suggested by Stoddard & Prum (2008) is221

the volume overlap. In this approach, the volume occupied by a sample of colours222
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is estimated from the convex hull defined by all its points, and the separation be-223

tween is inferred from their overlap.Stoddard & Stevens (2011) used this metric224

to show that a greater overlap in colour volume between cuckoo and host eggs is225

associated with lower rejection in this nest parasite interaction. This approach is226

interesting because it considers the entire distribution of colour points in multi-227

variate space, though there are limits to its interpretation: (i) there is a lower bound228

to group separation (i.e. if samples do not overlap, there is no measure of their229

distance, offering no distinction between non-overlapping samples that are near230

or far from each other in colour space) and (ii) it is unclear how varying degrees of231

volume overlap should be interpreted biologically (e.g. how biologically meaning-232

ful is the difference between 20% or 40% overlap?). It is also particularly sensitive233

to outliers such that, for example, if two samples largely overlap but one or both234

include extreme values that “stretch out” their volumes, the overlap between these235

groups will be underestimated. Likewise, there is no distinction between cases in236

which there is a small overlap between two samples due to close proximity versus237

two samples that are largely separated but either has extreme values that “reach238

into” each others’ volume. These problems arise because the volume as defined239

by a convex hull does not lend itself to a probabilistic interpretation — leading240

to the often unacknowledged assumption that the sampled data reflects the true241

boundaries of the population (however, “loose wrap” hypervolumetric methods242

exist, but to our knowledge these have not been applied to colour studies; Blonder243

et al., 2017). Finally, in its original implementation this method does not consider244

receptor noise or discrimination thresholds (but doing so is straightforward; see245

below).246

The most robust attempt at comparing distributions of colours was proposed247

by Endler & Mielke (2005), who devised a non-parametric rank distance-based248

approach based on the least sum of Euclidean distances, compared through multi-249

response permutation procedures (LSED-MRPP). This approach is powerful due250

to its multivariate nature and the fact that it calculates a measure of effect size251
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based on the relationship of between- and within-group distances. However, this252

approach calculates a single effect size statistic that captures differences between253

samples not only in their means, but also in their dispersion and correlation struc-254

ture (i.e. shape; Endler & Mielke, 2005). In other words, like many other multi-255

variate distance-based methods, this method is sensitive to confounding hetero-256

geneity among samples when attempting to test for differences in location between257

samples (Anderson & Walsh, 2013; Warton et al., 2012). Further, like the volume258

overlap, this approach does not consider discrimination thresholds (though, again,259

it would be straightforward to substitute Euclidean distance for distances in JNDs260

to obtain receptor-noise limited statistics). Despite its strengths, this method has261

seen little adoption in the discipline over the last decade, largely due to limitations262

in implementation and accessibility.263

The shortcomings of the methods described above reflect the fundamental fact264

that the question of discriminability actually represents a test of two hypothe-265

ses that are seldom formally distinguished: (i) that the focal samples are statis-266

tically distinct, and (ii) that the magnitude of their difference is greater than a267

psychophysiological threshold of detection. Most approaches will test one, but268

not both, of these hypotheses through their respective nulls, and more often than269

not with no estimate of variation, measurement error, or uncertainty in their es-270

timates. Below we use a simulation-based approach to quantify these issues by271

testing the efficacy of popular methods in detecting the separation of groups in272

colour space. We then propose a flexible solution that avoids these problems, and273

demonstrate its utility using heuristic examples drawn from the literature.274

Methods275

Simulation procedures276

To test methods for detecting group separation in colour space, we simulated277

data analogous to that obtained from applying an avian visual model to spectral278
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reflectance data. Birds are tetrachromatic (Hart, 2001) and colours will thus be279

represented by the quantum catches in each of its four photoreceptors (though280

the procedure followed here can be applied to visual systems with any number281

of receptors). For each replicate, we simulated two groups of colours (N = 50 per282

group) defined by four variables (usml photoreceptors) sampled from a multivari-283

ate log-normal distribution (given that quantum catches are non-negative and per-284

ceptual distances follow a ratio scale, as defined by the Weber fraction described285

above). We generated samples according to two different scenarios: first, we sim-286

ulated groups with varying degrees of separation (i.e. effect sizes) to evaluate287

the power and Type I error rates of the approaches tested. Second, we simulated288

threshold conditions to evaluate the performance of different approaches in cor-289

rectly classifying whether samples are perceptually distinct.290

For the first set of simulations focused on testing power and error-rates we291

sought to consider a wide range of positions in colour space and intra-group vari-292

ances. We therefore simulated the quantal catch of each photoreceptor i for the293

first sample (group A) by drawing from a log-normal distribution with mean µiA294

seeded from a uniform distribution U (0, 10), and standard deviation proportional295

to the mean σi = aiµiA, with ai ∼ U (0, 0.5) (note that, for these simulations, µ296

and σ refer to the mean and standard deviation of the random variable itself,297

not in log scale). In order to generate two samples with varying degrees of sep-298

aration proportional to the within-group variance, we used a multivariate effect299

size S obtained by calculating a constant ki = S√
n σ̄i, where n is the number of300

photoreceptors (in this case, 4) and σ̄i is the standard deviation of the sample.301

