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Ninety-nine	independent	genetic	loci	influencing	general	cognitive	function	include	genes	

associated	with	brain	health	and	structure	(N	=	280,360)	
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General	cognitive	function	is	a	prominent	human	trait	associated	with	many	important	life	

outcomes1,2,	including	longevity3.	The	substantial	heritability	of	general	cognitive	function	is	

known	to	be	polygenic,	but	it	has	had	little	explication	in	terms	of	the	contributing	genetic	

variants4,5,6.	Here,	we	combined	cognitive	and	genetic	data	from	the	CHARGE	and	COGENT	

consortia,	and	UK	Biobank	(total	N=280,360;	age	range	=	16	to	102).	We	found	9,714	genome-wide	

significant	SNPs	(P<5	x	10-8)	in	99	independent	loci.	Most	showed	clear	evidence	of	functional	

importance.	Among	many	novel	genes	associated	with	general	cognitive	function	were	SGCZ,	

ATXN1,	MAPT,	AUTS2,	and	P2RY6.	Within	the	novel	genetic	loci	were	variants	associated	with	

neurodegenerative	disorders,	neurodevelopmental	disorders,	physical	and	psychiatric	illnesses,	

brain	structure,	and	BMI.	Gene-based	analyses	found	536	genes	significantly	associated	with	

general	cognitive	function;	many	were	highly	expressed	in	the	brain,	and	associated	with	

neurogenesis	and	dendrite	gene	sets.	Genetic	association	results	predicted	up	to	4%	of	general	

cognitive	function	variance	in	independent	samples.	There	was	significant	genetic	overlap	

between	general	cognitive	function	and	information	processing	speed,	as	well	as	many	health	

variables	including	longevity.	

	

Since	its	discovery	in	19047,	hundreds	of	studies	have	replicated	the	finding	that	around	40%	of	the	

variance	in	people’s	test	scores	on	a	diverse	battery	of	cognitive	tests	can	be	accounted	for	by	a	

single	general	factor8.	General	cognitive	function	is	peerless	among	human	psychological	traits	in	

terms	of	its	empirical	support	and	importance	for	life	outcomes1,2.	Individual	differences	in	general	

cognitive	function	show	phenotypic	and	genetic	stability	across	most	of	the	life	course9-11.	Twin	

studies	find	that	general	cognitive	function	has	a	heritability	of	more	than	50%	from	adolescence	

through	adulthood	to	older	age4,12,13.	SNP-based	estimates	of	heritability	for	general	cognitive	

function	are	about	20-30%5.	To	date,	little	of	this	substantial	heritability	has	been	explained;	only	a	

few	relevant	genetic	loci	have	been	discovered	(Table	1	and	Fig.	1).	Like	other	highly	polygenic	traits,	
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a	limitation	on	uncovering	relevant	genetic	loci	is	sample	size14;	to	date,	there	have	been	fewer	than	

100,000	individuals	in	studies	of	general	cognitive	function5,6.	

	

General	cognitive	function,	unlike	height	for	example,	is	not	measured	the	same	way	in	all	samples.	

Here,	this	was	mitigated	by	applying	a	consistent	method	of	extracting	a	general	cognitive	function	

component	from	cognitive	test	data	in	the	cohorts	of	the	CHARGE	and	COGENT	consortia;	all	

individuals	were	of	European	ancestry	(Supplementary	Materials).	Cohorts’	participants	were	

required	to	have	scores	from	at	least	three	cognitive	tests,	each	of	which	tested	a	different	cognitive	

domain.	Each	cohort	applied	the	same	data	reduction	technique	(principal	component	analysis)	to	

extract	a	general	cognitive	component.	Scores	from	the	first	unrotated	principal	component	were	

used	as	the	general	cognitive	function	phenotype.	Using	a	general	cognitive	function	phenotype	in	a	

genetically	informative	design	is	supported	by	the	observation	that	the	well-established	positive	

manifold	of	cognitive	tests	is	best	presented	by	a	highly	heritable	higher-order	latent	general	

cognitive	function	phenotype	that	mediates	genetic	and	environmental	covariances	among	cognitive	

tests4,8,13.	The	psychometric	characteristics	of	the	general	cognitive	component	from	each	cohort	in	

the	CHARGE	consortium	are	shown	in	Supplementary	Materials.	In	order	to	address	the	fact	that	

different	cohorts	had	applied	different	cognitive	tests,	we	previously	showed	that	two	general	

cognitive	function	components	extracted	from	different	sets	of	cognitive	tests	on	the	same	

participants	correlate	highly5.	The	cognitive	test	from	the	large	UK	Biobank	sample	was	the	so-called	

