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Abstract

Microbes are found in high abundances in the environment and in human-associated micro-

biomes, often exceeding one million per milliliter. Viruses of microbes are estimated to turn

over 10 to 40 percent of microbes daily and, consequently, are important in shaping micro-

bial communities. Given the relative specificity of viral infection and lysis, it is essential to

identify the functional linkages between viruses and their microbial hosts. Multiple time-

series analysis methods, including correlation-based approaches, have been proposed to infer

infection networks in situ. In this work, we evaluate the effectiveness of correlation-based

inference using an in silico approach. In doing so, we compare actual networks to predicted

networks as a means to assess the self-consistency of correlation-based inference. Contrary

to common use, we find that correlation is a poor indicator of interactions that arise from

antagonistic virus-host infections that culminate in lysis. In closing, we discuss alternative

inference methods, particularly model-based methods, as a means to predict interactions in

complex virus-microbe communities.
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1 Introduction

Microbes and viruses are ubiquitous and highly diverse in marine, soil, and human-associated

environments. Microbes play important roles in biogeochemical cycling, and viruses of mi-

crobes can transfer genes between microbial hosts [1, 2], alter host physiology (e.g. via auxil-

lary metabolic genes [3, 4]), and redirect the flow of organic matter in food webs through cell

lysis [5, 6]. Viruses therefore are a significant part of microbial communities, and character-

izing virus-microbe interactions is necessary for understanding how cellular-level interactions

influence community structure and ecosystem function.

Viruses are known to be relatively specific but not exclusive in their microbial host range.

Individual viruses may infect multiple strains of an isolated bacteria, or they may infect across

genera, e.g. cyanophage can infect both Prochlorococcus and Synechococcus [7]. Analyses of

dozens of culture-based studies have revealed structure in virus-microbe interaction networks

[8, 9, 10]. Interaction networks are nested at the strain and genus level, which is indicative

of rapid coevolution [11], and are hypothesized to be modular at larger phylogenetic scales.

Importantly though, these results come from culture-based methods raising the question of

how broadly applicable they are in situ [1]. Partially culture-independent methods, such as

viral tagging [12, 13] and digital PCR [14], overcome some of the hurdles associated with

culturability and isolation but do not yet represent a community-based approach to infer-

ring interactions amongst non-targeted viruses and microbes. Community-based inference

methods are needed to fully characterize virus-microbe interactions.

Viral metagenomics (viromics) has made it possible to characterize phylogenetic and

functional diversity of viruses in situ, bypassing culturing altogether [15, 16, 17]. Recent

methods for inferring interactions leverage information from time-series obtained via metage-

nomic sampling. In these methods, population abundances (or marker-based proxies) are

estimated directly from viral and cellular metagenomes. Many such inference methods for

time-series exist (see reviews [18, 19, 20, 21, 22]) and broadly fall into two categories: model-
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based and model-free. Examples of model-free methods include the direct use of correlations,

time-lagged correlations (e.g. local similarity analysis or LSA [23, 24, 25]), and correlations

between log-transformed abundance ratios (e.g. sparse correlations for compositional data

or SparCC [26]). Other model-free methods which are not correlation-based include cross-

convergent mapping (CCM) [27, 28, 29], pairwise asymmetric inference (PAI) [30], and the

sparse S-map method (SSM) [31], and many model-based methods exist as well (see Discus-

sion). Out of these, correlation and correlation-based inference methods are widely used with

experimental time-series data. Local similarity analysis (LSA) in particular has been widely

applied to infer interaction networks in communities of marine bacteria [32, 33]; bacteria and

phytoplankton [34, 35]; bacteria and viruses [36]; and bacteria, viruses, and protists [37, 38].

Correlations in time-series are difficult to interpret, despite their widespread use. Positive

correlations could indicate “common preferred conditions or perhaps cooperative activities

such as crossfeeding” [22], while negative correlations could indicate “opposite seasonality,

competition for limited resources or perhaps active negative interactions such as targeted

allelopathy or predator-prey relationships” [22]. Correlations are often interpreted as direct

interactions, e.g. predation, but may instead be indicative of a wide variety of indirect inter-

actions (see [39, 40]). Predicted interactions can vary drastically depending on the particular

correlation metric used [19], which further compounds problem of ecological interpretation.

Compositional data, which is common in metagenomic time-series, introduces additional

complications [26]. Time-series may be strongly and significantly correlated without having

any underlying physical or ecological relationship at all, a well-known adage (“correlation

does not imply causation”) that is often disregarded. Multiple studes have shown that cor-

relations in time-series do not predict interactions in in silico microbial communities using

a discrete-time Lotka-Volterra model [41] and a parametric statistical model [42].