We then drew a second sample (group B) from a log-normal distribution with302

µiB = µiA + ki and standard deviation σi. Thus, our simulations effectively pro-303

duced two samples with Mahalanobis Distance DM ∼ S. We simulated data for304

S = {0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2, 2.5, 3.0} (Fig. 2), each replicated 200 times for305

group sample sizes N = {10, 20, 50, 100}.306
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Figure 2: Example simulated data for the two groups (red, blue) in a tetrahedral
colourspace. Shown here are data with sample size N = 50, and effect size S = 0
(left) and S = 3 (right).

For the second set of simulations we focused on threshold conditions across307

a range of within-sample variation, following a similar procedure as described308

above. Group A was sampled from a log-normal distribution with µiA ∼ U (0, 10),309

while σi was taken from an exponential distribution σi ∼ Exp(λ = 1). To obtain310

a second sample, group B, that was separated from group A with an average ap-311

proximate distance of ∼ 1 JND given a Weber fraction of 0.1 (as often assumed312

for the long-wavelength photoreceptor for birds; Vorobyev et al., 1998), we would313

need to draw from a distribution that differed in geometric mean quantal catch314

by 0.1√
n (as described above for the relationship between S and k). However, due315

to variation in relative receptor densities, the Weber fraction will also vary among316

receptors, even if assuming a constant single receptor noise-to-signal ratio. There-317

fore, to simplify simulations, we drew group B from a log-normal distribution318

with µiB = kiµiA, where ki ∼ U (0.88, 1.12), resulting in a distance between geo-319

metric means (hereafter, “mean distance”) of 1.11 (95% quantiles: 0.35− 2.77) and320

within-group average pairwise distance of 4.46 (95% quantiles: 1.03− 11.10 after321

1000 simulation replicates.322
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After the two groups were simulated, we used the R package pavo (Maia323

et al., 2013) to calculate the colour distances between each pair of points in colour324

space. We used the default function parameters (relative receptor densities for325

{u, s, m, l} = {1, 2, 2, 4} and Weber fraction for l = 0.1). Based on these distances,326

we calculated the average within-group pairwise distance across both groups, as327

well as the average between-group pairwise distance (average link distance). Fur-328

ther, we estimated the geometric mean for both groups and the distance between329

them.330

We then used four procedures to statistically test for a difference between the331

two groups. First, we used a distance-based PERMANOVA (hereafter “distance332

PERMANOVA”) using the adonis function in the R package vegan (Oksanen et al.,333

2007). This non-parametric approach uses distances in JND to directly calculate a334

pseudo-F statistics based on the ratio of among:within distances between groups,335

and obtains a null distribution by randomizing distances between observations336

(Anderson, 2005). We recorded if the analysis was significant using 999 permuta-337

tions for the null distribution, as well as the R2 (the proportion of dispersion ex-338

plained by the grouping factor) as an estimate of the effect size of the test. Second,339

we obtained XYZ Cartesian coordinates based on perceptually-scaled distances340

Delhey & Peters (2008); Pike (2012), and conducted a MANOVA on these variables,341

again recording if the analysis was significant (hereafter “Cartesian MANOVA”).342

For simplicity, we used a sum of squares and cross-products matrix approach and343

calculated Pillai’s trace and its associated P-value, but see discussion for exten-344

sions of this approach that allow for more complex parametrizations and relaxed345

assumptions. Third, we calculated the volume overlap between the two groups346

of points (relative to their combined volumes) in a tetrahedral colour space de-347

fined by the receptors’ relative quantum catches (and thus not considering recep-348

tor noise; Stoddard & Prum, 2008). Finally, we repeated the volume overlap for349

the XYZ Cartesian coordinates based on perceptual distances, thereby generating350

a colour volume overlap that also accounts for receptor noise.351
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Simulation results352

Power and error rates353

Both the distance PERMANOVA and the Cartesian MANOVA showed appropriate354

Type-I error rates, with about 5% of our simulations producing significant results355

when groups were sampled from the same population (S = 0), even when sample356

sizes are small (Fig. 3). As expected, the power to detect small effects steadily357

increased as a function of sample size, with the distance PERMANOVA being358

slightly more conservative than the Cartesian MANOVA across both sample and359

effect sizes (Fig. 3,4).360
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Figure 3: Power and Type I error rate of the distance PERMANOVA (green) and
Cartesian MANOVA (purple). Panels show the proportion of simulations yielding
significant results for each approach for simulations with varying sample sizes
and effect sizes.