‘fluid’	test,	a	13-item	test	of	verbal-numerical	reasoning,	which	has	a	high	genetic	correlation	with	

general	cognitive	function15.	With	the	CHARGE	and	COGENT	samples’	general	cognitive	function	

scores	and	UK	Biobank’s	verbal-numerical	reasoning	scores	(in	two	samples:	assessment	centre-

tested,	and	online-tested),	there	were	280,360	participants	included	in	the	present	report’s	genome-

wide	association	study	(GWAS)	analysis.	We	performed	two	post-GWAS	meta-analyses	separately:	

first,	on	the	CHARGE	and	COGENT	cohorts;	and,	second,	on	UK	Biobank’s	two	samples.	Prior	to	

running	the	subsequent	meta-analysis	of	CHARGE-COGENT	with	UK	Biobank,	the	genetic	correlation,	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/176511doi: bioRxiv preprint 

https://doi.org/10.1101/176511


	 13	

calculated	using	linkage	disequilibrium	score	(LDSC)	regression,	was	estimated	at	0.82	(SE=0.02),	

indicating	very	substantial	overlap	between	the	genetic	variants	influencing	general	cognitive	

function	in	these	two	groups.	We	performed	an	inverse-variance	weighted	meta-analysis	of	

CHARGE-COGENT	and	UK	Biobank.	

	

Genome-wide	results	for	general	cognitive	function	showed	9,714	significant	(P	<	5	×	10-8)	SNP	

associations,	and	17,563	at	a	suggestive	level	(1	×	10-5	>	P	>	5	×	10-8);	see	Fig.	2a	and	Supplementary	

Tables	3	and	4.	There	were	120	independent	lead	SNPs	identified	by	FUnctional	MApping	and	

annotation	of	genetic	associations	(FUMA)16.	A	comparison	of	these	lead	SNPs	with	results	from	the	

largest	previous	GWAS	of	cognitive	function6	and	educational	attainment17—which	included	a	

subsample	of	individuals	contributing	to	the	present	study—confirmed	that	4	and	12	of	these,	

respectively,	were	genome-wide	significant	in	the	previous	studies	(Supplementary	Table	14).	Five	

SNPs	in	the	present	study	were	completely	novel	(i.e.,	P	>	.05	in	these	previous	studies):	rs7010173	

(chromosome	8;	intronic	variant	in	SGCZ);	rs179994	(chromosome	6;	intronic	variant	in	ATXN1),	

rs8065165	(chromosome	17;	intronic	variant	2KB	upstream	of	MAPT);	rs2007481	(chromosome	7;	

intronic	variant	in	AUTS2);	and	rs188236525	(chromosome	11;	intronic	variant	2KB	upstream	of	

P2RY6).	The	120	lead	SNPs	were	distributed	within	99	loci	across	all	autosomal	chromosomes.	Using	

the	GWAS	catalog	(https://www.ebi.ac.uk/gwas/)	to	look	up	each	locus,	only	12	of	these	loci	had	

been	reported	previously	for	other	GWA	studies	of	cognitive	function	or	educational	attainment	

(novel	loci	are	indicated	in	Supplementary	Table	16).	Therefore,	our	study	uncovered	87	novel	

independent	loci	associated	with	cognitive	function.	Of	the	five	completely	novel	loci,	two	of	these	

are	in/near	interesting	candidate	genes:	MAPT	gene	mutations	are	associated	with	

neurodegenerative	disorders	such	as	Alzheimer’s	disease	and	frontotemporal	dementia18;	and	

AUTS2	is	a	candidate	gene	for	neurological	disorders	such	as	autism	spectrum	disorder,	intellectual	

disability,	developmental	delay19,	and	for	alcohol	consumption20,21.	These	general	cognitive	function-

associated	genes	also	showed	significant	gene	associations	in	the	gene-based	tests	(except	for	
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P2RY6);	see	Supplementary	Table	7	and	Fig.	2b	for	the	results	for	536	genes	that	the	present	study	

finds	to	be	significantly	associated	with	general	cognitive	function.	

	

For	the	120	lead	SNPs,	a	summary	of	previous	SNP	associations	is	listed	in	Supplementary	Table	15.		

They	have	been	associated	with	many	physical	(e.g.,	BMI,	height,	weight),	medical	(e.g.,	lung	cancer,	

Crohn’s	disease,	blood	pressure),	and	psychiatric	(e.g.,	bipolar	disorder,	schizophrenia,	autism)	traits,	

as	well	as	with	cognitive	function	and	educational	attainment	(12	loci).	Of	the	novel	SNP	

associations,	we	highlight	previous	associations	with	autism/ADHD	(3	loci),	bipolar	

disorder/schizophrenia	(14	loci),	and	infant	head	circumference/intracranial	volume/subcortical	

brain	region	volumes	(2	loci).	

	

We	sought	to	identify	lead	and	tagged	SNPs	within	the	99	significant	genomic	risk	loci	associated	

with	general	cognitive	function	that	are	potentially	functional,	using	FUMA16	(Supplementary	Table	

16).	See	online	methods	for	further	details.	Seventy-nine	of	the	genomic	risk	loci	contained	at	least	

one	SNP	with	a	Combined	Annotation	Dependent	Depletion	(CADD)	score	>	12.37,	indicating	that	

they	are	likely	to	be	deleterious	SNPs.	Sixty-five	of	the	genomic	risk	loci	contained	at	least	one	SNP	

with	a	RegulomeDB	score	<	3,	indicating	that	they	are	likely	to	be	involved	in	gene	regulation.	