Despite these challenges, correlation-based inference is rarely verified in advance of its

application. Inferred networks are difficult to verify in general, in part because there is no

existing “gold standard” interaction network, and as previously mentioned culture-based
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methods are not widely applicable. Hence, in this paper, we take an in silico approach

to assessing the efficacy of correlation-based inference. We use a mechanistic model for a

virus-microbe community to generate synthetic time-series in which the interaction network

is known a priori. Then we apply correlation-based inference to the resulting time-series and

compare predicted interactions to the original interaction network. As we show, correlation-

based inference fails to recapitulate virus-microbe interaction networks raising substantive

concerns over its use in natural systems.

2 Methods

2.1 Modeling the virus-microbe community

We model the dynamics of a virus-microbe community with a system of nonlinear differential

equations:

Ḣi =

logistic growth︷ ︸︸ ︷
riHi

(
1−

∑NH

i′ aii′Hi′

K

)
−

lysis︷ ︸︸ ︷
Hi

NV∑
j

MijφijVj (1)

V̇j = Vj

NH∑
i

MijφijβijHi︸ ︷︷ ︸
lysis

−mjVj︸ ︷︷ ︸
decay

(2)

where Hi and Vj refer to the population density of microbial host i and virus j respectively.

There are NH different host types and NV different virus types. For our purposes, a “type”

is a group of microbes or viruses with identical life history traits, i.e. microbes or viruses

that occupy the same functional niche.

In the absence of viruses, the hosts undergo logistic growth with growth rates ri. The

hosts have a community-wide carrying capacity K, and they compete with each other for

resources both inter- and intra-specifically with competition strength aii′ . Each host can

be infected and lysed by a subset of viruses determined by the interaction terms Mij. If

host i can be infected by virus j, Mij is one; otherwise it is zero. The collection of all the

interaction terms is the interaction network represented by matrix M of size NH by NV . The
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adsorption rates φij denote how frequently host i is infected by virus j.

Each virus j’s population grows from infecting and lysing hosts. The rate of virus j’s

growth is determined by its host-specific adsorption rate φij and host-specific burst size βij,

which is the number of new virions per infected host cell. The quantity M̃ij = Mijφijβij is

the interaction strength between virus j and host i, and the collection of all the interaction

strengths is the weighted interaction network M̃. Finally, the viruses decay at rates mj.

2.2 Interaction network topology

Virus-microbe interaction networks are represented as bipartite networks or matrices of size

NH by NV . Here, we generate in silico interaction networks given variation in nestedness

and modularity. For a given network size NH by NV , we first generate the perfectly nested

(Fig 1A) and perfectly modular (Fig 1B) networks using the BiMat MATLAB package [43].

For the modular network, we choose a small number of modules relative to the network di-

mensions NH and NV , e.g. 2 modules for a 10 by 10 network. In general, the perfectly nested

network and the perfectly modular network will have a different number of interactions. In

the following rewiring procedure, we treat the two networks separately so that the number

of interactions is conserved.

We rewire the perfect network by randomly selecting an interacting host-virus pair (Mij =

1) and a non-interacting host-virus pair (Mij = 0) and exchanging their interaction values.

We do not allow exchanges that would result in an all-zero row or column but do not restrict

the exchanges in any other way. We continue the random selection without replacement

until all host-virus pairs have been selected no more than once, recording the new interaction

network after each exchange. We repeat this procedure several times to generate an ensemble

of interaction networks with varying nestedness and modularity.

We measure the nestedness and the modularity of each network in the ensemble using the

default algorithms in the BiMat MATLAB package. The nestedness metric used is NODF,

and the modularity is normalized [44]. We rearrange the networks in their most nested or
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most modular form as determined by the BiMat MATLAB package (see Fig 1 for examples)

[43].

2.3 Generating life history traits

The life history traits for a given interaction network are chosen to ensure that all host and

virus types can coexist in the long term [45], as summarized here.

First, we randomly sample target steady-state densities H∗i and V ∗j for each host and

virus. We also sample some of the life history traits, in particular the host carrying capacity

K, adsorption rates φij, and burst sizes βij. All of these values are chosen by independent

random sampling from ranges as specified in Table 1.

Next, we sample the host competition terms aii′ . To begin, we set all intraspecific com-

petition to one (aii = 1) and all interspecific competition terms to zero (aii′ = 0 for i′ 6= i).