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


As a result, the two approaches showed some disagreement, with between361

10− 15% of the simulations being significant only in one of the two approaches362

(Fig.4). This disagreement was not random, being concentrated at smaller effect363

sizes with increasing sample sizes, and also with the Cartesian MANOVA being364

more likely to consider a comparison significant when it was not significant under365

the distance PERMANOVA than vice-versa, at an approximately constant rate366

regardless of the sample size (Fig.4).367
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Figure 4: The disagreement between multivariate statistical approaches when test-
ing for separation between samples in colour space.

Focusing on the N = 50 simulations, our results show that about half (46.5%) of368

our simulations produced samples with mean difference greater than 1JND (Fig.369

5). In these simulations, mean distance was positively associated with the effect370

size, and the threshold of significance using the distance PERMANOVA fell ap-371

proximately at the 1JND mark (Fig. 5A; equivalent results are observed with the372

Cartesian MANOVA, not shown). Still, even around the 1JND mark significance373

is variable, showing that large within-group variation can lead to non-significant374

differences between groups despite among-group differences being, on average,375

above the perceptual threshold. Colour volume overlap also showed a (negative)376
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association with the effect size, but despite being both an estimate of relative po-377

sition and overlap between groups, no specific threshold for significance is iden-378

tifiable (for example, both significant and non-significant results are observed for379

values of overlap between 20 and 60%; Figure 5B).380
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Figure 5: The association between effect size and (A) mean distance and (B) colour
volume overlap. Significant distance PERMANOVA results are in blue, whereas
non-significant results are in red. Dotted line indicates the threshold of 1JND.

Threshold scenarios381

Our second set of simulations evaluated scenarios in which among-group differ-382

ences were near the threshold of detectability (ca. 1 JND) across a wide range of383

within-group variation. Since both the distance PERMANOVA and the Cartesian384

MANOVA produced similar results, we focus on the former due to the conve-385

nience of the resulting R2 statistic in approximating the degree of among-group386

separation. Our simulations generated a wide range of outcomes as desired, with387

non-significant and significant tests both above and below the perceptual thresh-388

old of 1 JND (Fig. 6). Thus, in contrast with our power simulations above (Fig 5),389

the significance threshold did not match the perceptual threshold in these simula-390

tions. Thus, as in the hypothetical example discussed in the introduction, some of391
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our simulated groups were statistically inseparable despite having mean distances392

above the perceptual threshold (Fig. 6, dark red points). Likewise, some of our393

simulations produced scenarios in which the samples were statistically different,394

but that difference was below the perceptual threshold and therefore biologically395

undetectable to this observer (Fig. 6, dark blue points). These results highlight the396

importance of considering both among-group separation and perceptual thresh-397

olds when testing the hypothesis that samples are perceptually discriminable.398

Figure 6A shows that, intuitively, tests were significant when within-group dif-399

ferences were proportionally small relative to among-group differences. However,400

when measuring within-group difference using the link distance (i.e. the average401

pairwise distance between all pairs of colours) nearly all simulations—including402

most significant results—fell below the 1:1 line, indicating that the link distance is403

a poor approximation of the variance-covariance structure of the data, overestimat-404

ing it by about 0.5JND (grey line in Fig. 6A: mean distance = mean within-group405

distance−0.05). We can further see that significant results can be obtained for406

fairly low levels of among-group separation, with R2 as small as 3 or 4% (Fig. 6B,407

horizontal line at 3%).408
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Figure 6: Results from threshold simulation. Red and blue denote non-significant
and significant PERMANOVA tests, respectively, and light colours denote when
that approach would yield the same inference as comparing mean distances to
a threshold of 1JND. Thus, dark blue points indicate a significant statistical test
that does not reach the threshold of discriminability of 1JND, whereas dark blue
points indicate a non-significant statistical test that nonetheless has a mean dis-
tance greater than 1JND.

Though there is a negative association between R2 and the overlap between409

colour volumes, our results indicate a low overall consistency between these two410

approaches: for any given level of volume overlap, all possible combinations of411

results are observed — even when there overlap between samples is zero (Fig.412

6C, E-F). In other words, even complete separation in colour volumes can re-413

sult in non-significant, below-perceptual threshold cases, since samples can be414

in close proximity in perceptual space (Fig. 6E-F) and have high within-group415

variance. Likewise, samples can have high overlap but still be statistically and416

perceptually distinguishable, because their overall distributions are nonetheless417

discernible in multivariate space. Further, there is no association between volume418

overlap and mean distance between groups (Fig. 6E,F). Importantly, these results419

were unaltered by calculating volumes in perceptual colour space, since these are420

still strongly and positively correlated with their non-perceptual counterparts (Fig.421
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6D,F).422

A flexible method for estimating statistical and perceptual separation423

As described conceptually and shown through simulations above, testing for dis-424

criminability between two samples of colours actually requires testing two distinct425

hypotheses: (i) are samples statistically distinct, and (ii) are samples perceptually426

distinct. We therefore propose a two-step approach to answering the question of427

discriminability between groups, which explicitly formalizes these hypotheses.428