Ninety-seven	of	the	loci	contained	at	least	one	SNP	with	a	minimum	15-core	chromatin	state	score	

of	<	8,	indicating	that	they	are	located	in	an	open	chromatin	state	consistent	with	the	SNP	being	in	a	

regulatory	region.	Sixty-eight	of	the	loci	contained	at	least	one	eQTL.	Of	interest,	rs1135840	in	

CYP2D6	(P=1.42	×	10-11)	is	a	non-synonymous	SNP	(Ser486Thr),	that	has	previously	been	associated	

with	the	metabolism	of	several	commonly-used	drugs22.	

	

MAGMA	gene-set	analysis	identified	two	significant	gene	sets	associated	with	general	cognitive	

function:	neurogenesis	(P	=	1.1	×	10-7)	and	dendrite	(P	=	1.6	×	10-6)	(Supplementary	Table	18;	see	

Online	Methods).	Identification	of	these	gene	sets	is	consistent	with	genes	associated	with	cognitive	
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function	regulating	the	generation	of	cells	within	the	nervous	system,	including	the	formation	of	

neuronal	dendrites.	MAGMA	gene-property	analysis	indicated	that	genes	expressed	in	all	brain	

regions—except	the	brain	spinal	cord	and	cervical	c1—and	genes	expressed	in	the	pituitary	share	a	

higher	level	of	association	with	general	cognitive	function	than	genes	not	expressed	in	the	brain	or	

pituitary	(Fig.	3	and	Supplementary	Tables	20	and	21).	The	most	significant	enrichments	were	for	

genes	expressed	in	the	cerebellum	and	the	brain’s	cortex.	

	

We	estimated	the	proportion	of	variance	explained	by	all	common	SNPs	in	four	of	the	largest	

individual	samples,	using	univariate	GCTA-GREML	analyses	(see	Online	Methods):	English	

Longitudinal	Study	of	Ageing	(ELSA:	N	=	6,661,	h2	=	0.12,	SE	=	0.06),	Understanding	Society	(N	=	

7,841,	h2	=	0.17,	SE	=	0.04),	UK	Biobank	Assessment	Centre	(N	=	86,010,	h2	=	0.25,	SE	=	0.006),	and	

Generation	Scotland	(N	=	6,507,	h2	=	0.20,	SE	=	0.0523)	(Table	2).	Genetic	correlations	for	general	

cognitive	function	amongst	these	cohorts,	estimated	using	bivariate	GCTA-GREML,	ranged	from	rg	=	

0.88	to	1.0	(Table	2).	There	were	slight	differences	in	the	test	questions	and	the	testing	environment	

for	the	UK	Biobank’s	‘fluid’	(verbal-numerical	reasoning)	test	in	the	assessment	centre	versus	the	

online	version.	Therefore,	we	investigated	the	genetic	contribution	to	the	stability	of	individual	

differences	in	people’s	verbal-numerical	reasoning	using	a	bivariate	GCTA-GREML	analysis,	including	

only	those	individuals	who	completed	the	test	on	both	occasions	(mean	time	gap	=	4.93	years).	We	

found	a	significant	perfect	genetic	correlation	of	rg	=	1.0	(SE	=	0.02).	

	

We	tested	how	well	the	genetic	results	from	our	CHARGE-COGENT-UK	Biobank	general	cognitive	

function	GWAS	analysis	accounted	for	cognitive	test	score	variance	in	independent	samples.	We	re-

ran	the	GWAS	analysis	excluding	three	of	the	larger	cohorts:	ELSA,	Generation	Scotland,	and	

Understanding	Society.	These	new	GWAS	summary	results	were	used	to	create	polygenic	profile	

scores	in	the	three	cohorts.	The	polygenic	profile	score	for	general	cognitive	function	explained	

2.37%	of	the	variance	in	ELSA	(β	=	0.16,	SE	=	0.01,	P	=	1.40	×	10-46),	3.96%	in	Generation	Scotland	(β	=	
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0.21,	SE	=	0.01,	P	=	3.87	×	10-72),	and	4.00%	in	Understanding	Society	(β	=	0.21,	SE	=	0.01,	P	=	1.31	×	

10-81).	Full	results	for	all	five	thresholds	are	shown	in	Supplementary	Table	11.		

	

Using	the	CHARGE-COGENT-UK	Biobank	GWAS	results,	we	tested	the	genetic	correlations	between	

general	cognitive	function	and	25	health	traits.	Sixteen	of	the	25	health	traits	were	significantly	

genetically	correlated	with	general	cognitive	function	(Supplementary	Table	12).	Novel	genetic	

correlations	were	identified	between	general	cognitive	function	and	ADHD	(rg	=	-0.36,	SE	=	0.03,	P	=	

3.91	×	10-32),	bipolar	disorder	(rg	=	-0.09,	SE	=	0.04,	P	=	0.008),	major	depression	(rg	=	-0.30,	SE	=	0.05,	

P	=	4.13	×	10-12),	and	longevity	(rg	=	0.15,	SE	=	0.06,	P	=	0.014).		

	

We	explored	the	genetic	foundations	of	reaction	time	and	its	genetic	association	with	general	

cognitive	function.	Reaction	time	is	an	elementary	cognitive	task	that	assesses	a	person’s	

information	processing	speed.	It	is	both	phenotypically	and	genetically	correlated	with	general	

cognitive	function,	and	accounts	for	some	of	its	association	with	health24,25.	We	note	the	limitation	

that	the	UK	Biobank’s	reaction	time	variable	is	based	on	only	four	trials	per	participant.	Full	results	

and	methods	are	in	Supplementary	materials.	There	were	330,069	individuals	in	the	UK	Biobank	

sample	with	both	reaction	time	and	genetic	data.	GWAS	results	for	reaction	time	uncovered	2,022	

significant	SNPs	in	42	independent	genomic	regions;	122	of	these	SNPs	overlapped	with	general	

cognitive	function,	with	76	having	a	consistent	direction	of	effect	(sign	test	P	=	0.008)	

(Supplementary	Table	9).	These	genomic	loci	showed	clear	evidence	of	functionality	

(Supplementary	Table	17).	Using	gene-based	GWA,	191	genes	attained	statistical	significance	

(Supplementary	Table	8),	28	of	which	overlapped	with	general	cognitive	function	(Supplementary	

Table	10).	Gene-sets	constructed	using	expression	data	indicated	a	role	for	genes	expressed	in	the	

brain	(Supplementary	Tables	22	and	23;	Supplementary	Fig.	3).	There	was	a	genetic	correlation	(rg)	

of	0.227	(P	=	4.33	×	10-27)	between	reaction	time	and	general	cognitive	function.	The	polygenic	score	
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for	reaction	time	explained	0.43%	of	the	general	cognitive	function	variance	in	ELSA	(P	=	1.42	×	10-9),	

0.56	%	in	Generation	Scotland	(P	=	2.49	×	10-11),	and	0.26%	in	Understanding	Society	(P	=	1.50	×	10-6).		

	

People	with	higher	general	cognitive	function	are	broadly	healthier26,	27;	here,	we	find	overlap	

between	genetic	loci	for	general	cognitive	function	and	a	number	of	physical	health	traits.	These	

shared	genetic	associations	may	reflect	a	causal	path	from	cognitive	function	to	disease,	cognitive	

consequences	of	disease,	or	pleiotropy28.	For	psychiatric	illness,	conditions	like	schizophrenia	(and,	

to	a	lesser	extent,	bipolar	disorder)	are	characterised	by	cognitive	impairments29,	and	thus	reverse	

causality	(i.e.	from	cognitive	function	to	disease)	is	less	likely.	In	terms	of	localising	more	proximal	

structural	and	functional	causes	of	variation	in	cognitive	function,	researchers	could	prioritise	the	

genetic	loci	uncovered	here	that	overlap	with	brain-related	measures.		

	

General	cognitive	function	has	prominence	and	pervasiveness	in	the	human	life	course,	and	it	is	

important	to	understand	the	environmental	and	genetic	origins	of	its	variation	in	the	population4.	

The	unveiling	here	of	many	new	genetic	loci,	genes,	and	genetic	pathways	that	contribute	to	its	

heritability	(Supplementary	Tables	3,	7	and	18;	Fig.	2)—which	it	shares,	as	we	find	here,	with	many	

health	outcomes,	longevity,	brain	structure,	and	processing	speed—provides	a	foundation	for	

exploring	the	mechanisms	that	bring	about	and	sustain	cognitive	efficiency	through	life.	
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Online	Methods	

	

Participants	and	Cognitive	Phenotypes	

This	study	includes	280,360	individuals	of	European	ancestry	from	57	population-based	

cohorts	brought	together	by	the	Cohorts	for	Heart	and	Aging	Research	in	Genomic	

Epidemiology	(CHARGE),	the	Cognitive	Genomics	Consortium	(COGENT)	consortia,	and	UK	

Biobank.	All	individuals	were	aged	between	16	and	102	years.	Exclusion	criteria	included	

clinical	stroke	(including	self-reported	stroke)	or	prevalent	dementia.	