For the first question — are the samples of colours statistically separate in colour429

space? — both a PERMANOVA using perceptual colour distances (Anderson,430

2005; Cornuault et al., 2015), or a MANOVA using perceptually-calibrated Carte-431

sian coordinates (Delhey & Peters, 2008; Pike, 2012) are well suited to the task432

(demonstrated above). Both approaches exclude achromatic variation, properly433

account for the multivariate nature of visual model data, and perform well when434

facing heterogeneity and outliers. There are also minimal difference in results435

between the two (Fig. 3,4), so the decision between them may be informed by436

convenience and the structure of the data at hand. The conceptual simplicity and437

non-parametric robustness of the PERMANOVA has seen it widely adopted in438

community ecology and genomics, and it has been shown to be the least sensitive439

distance-based non-parametric approach to within-group dispersion and correla-440

tion structure heterogeneity (Anderson & Walsh 2013; though see Warton et al.441

2012 for broader limitations of distance-based methods, which are relatively com-442

mon among colour space data; Endler & Mielke 2005).443

Once the separation of samples is established statistically, a second question444

must be answered: is this separation perceptually discriminable? Statistics calculated445

as part of the first question will not generally be applicable here, since measures of446

effect size desirably account for the ratio of among:within variation. We therefore447

suggest this be tested independently by estimating the distance in colour space448
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between group geometric means rather than by calculating the average distance of449

all pairwise comparisons or volume-overlap based metrics, which fail to accurately450

estimate group separation (Fig. 6). However, this approach still has the limitation451

of generating a single measure of distance for each pair of groups being com-452

pared, with no measure of uncertainty. We thus suggest a bootstrap procedure453

in which new samples for each group (of the same size as the original groups)454

are produced through a re-sampling procedure (with replacement) of individuals455

from that group, from which geometric means and the distance between them are456

calculated. This procedure generates a distribution of mean distances, from which457

the confidence interval for the observed distance can be estimated. If the groups458

being compared are statistically different and this bootstrapped confidence inter-459

val does not include the perceptual threshold of adequate biological significance,460

one can conclude that the samples being compared are distinct and estimate their461

degree of dissimilarity.462

Empirical examples463

We present two brief examples of this two-step approach to the analysis of visual464

model data below, centred on questions of near-threshold discrimination drawn465

from the literature. As above, we used the R package pavo for visual modelling,466

and the adonis function in the R package vegan for PERMANOVAs.467

Sexual dichromatism in the leaf-nosed lizard Ceratophora tennentii468

Visually signalling animals often use distinct body parts for different purposes,469

such as social signalling to mates, or warning predators of available defences470

(Barry et al., 2015; Grether et al., 2004; Johnstone, 1995). The nature of intraspecific471

variation in colour traits can thus act as a guide to their putative function, since472

selection may act differentially on signals used in different contexts. Aposematic473

signals, for example, may be relatively invariable within species, by virtue of their474
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reliance on the formation of learning rules by predators (Endler, 1992; Guilford,475

1990). Traits subject to strong sexual selection in one of the sexes, in contrast, are476

often characterised by dimorphism, in which one sex (typically males) expresses477

a conspicuous colour pattern that is greatly reduced or absent in the other (Bell &478

Zamudio, 2012; Kemp & Rutowski, 2011).479

Dragon lizards (Agamidae) are well known for variable colouration that is480

used in both social and anti-predator contexts (Johnston et al., 2013; Somaweera &481

Somaweera, 2009). The leaf-nosed lizard Ceratophora tennentii has multiple discrete482

colour patches, with apparent sex differences between body parts (Fig. 7). Here we483

draw on the data of Whiting et al. (2015), who recorded the spectral reflectance of484

29 male and 27 female C. tennentii from four body regions (throat, labials, mouth-485

roof, and tongue). We used a tetrachromatic model of agamid vision to test for486

sexual dichromatism among lizard body regions to test which colour patches, if487

any, are sexually dimorphic from the perspective of conspecifics.488

Following standard calculations for the log-linear receptor-noise model, we489

estimated cone quantum catch as the log-transformed integrated product of stim-490

ulus reflectance, ambient illumination, and photoreceptor absorbance across the491

300-700 nm waveband (Vorobyev et al., 1998). We used the spectral sensitivity of492

Ctenophorus ornatus (λmax = 360, 440, 493, 571 nm) as modelled according to a vi-493

tamin A1 template (Barbour et al., 2002; Govardovskii et al., 2000). We assumed494

a relative photoreceptor density of 1:1:3.5:6, and a photoreceptor signal-to-noise495

ratio that yielded a Weber fraction of 0.1 for the long-wavelength cone (Fleishman496

et al., 2011; Vorobyev & Osorio, 1998). We tested each body region separately using497