	

For	each	of	the	CHARGE	and	COGENT	cohorts,	a	general	cognitive	function	component	

phenotype	was	constructed	from	a	number	of	cognitive	tasks.	Each	cohort	was	required	to	

have	tasks	that	tested	at	least	three	different	cognitive	domains.	Principal	component	

analysis	was	applied	to	the	cognitive	test	scores	to	derive	a	measure	of	general	cognitive	

function.	Principal	component	analyses	results	for	the	CHARGE	cohorts	were	checked	by	one	

author	(IJD)	to	establish	the	presence	of	a	single	component.	Scores	on	the	first	unrotated	

component	were	used	as	the	cognitive	phenotype	(general	cognitive	function).	UK	Biobank	

participants	were	asked	13	multiple-choice	questions	that	assessed	verbal	and	numerical	

reasoning	(VNR:	UK	Biobank	calls	this	the	‘fluid’	test).	The	score	was	the	number	of	questions	

answered	correctly	in	two	minutes.	Two	samples	of	UK	Biobank	participants	with	verbal-

numerical	reasoning	scores	were	used	in	the	current	analysis.	The	first	sample	(VNR	

Assessment	Centre)	consists	of	UK	Biobank	participants	who	completed	the	verbal-numerical	

reasoning	test	at	baseline	in	assessment	centres	(n	=	107,586).	The	second	sample	(VNR	Web-

Based)	consists	of	participants	who	did	not	complete	the	verbal-numerical	reasoning	test	at	

baseline	but	did	complete	this	test	during	the	web-based	cognitive	assessment	online	(n	=	

54,021).	Details	of	the	cognitive	phenotypes	for	all	cohorts	can	be	found	in	Supplementary	

Information	Section	2.	
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At	the	baseline	UK	Biobank	assessment,	496,790	participants	completed	the	reaction	time	

test.	Details	of	the	test	can	be	found	in	Supplementary	Information	Section	2.	A	sample	of	

330,069	UK	Biobank	participants	with	both	scores	on	the	reaction	time	test	and	genotyping	

data	was	used	in	this	study.	

	

Genome-wide	association	analyses	

Genotype–phenotype	association	analyses	were	performed	within	each	cohort,	using	an	

additive	model,	on	imputed	SNP	dosage	scores.	Adjustments	for	age,	sex,	and	population	

stratification,	if	required,	were	included	in	the	model.	Cohort-specific	covariates—for	

example,	site	or	familial	relationships—were	also	fitted	as	required.	Cohort	specific	quality	

control	procedures,	imputation	methods,	and	covariates	are	described	in	Supplementary	

Table	S2.	Quality	control	of	the	cohort-level	summary	statistics	was	performed	using	the	

EasyQC	software36,	which	implemented	the	exclusion	of	SNPs	with	imputation	quality	<	0.6	

and	minor	allele	count	<	25.	

	

Meta-analysis	

A	meta-analysis	of	the	56	CHARGE-COGENT	cohorts	was	performed	using	the	METAL	package	

with	an	inverse	variance	weighted	model	implemented	and	single	genomic	control	applied	

(http://www.sph.umich.edu/csg/abecasis/Metal).	The	two	UK	Biobank	groups,	VNR	

Assessment	Centre	and	VNR	Web-Based,	were	also	meta-analysed	using	the	same	method.	

An	inverse-variance	weighted	meta-analysis	of	the	CHARGE-COGENT	and	UK	Biobank	

summary	results	was	then	performed.	
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Reaction	Time	Genome-wide	association	analysis	

The	GWAS	of	reaction	time	from	the	UK	Biobank	sample	was	performed	using	the	BGENIE	v	

1.2	analysis	package	(https://jmarchini.org/bgenie/).	A	linear	SNP	association	model	was	

tested	which	accounted	for	genotype	uncertainty.	Reaction	time	was	adjusted	for	the	

following	covariates;	age,	sex,	genotyping	batch,	genotyping	array,	assessment	centre,	and	40	

principal	components.	

	

Gene-based	analysis	(MAGMA)		

Gene-based	analysis	was	conducted	using	MAGMA37.	All	SNPs	that	were	located	within	

protein	coding	genes	were	used	to	derive	a	P-value	describing	the	association	found	with	

general	cognitive	function	and	reaction	time.	The	SNP-wise	model	from	MAGMA	was	used	

and	the	NCBI	build	37	was	used	to	determine	the	location	and	boundaries	of	18,199	

autosomal	genes.	Linkage	disequilibrium	within	and	between	each	gene	was	gauged	using	the	

1000	genomes	phase	3	release38.	A	Bonferroni	correction	was	applied	to	control	for	multiple	

testing;	the	genome-wide	significance	threshold	was	P	<	2.75	×	10−6.	