PERMANOVAs with 999 permutations.498

We found a statistical difference between male and female throats (PERMANOVA:499

F1,58 = 14.84, P < 0.01) and labials (PERMANOVA: F1,57 = 13.96, P < 0.01) as500

modelled in agamid colourspace (Fig. 7a, b), but not for tongues (PERMANOVA:501

F1,58 = 1.63, P = 0.22) or mouth-roofs (PERMANOVA: F1,55 = 0.52, P = 0.50;502

Fig. 7C,D). However, subsequent bootstrap-based analysis of group separation503
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Figure 7: The mean (± SD) spectral reflectance of female (red) and male (black)
(A) labial, (B) throat, (C) mouth-roof, and (D) tongue (left panels), and their
colourspace distribution according in a tetrachromatic model of agamid vision
(middle panels). Inset images indicate approximate sampling regions. The boot-
strapped 95 % C.I’s for mean distances between groups in colour space (right
panels). Partly reproduced, with permission, from Whiting et al. 2015.

suggested that intersexual differences in labial colour are likely imperceptible to504

conspecifics, and throat colour differences only barely so (Fig. 7; note that we505

present mean JND differences between all body parts for illustrative purposes,506

and it would generally be unnecessary to pursue this step for tests that were non-507

significant in the first step). Our results therefore suggest the absence of dichroma-508

tism in most measured body regions from the perspective of conspecifics despite509
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statistically significant differences in their colours, with only a subtle (predicted)510

perceivable difference on the labials of males and females. Thus these results do511

not implicate sexual selection as a strong driver of intersexual colour differences512

in these body regions of C. ornatus.513

Floral mimicry in the spiny spider Gasteracantha fornicata514

Biases in sensory perception offer opportunities for the evolution of deception515

(Endler & Basolo, 1998). This is often showcased in predator-prey interactions,516

wherein predators induce maladaptive responses in prey by using signals that517

exploit innate preferences for certain visual cues, or learned preferences for oth-518

erwise rewarding stimuli (e.g. Heiling et al., 2003; OHanlon et al., 2014). Many519

sit-and-wait predators, such as orb-web spiders, use conspicuous colouration to520

visually lure prey (reviewed in White & Kemp, 2015). While the attractant nature521

of these signals is well documented (e.g. Chuang et al., 2008; Tso et al., 2007, 2002),522

the ultimate basis of their effectiveness — that is, the nature of the sensory or523

perceptual pathways being exploited in prey — remains unclear. A long-standing524

hypothesis is that lures have evolved to mimic flowers (Chiao et al., 2009; Tso525

et al., 2004), in which case theory predicts that the signals of mimics (lures) and526

sympatric models (flowers) should be largely indistinguishable to their shared re-527

ceivers (Christy, 1995; Endler & Basolo, 1998).528

We tested this hypothesis using Gasteracantha fornicata, a conspicuously coloured529

orb-web spider found in tropical and sub-tropical forests of Australia. Females of530

this species are stably polymorphic and exhibit either ’white’ or ’yellow’ (UV-)531

bands against a black outline (Fig. 8 inset), which serve to attract insect prey532

(Hauber, 2002; Kemp et al., 2013). We used a subset of data from several recent533

studies Dalrymple et al. (2015); White et al. (2017); White & Kemp (2016), which534

included reflectance spectra from the coloured bands of 33 yellow and 29 white G.535

fornicata, and the flowers of 36 sympatric angiosperm species. We tested whether536

spiders were discretely polymorphic from the perspective of a representative taxon537
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Figure 8: The mean (± SD) spectral reflectance of both morphs of the spiny
spider Gasteracantha fornicata (top), and the location of spectra in a trichromatic
colourspace representing Honeybee (Apis meliffera vision (middle), where yellow
and grey points denote ’yellow’ and ’white’ spider morphs, respectively, and green
points are sympatric flowers. The bootstrapped 95 % C.I. for mean distances be-
tween groups in honeybee colour space (bottom). Dotted lines indicate thresholds
of 1JND (black) and 0.3JND (grey).

of insect prey (as given their conspicuous differences to human viewers; Fig. 8),538

and whether spiders were indistinguishable from sympatric flowers, as predicted539

25

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


by a floral-mimicry hypothesis (Christy, 1995; White & Kemp, 2015).540

To estimate discriminability according to the receptor-noise limited model, we541

used the visual phenotype of the honeybee Apis melifera, with λmax = 340, 440, 536542

nm based on a vitamin A1 template (Govardovskii et al., 2000). We estimated543

photoreceptor noise using a Weber fraction for the long wavelength receptor of544

0.13, and a ratio of 1:0.5:4.4 for the relative density of "ultraviolet", "blue", and545

"green" photoreceptors. To test our hypotheses, we specified a PERMANOVA546

with a priori two statistical contrasts: in the first, we considered yellow-versus-547

white spider morphs (to test for polymorphism), and in the second, each morph-548

versus-flowers (to test for mimicry).549

We found spider morphs to be statistically distinct from one another in hon-550

eybee colour space (PERMANOVA: F1,60 = 32.13, P < 0.01), but only the yellow551

morph was statistically different from sympatric flowers (PERMANOVA: white vs.552

flowers: F1,134 = 1.61, P = 0.21; yellow vs. flowers: F1,134 = 9.30, P < 0.01). Our553

bootstrapped group distances predict that the statistically significant differences554

are also perceptually distinct to a honeybee observer (Fig. 8). At a glance, these re-555

sults offer relatively weak support for the hypotheses of polymorphism and floral556

mimicry. As in all such analyses it is of course necessary to consider the assump-557

tions of the model used. This includes consideration of the relevant “threshold”558

value for focal species, which—even when based on an accurately parametrised559

model (e.g. using precise Weber fractions)—may not strongly predict an animal’s560

realised abilities (Dyer, 2012; Dyer & Neumeyer, 2005). Honeybees, for example,561

are capable of discriminating between simultaneously presented colour-stimuli562

that differ by only 0.3 JND’s under laboratory conditions (Dyer & Neumeyer,563

2005). In this case, our results would be largely unaffected, because the statis-564

tical test for the difference between white morphs and flowers is non-significant,565

and the confidence interval of the white-vs-flower comparison also encompasses566

the laboratory-ideal value of 0.3 JND’s. Furthr interpreting the biological impli-567

cations of such results demands a nuanced consideration of the assumptions of568
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the underlying model, as well as our broader understanding of the ecology of the569

focal question. For example, future analyses may also consider the perspectives of570

different viewers, or the distance estimates of alternate visual models (e.g. Chittka,571

1992), all of which may be incorporated in our suggested framework.572

Discussion573

Visual models offer a powerful tool for quantifying the subjective perception of574

colour which—as the ultimate canvas for colour-signal evolution—affords us di-575

rect insight into a breadth of biological phenomena. It is therefore essential that576

statistical considerations of biological hypotheses take into account both natural577

variation in the samples being compared as well as the limits to perception that578

observers experience. In this study, we highlight the importance of partitioning579

these two facets. We show that contemporary methods typically consider only one580

of these aspects, with undesirable consequences, and propose a flexible, robust al-581

ternative that explicitly addresses both.582

The use of relatively simpler visual models that do not consider the role of583

receptor noise when defining colour spaces (and colour differences) is often jus-584

tified on the basis of relaxing assumptions about the role noise plays in colour585

perception; a phenomenon that requires intricate empirical work to estimate these586

parameters with precision and identify the level of naturally occurring variation587

(Kelber et al., 2017; Olsson et al., 2015; Vorobyev & Osorio, 1998). However, we588

contend that these simplifying models often make very strong implicit assump-589

tions, which are not necessarily supported by the empirical evidence: namely590

that all cones contribute equally to colour perception, that colour discrimination591

is unequivocal (i.e. there is no threshold of detectability) and that colour differ-592

ences follow an interval scale (as opposed to a ratio scale). Thus, we argue that593

detectability relative to a threshold of detection is essential for tests of discrim-594

inability.595
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Our simulations show that both the distance PERMANOVA and the Carte-596

sian MANOVA perform similarly well in statistically differentiating colours in597

a perceptual space. As expected, the distribution-free non-parametric approach598

showed slightly inferior power as a consequence of the relaxed assumptions about599

underlying distributions. Both approaches are very flexible and can accommo-600

date complex models, such as multiple predictors, interactions and hierarchical601

designs. Several studies have pointed out that distance-based methods perform602

poorly when the experimental design is unbalanced or when there are mean-603

variance relationships or other sources of heteroscedasticity (Anderson & Walsh,604

2013; Warton et al., 2012). However, this might still be the most robust option605

for high-dimensional visual systems (e.g. Arikawa et al., 1987; Cronin & Marshall,606

1989), by reducing the number of variables to a distance alone.607

Multivariate generalizations of generalized linear models might offer a flexible608

alternative, though they are still subject to assumptions of multivariate normal-609

ity and equality of covariance matrices (though the latter can be relaxed when610

the largest sample size group has greater absolute values in its covariance ma-611

trix; Delhey & Peters, 2008; Tabachnick et al., 2001). These models can also be612

easily extended to include various error and model structures, such as hierarchi-613

cal and phylogenetic models (Hadfield & Nakagawa, 2010; O’Hara & Kotze, 2010;614

Warton et al., 2012), and multi-response models can also relax the assumptions615

of heteroscedasticity by estimating the variance-covariance of response variables616