	

Estimation	of	SNP-based	heritability	

Univariate	GCTA-GREML	analyses39	were	used	to	estimate	the	proportion	of	variance	

explained	by	all	common	SNPs	in	four	of	the	largest	individual	cohorts:	ELSA,	Understanding	

Society,	UK	Biobank,	and	Generation	Scotland.	Sample	sizes	for	all	of	the	GCTA	analyses	in	

these	cohorts	differed	from	the	association	analyses,	because	one	individual	was	excluded	

from	any	pair	of	individuals	who	had	an	estimated	coefficient	of	relatedness	of	>	0.025	to	

ensure	that	effects	due	to	shared	environment	were	not	included.	The	same	covariates	were	

included	in	all	GCTA-GREML	analyses	as	for	the	SNP-based	association	analyses.	
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Univariate	Linkage	Disequilibrium	Score	Regression	(LDSC)	

Univariate	LDSC	regression	was	performed	on	the	summary	statistics	from	the	GWAS	on	

general	cognitive	function	and	reaction	time.	The	heritability	Z-score	provides	a	measure	of	

the	polygenic	signal	found	in	each	data	set.	Values	greater	than	4	indicate	that	the	data	are	

suitable	for	use	with	bivariate	LDSC	regression40.	The	mean	χ2	statistic	indicates	the	inflation	

of	the	GWAS	test	statistics	that,	under	the	null	hypothesis	of	no	association	(i.e.	no	inflation	

of	test	statistics),	would	be	1.	For	each	GWAS,	an	LD	regression	was	carried	out	by	regressing	

the	GWA	test	statistics	(χ2)	on	to	each	SNP’s	LD	score	(the	sum	of	squared	correlations	

between	the	minor	allele	frequency	count	of	a	SNP	with	the	minor	allele	frequency	count	of	

every	other	SNP).		

	

Genetic	correlations	

Genetic	correlations	were	estimated	using	two	methods,	bivariate	GCTA-GREML41	and	LDSC40.	

Bivariate	GCTA	was	used	to	calculate	genetic	correlations	between	phenotypes	and	cohorts	

where	the	genotyping	data	were	available.	This	method	was	used	to	calculate	the	genetic	

correlations	between	different	cohorts	for	the	general	cognitive	function	phenotype.	It	was	

also	employed	to	investigate	the	genetic	contribution	to	the	stability	of	UK	Biobank’s	

participants’	verbal-numerical	reasoning	test	scores	in	the	assessment	centre	and	then	in	

web-based,	online	testing.	In	cases	where	only	GWA	summary	results	were	available,	LDSC	

was	used	to	estimate	genetic	correlations	between	two	traits—for	example,	general	cognitive	

function	and	longevity—in	order	to	estimate	the	degree	of	overlap	between	polygenic	

architecture	of	the	traits.	Genetic	correlations	were	estimated	between	general	cognitive	

function	and	reaction	time	and	a	number	of	health	outcomes.		

	

Polygenic	prediction	
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Polygenic	profile	score	analysis	was	used	to	predict	cognitive	test	performance	in	Generation	

Scotland,	the	English	Longitudinal	Study	of	Ageing,	and	Understanding	Society.	Polygenic	

profiles	were	created	in	PRSice42	using	results	of	a	general	cognitive	function	meta-analysis	

that	excluded	the	Generation	Scotland,	the	English	Longitudinal	Study	of	Ageing,	and	

Understanding	Society	cohorts.	Polygenic	profiles	were	also	created	based	on	the	UK	Biobank	

GWA	reaction	time	results.		

	

Functional	Annotation	and	Loci	Discovery	

Genomic	risk	loci	were	derived	using	FUnctional	MApping	and	annotation	of	genetic	

associations	(FUMA)16.	Firstly,	independent	significant	SNPs	were	identified	using	the	

SNP2GENE	function	and	defined	as	SNPs	with	a	P-value	of	≤	5	×	10−8	and	independent	of	

other	genome	wide	significant	SNPs	at	R2	<	0.6.	Using	these	independent	significant	SNPs,	

candidate	SNPs	to	be	used	in	subsequent	annotations	were	identified	as	all	SNPs	that	had	a	

MAF	≥	0.0005	and	were	in	LD	of	R2	≥	0.6	with	at	least	one	of	the	independent	significant	

SNPs.	These	candidate	SNPs	included	those	from	the	1000	genomes	reference	panel	and	

need	not	have	been	included	in	the	GWAS	performed	in	the	current	study.	Lead	SNPs	were	

also	identified	using	the	independent	significant	SNPs	and	were	defined	as	those	that	were	

independent	from	each	other	at	R2	<	0.1.	Genomic	risk	loci	that	were	250kb	or	closer	were	

merged	into	a	single	locus.		

	

The	lead	SNPs	and	those	in	LD	with	the	lead	SNPs	were	then	mapped	to	genes	based	on	the	

functional	consequences	of	genetic	variation	of	the	lead	SNPs	which	was	measured	using	

ANNOVAR43	and	the	Ensembl	genes	build	85.	Intergenic	SNPs	were	mapped	to	the	two	closest	

up-	and	down-stream	genes	which	can	result	in	their	being	assigned	to	multiple	genes.	All	

SNPs	found	in	1000	genomes	phase	3	were	then	annotated	with	a	CADD	score44,	RegulomeDB	

score45,	and	15-core	chromatin	states46-48.	
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The	mapping	of	eQTLs	was	performed	using	each	independent	significant	SNP	and	those	in	LD	

with	it.	eQTL	information	was	obtained	from	the	following	databases:	GTEx	

(http://www.gtexportal.org/home/),	BRAINEAC	(http://www.braineac.org/),	Blood	eQTL	

Browser	(http://genenetwork.nl/bloodeqtlbrowser/),	and	BIOS	QTL	browser	

(http://genenetwork.nl/biosqtlbrowser/).	