(Hadfield, 2010). When using a Bayesian approach, the mean distance bootstrap617

can also be substituted by estimating distance credible intervals from the pos-618

terior distribution of perceptually-corrected Cartesian coordinate estimated cen-619

troids, though this will also be influenced by the priors adopted. This approach620

also allows for the straightforward inclusion of luminance (achromatic) differ-621

ences as another axis of variation in multivariate analyses (Pike, 2012), and can622

be parametrized to reflect specific aspects of colour perception and discriminabil-623

ity. For example, when comparing males and females of a species of bird with624
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multiple coloured patches, we may be interested in whether there is total plumage625

differences between the sexes or, on the other hand, if there is at least a plumage626

patch that distinguishes the sexes. By parametrizing a hierarchical model with627

body patch as a random or fixed effect, one can model precisely what is meant628

when asking if the species is dichromatic.629

Delhey & Peters (2008) have recently advocated a similar approach to answer630

the first question in our two-step approach, by suggesting the application of a631

Principal Component Analysis (PCA) to the perceptually-corrected Cartesian co-632

ordinates as an intermediate step before a MANOVA. However, if all the princi-633

pal components are used in the multivariate analysis, results will be numerically634

identical to simply using the XYZ coordinates directly. Further, Since it is often635

tempting to discard PC axes of low variance in downstream analyses, which could636

be problematic given the roll that residual variance may play in among-group dif-637

ferentiation, we recommend using the Cartesian coordinates directly. Still, using638

PCA’s that preserve colour distances may be particularly useful when investigat-639

ing differences in the orientation of axis of variation, and may be more readily640

interpretable when tested against continuous variables (Delhey & Peters, 2008).641

Of course while we have focused on tests of differences in the multivariate lo-642

cation of colours in colour space, we recognise that other characteristics — such643

as differences in dispersion and correlation structure — might themselves be of644

biological interest.645

These approaches will only test the degree of separation between groups in646

colour space, and so it is still necessary to provide an estimate of the magnitude647

of that separation. The bootstrap approach we present here provides a simple648

solution, by adding an easy to interpret measure of accuracy to the mean distance649

estimate. It is essential, however, to parametrize the underlying visual model650

appropriately. The Weber fraction chosen for the receptor noise will strongly affect651

perceptual distances (Bitton et al., 2017) since it directly scales with the JND unit.652

Further, even when adequate values of the Weber fraction are used, it is important653
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to realize that the unit JND value usually reflects psychophysiological limits under654

extremely controlled conditions (Kelber et al., 2003; Olsson et al., 2015), and that a655

more conservative estimate of two, four or even greater may be more appropriate656

for ecological and evolutionary questions (Osorio et al., 2004; Schaefer et al., 2007).657

Our results show that insight into the biology of colour and its role in commu-658

nication is best achieved by disentangling the assumptions implicit in questions of659

discriminability. By rendering these assumptions explicit, our two-step approach660

offers a simple, flexible procedure for examining the statistical presence and per-661

ceptual magnitude of differences between colour samples. We expect it will bring662

exciting new perspectives on the role of colour in inta- and interspecific interac-663

tions, and provide an efficient analytical framework for the study of colour in664

nature.665

Implementation666

All analyses conducted here can be found in the project’s GitHub page, and will667

be implemented in a release of the R package pavo to accompany the publication668

of this manuscript. For now, they can be found in the GitHub page, under the /R/669

folder. The function bootcentroiddS conducts the boostrap for the calculation of670

confidence intervals for mean distances, and the function jnd2xyz converts chro-671

matic distances in JNDs to perceptually-corrected Cartesian coordinates. These672

functions require the bleeding edge version of pavo to work, which can be found673

on GitHub: https://github.com/rmaia/pavo/.674
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P. & ThÃl’baud, C. (2015) Morphological and plumage colour variation in the735

rÃl’union grey white-eye (aves: Zosterops borbonicus): assessing the role of736

selection. Biological Journal of the Linnean Society, 114(2), 459–473.737

Cronin, T.W. & Marshall, N.J. (1989) A retina with at least ten spectral types of738

photoreceptors in a mantis shrimp. Nature, 339(6220), 137–140.739

Cuthill, I.C., Allen, W.L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M.E.,740

Hill, G.E., Jablonski, N.G., Jiggins, C.D., Kelber, A., Mappes, J., Marshall, J.,741

Merrill, R., Osorio, D., Prum, R., Roberts, N.W., Roulin, A., Rowland, H.M.,742

33

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


Sherratt, T.N., Skelhorn, J., Speed, M.P., Stevens, M., Stoddard, M.C., Stuart-Fox,743

D., Talas, L., Tibbetts, E. & Caro, T. (2017) The biology of color. Science, 357(6350).744