	

Gene-set	analysis	

Gene-set	analysis	was	conducted	in	MAGMA37	using	competitive	testing,	which	examines	if	

genes	within	the	gene	set	are	more	strongly	associated	with	each	of	the	cognitive	phenotypes	

than	other	genes.	Such	competitive	tests	have	been	shown	to	control	for	Type	1	error	rate	as	

well	as	facilitating	an	understanding	of	the	underlying	biology	of	cognitive	differences49,50.	A	

total	of	10	891	gene-sets	(sourced	from	Gene	Ontology51,	Reactome52,	and,	SigDB53)	were	

examined	for	enrichment	of	intelligence.	A	Bonferroni	correction	was	applied	to	control	for	

the	multiple	tests	performed	on	the	10,891	gene	sets	available	for	analysis.	

	

Gene	property	analysis	

In	order	to	indicate	the	role	of	particular	tissue	types	that	influence	differences	in	general	

cognitive	function	and	reaction	time,	a	gene	property	analysis	was	conducted	using	MAGMA.	

The	goal	of	this	analysis	was	to	determine	if,	in	30	broad	tissue	types	and	53	specific	tissues,	

tissue-specific	differential	expression	levels	were	predictive	of	the	association	of	a	gene	with	

general	cognitive	function	and	reaction	time.	Tissue	types	were	taken	from	the	GTEx	v6	RNA-

seq	database54	with	expression	values	being	log2	transformed	with	a	pseudocount	of	1	after	

winsorising	at	50,	with	the	average	expression	value	being	taken	from	each	tissue.	Multiple	

testing	was	controlled	for	using	a	Bonferroni	correction.	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/176511doi: bioRxiv preprint 

https://doi.org/10.1101/176511


	 28	

36.	Winkler,	T.W.	et	al.	Quality	control	and	conduct	of	genome-wide	association	meta-

analyses.	Nat.	Protoc.	9,	1192–1212	(2014).	

37.	de	Leeuw,	C.	A.,	Mooij,	J.	M.,	Heskes,	T.,	&	Posthuma,	D.	MAGMA:	Generalized	Gene-Set	

Analysis	of	GWAS	Data.	PLoS	Comp	Biol	11,	e1004219	(2015).	

38.	1000	Genomes	Project	Consortium.	A	map	of	human	genome	variation	from	population-

scale	sequencing.	Nature	467,	1061-1073	(2012).	

39.	Yang,	J.,	et	al.	Common	SNPs	explain	a	large	proportion	of	the	heritability	for	human	

height.	Nat.	Genet.	42,	565-569	(2010).	

40.	Bulik-Sullivan,	B.,	et	al.	An	atlas	of	genetic	correlations	across	human	diseases	and	traits.	

Nat.	Genet.	47,	1236-1241	(2015).	

41.	Lee,	S.	H.,	Yang,	J.,	Goddard,	M.	E.,	Visscher,	P.	M.,	&	Wray,	N.	R.	Estimation	of	pleiotropy	

between	complex	diseases	using	SNP-derived	genomic	relationships	and	restricted	

maximum	likelihood.	Bioinformatics	28,	2540-2542	(2012).	

42.	Euesden,	J.,	Lewis,	C.	M.,	&	O'Reilly,	P.	F.	PRSice:	Polygenic	Risk	Score	software.	

Bioinformatics	2015;	31,	1466–1468	(2015).	

43.	Wang,	K.,	Li,	M.,	&	Hakonarson,	H.	ANNOVAR:	functional	annotation	of	genetic	variants	

from	high-throughput	sequencing	data.	Nucleic	Acids	Res.	38,	e164-e164	(2010).	

44.	Kircher,	M.,	et	al.	A	general	framework	for	estimating	the	relative	pathogenicity	of	human	

genetic	variants.	Nat.	Genet.	46,	310-315	(2014).	

45.	Boyle,	A.	P.,	et	al.	Annotation	of	functional	variation	in	personal	genomes	using	

RegulomeDB.	Genome	Res.	22,	1790-1797	(2012).	

46.	ENCODE	Project	Consortium.	An	integrated	encyclopedia	of	DNA	elements	in	the	human	

genome.	Nature	489,	57-74	(2012).	

47.	Ernst,	J.,	&	Kellis,	M.	ChromHMM:	automating	chromatin-state	discovery	and	

characterization.	Nat.	Methods	9,	215-216	(2012).	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/176511doi: bioRxiv preprint 

https://doi.org/10.1101/176511


	 29	

48.	Kundaje,	A.,	et	al.	Integrative	analysis	of	111	reference	human	epigenomes.	Nature	518,	

317-330	(2015).	

49.	Hill,	W.	D.,	et	al.	Human	cognitive	ability	is	influenced	by	genetic	variation	in	components	

of	postsynaptic	signalling	complexes	assembled	by	NMDA	receptors	and	MAGUK	

proteins.	Transl.	Psychiatr.	4,	e341	(2014).	

50.	de	Leeuw,	C.	A.,	Neale,	B.	M.,	Heskes,	T.,	Posthuma,	D.	The	statistical	properties	of	gene-

set	analysis.	Nat.	Rev.	Genet.	17,	353-364	(2016).	

51.	Ashburner,	M.,	et	al.	Gene	Ontology:	tool	for	the	unification	of	biology.	Nat.	Genet.	25,	4	

(2012).	

52.	Fabregat,	A.	et	al.	The	reactome	pathway	knowledgebase.	Nucleic	Acids	Res.	44,	D481-

D487	(2015).	

53.	Subramanian,	A.,	et	al.	Gene	set	enrichment	analysis:	a	knowledge-based	approach	for	

interpreting	genome-wide	expression	profiles.	Proc.	Natl.	Acad.	Sci.	USA	102,	15545-

15550	(2005).	

54.	The	GTEx	Consortium.	The	Genotype-Tissue	Expression	(GTEx)	pilot	analysis:	Multitissue	

gene	regulation	in	humans.	Science	348,	648-660	(2015).	

	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/176511doi: bioRxiv preprint 

https://doi.org/10.1101/176511


	 30	

Figure	Captions	

	

Figure	1	Summary	of	molecular	genetic	association	studies	with	general	cognitive	function	to	

date.	

	

Figure	2	SNP-based	(a)	and	gene-based	(b)	association	results	for	general	cognitive	function	in	

280,360	individuals.	The	red	line	indicates	the	threshold	for	genome-wide	significance:	P	<	5	×	

10−8	for	(a),	P	<	2.75	×	10−6	for	(b);	the	blue	line	in	(a)	indicates	the	threshold	for	suggestive	

significance:	P	<	1	×	10−5.	

	

Figure	3	Functional	analyses	of	general	cognitive	function	association	results,	lead	SNPs,	and	all	SNPs	

in	LD	with	lead	SNPs.	Functional	consequences	of	SNPs	on	genes	(a)	indicated	by	functional	

annotation	assigned	by	ANNOVAR.	MAGMA	gene-property	analysis	results;	results	are	shown	for	

average	expression	of	30	general	tissue	types	(b)	and	53	specific	tissue	types	(c).	The	dotted	line	

indicates	the	Bonferroni-corrected	α	level.	
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Table	1.	Details	of	GWA	studies	of	general	cognitive	function	to	date,	including	the	present	study	

Author;	doi	 Year	 N	 GWAS-sig	SNP	
hits	

GWAS-sig	gene	
hits	

SNP-based	
h2	

Davies	et	al.,	201130	 2011	 3511	 0	 1	gene	 0.51	(0.11)	

Lencz	et	al.,	201331	
	

2013	 5000	 0	 NA	 NA	

Benyamin	et	al.,	201432	 2014	 17989	 0	 0	 0.46	(0.06)	

Kirkpatrick	et	al.	201433	 2014	 7100	 0	 0	 0.35	(0.11)	

Davies	et	al.	201534	 2015	 53,949	 3	loci	
(13	SNPs)	

1	gene	 0.29	(0.05)	

Davies	et	al.	20165;	results	for	‘fluid’	test	 2016	 36,035		 3	loci	
(149	SNPs)	

7	loci	
17	genes	

0.31	(0.02)	

Trampush	et	al.,	201735	 2017	 35,298	 2	loci	
(7	SNPs)	

	

3	loci	
7	genes	

0.22	(0.01)	

Sniekers	et	al.,	20176	 2017	 78,308	 18	loci	
(336	SNPs)	

47	genes	 0.20	(0.01)	

Davies	et	al.,	2017;	present	study	 2017	 280,360	 99	loci	
(9714	SNPs)	

536	genes	 0.25	(0.006)	

For	SNP-based	heritability,	the	value	from	the	largest	sample	is	given.	
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Table	2.	Genetic	correlations	and	heritability	estimates	of	a	general	cognitive	function	
component	in	three	United	Kingdom	cohorts	
	
Cohort	 ELSA	 US	 GS	

ELSA	 0.12	(0.06)	 	 	

US	 1.0	(0.33)	 0.17	(0.04)	 	

GS	 1.0	(0.38)	 0.88	(0.24)	 0.20	(0.05)	

	
Below	the	diagonal,	genetic	correlations	(standard	error)	of	general	cognitive	function	
amongst	three	cohorts	are	shown:	English	Longitudinal	Study	of	Ageing	(ELSA);	Generation	
Scotland	(GS);	and	Understanding	Society	(US).	SNP-based	heritability	(standard	error)	
estimates	appear	on	the	diagonal.	
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