Dalrymple, R.L., Kemp, D.J., Flores-Moreno, H., Laffan, S.W., White, T.E., Hem-745

mings, F.A., Tindall, M.L. & Moles, A.T. (2015) Birds, butterflies and flowers in746

the tropics are not more colourful than those at higher latitudes. Global Ecology747

and Biogeography, 24(12), 1424–1432.748

Dearborn, D.C., Hanley, D., Ballantine, K., Cullum, J. & Reeder, D.M. (2012)749

Eggshell colour is more strongly affected by maternal identity than by dietary750

antioxidants in a captive poultry system. Functional Ecology, 26(4), 912–920.751

Delhey, K. & Peters, A. (2008) Quantifying variability of avian colours: are sig-752

nalling traits more variable? PLoS One, 3(2), e1689.753

Delhey, K., Szecsenyi, B., Nakagawa, S. & Peters, A. (2017) Conspicuous plumage754

colours are highly variable. Proceedings of the Royal Society of London B: Biological755

Sciences, 284(1847).756

Dyer, A.G. (2012) The mysterious cognitive abilities of bees: why models of visual757

processing need to consider experience and individual differences in animal758

performance. Journal of Experimental Biology, 215(3), 387–395.759

Dyer, A.G. & Neumeyer, C. (2005) Simultaneous and successive colour discrimina-760

tion in the honeybee (apis mellifera). Journal of Comparative Physiology A, 191(6),761

547–557.762

Eaton, M.D. (2005) Human vision fails to distinguish widespread sexual dichroma-763

tism among sexually “monochromatic” birds. Proceedings of the National Academy764

of Sciences of the United States of America, 102(31), 10942–10946.765

Endler, J.A. & Mielke, P.W. (2005) Comparing entire colour patterns as birds see766

them. Biological Journal of the Linnean Society, 86(4), 405–431.767

34

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


Endler, J.A. (1992) Signals, signal conditions, and the direction of evolution. Amer-768

ican Naturalist, 139, S125–S153.769

Endler, J.A. & Basolo, A.L. (1998) Sensory ecology, receiver biases and sexual se-770

lection. Trends in Ecology & Evolution, 13(10), 415–420.771

Fleishman, L.J., Loew, E.R. & Whiting, M.J. (2011) High sensitivity to short wave-772

lengths in a lizard and implications for understanding the evolution of visual773

systems in lizards. Proceedings of the Royal Society of London B: Biological Sciences,774

278(1720), 2891–2899.775

Fleishman, L.J., Perez, C.W., Yeo, A.I., Cummings, K.J., Dick, S. & Almonte, E.776

(2016) Perceptual distance between colored stimuli in the lizard anolis sagrei:777

comparing visual system models to empirical results. Behavioral ecology and so-778

ciobiology, 70(4), 541–555.779

Garcia, J.E., Greentree, A.D., Shrestha, M., Dorin, A. & Dyer, A.G. (2014) Flower780

colours through the lens: Quantitative measurement with visible and ultraviolet781

digital photography. PloS one, 9(5), e96646.782

Govardovskii, V.I., Fyhrquist, N., Reuter, T., Kuzmin, D.G. & Donner, K. (2000) In783

search of the visual pigment template. Visual neuroscience, 17(04), 509–528.784

Grether, G.F., Kolluru, G.R. & Nersissian, K. (2004) Individual colour patches as785

multicomponent signals. Biological Reviews, 79(03), 583–610.786

Guilford, T. (1990) The evolution of aposematism. Insect defenses: adaptive mecha-787

nisms and strategies of prey and predators, 23–61.788

Hadfield, J.D. & Nakagawa, S. (2010) General quantitative genetic methods for789

comparative biology: phylogenies, taxonomies and multi-trait models for con-790

tinuous and categorical characters. Journal of Evolutionary Biology, 23(3), 494–508.791

Hadfield, J. (2010) Mcmc methods for multi-response generalized linear mixed792

35

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


models: The mcmcglmm r package. Journal of Statistical Software, Articles, 33(2),793

1–22, doi:10.18637/jss.v033.i02, URL https://www.jstatsoft.org/v033/i02.794

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L. et al. (1998) Multi-795

variate data analysis, vol. 5. Prentice hall Upper Saddle River, NJ.796

Hart, N.S. (2001) The visual ecology of avian photoreceptors. Progress in retinal and797

eye research, 20(5), 675–703.798

Hauber, M.E. (2002) Conspicuous colouration attracts prey to a stationary preda-799

tor. Ecological Entomology, 27(6), 686–691.800

Heiling, A.M., Herberstein, M.E. & Chittka, L. (2003) Pollinator attraction: crab-801

spiders manipulate flower signals. Nature, 421(6921), 334–334.802

Johnsen, S. (2016) How to measure color using spectrometers and calibrated pho-803

tographs. Journal of Experimental Biology, 219(6), 772–778.804

Johnston, G., Lee, M. & Surasinghe, T. (2013) Morphology and allometry suggest805

multiple origins of rostral appendages in sri lankan agamid lizards. Journal of806

Zoology, 289(1), 1–9.807

Johnstone, R.A. (1995) Honest advertisement of multiple qualities using multiple808

signals. Journal of theoretical Biology, 177(1), 87–94.809

Kelber, A., Vorobyev, M. & Osorio, D. (2003) Animal colour visionâĂŞbehavioural810
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