To ensure coexistence among the hosts in the absence of viruses, we randomly sample tar-

get virus-free steady-state densities H∗0i from the range specified in Table 1. Coexistence is

satisfied when

K =

NH∑
i′

aii′H
∗
0i′ (3)

for each host i. Thus, for each host i, some interspecific competition terms must be made

non-zero. We randomly choose an index k 6= i and randomly sample aik between zero and

one. If the new
∑NH

i′ aii′H
∗
0i′ does not exceed the carrying capacity K, we repeat for a new

index k. Once the carrying capacity is exceeded, we adjust the most recent aik so that Eqn

3 is satisfied exactly.

The remaining life history traits, the viral decay rates mj and the host growth rates ri,

are solved for using the steady-state versions of the virus-host differential equations (Eqns 1

and 2):

mj =

NH∑
i

MijφijβijH
∗
i (4)
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ri =

(
NV∑
j

MijφijV
∗
j

)
/

(
1−

∑NH

i′ aii′H
∗
i′

K

)
(5)

2.4 Simulating community dynamics

We use MATLAB’s ODE45 to numerically simulate the virus-host dynamical system (Eqns 1

and 2) with in silico interaction network and life history traits generated as described in §2.2

and §2.3. We use a relative error tolerance of 10−8 and specify regularly spaced time-points on

the order of
〈
1
r

〉
. Initial conditions are chosen by perturbing the target steady-state densities

H∗i and V ∗j by a multiplicative factor δ = ±0.3 where the sign of δ is chosen randomly for

each host and each virus. After generating the time-series, we sample from the transient

dynamics using a fixed sample frequency.

2.5 Calculating correlation networks

Let t = {t1, . . . , tN} be the collection of sample times. Let Hi(tk) and Vj(tk) be the sam-

pled time-series of host i and virus j at the single time-point tk ∈ t. We denote the log-

transformations of the sample points as hi(tk) = log10Hi(tk) and vj(tk) = log10 Vj(tk). The

Pearson correlation coefficient between host i and virus j is defined as

rij =

∑N
k=1

(
hi(tk)− h̄i

)
(vj(tk)− v̄j)√∑N

k=1

(
hi(tk)− h̄i

)2√∑N
k=1 (vj(tk)− v̄j)2

(6)

whereN is the number of sampled time points and h̄i = 1
N

∑N
k=1 hi(tk) and v̄j = 1

N

∑N
k=1 vj(tk)

are the sample means. The correlation network R is the collection of Pearson correlation

coefficients for all possible host-virus pairs, that is, a matrix of size NH by NV .

We also consider correlations given a time-delay τ . The time-delayed Pearson correlation

coefficient between host i and virus j is defined as

rτij =

∑N
k=1

(
hi(tk + τ)− h̄τi

)
(vj(tk)− v̄j)√∑N

k=1

(
hi(tk + τ)− h̄τi

)2√∑N
k=1 (vj(tk)− v̄j)2

(7)
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where N is the number of sampled time-points and h̄τi = 1
N

∑N
k=1 hi(tk + τ) is the mean of

the time-delayed host sample. The time-delay is applied to the host time-series so that it is

sampled later in time, whereas the virus time-series sample is unchanged. The same number

of sampled time-points N is used for both hosts and viruses.

We consider two different approaches for implementing a time-delay τ . If identical time-

delays are used for each host-virus pair, τ is a single community-wide time-delay. On the

other hand, if time-delays are unique for each host-virus pair, τ = [τij] is a matrix of size

NH by NV of unique pairwise time-delays. For both cases, the correlation network Rτ is the

collection of time-delayed Pearson correlation coefficients.

2.6 Evaluating correlation network efficacy

To evaluate how well the correlation network R predicts interactions in the weighted inter-

action network M̃, we binarize the two networks so that they may be compared directly. For

the weighted interaction network M̃, non-zero values are categorized as interactions while

zeros are categorized as non-interactions. The binarized weighted interaction network is M̃0.

For the correlation network R, we categorize values according to a threshold c. Correlations

greater than or equal to the threshold are categorized as interactions, while those that are

less are non-interactions. The binarized correlation network for a threshold c is Rc.

To compare the two binarized networks Rc and M̃0, we count the number of inter-

actions in M̃0 which Rc predicts correctly, the true positives, as well as the number of

non-interactions which Rc predicts incorrectly, the false positives. We normalize the true

and false positive counts by the number of actual interactions and non-interactions in M̃0.

These are the true positive rates (TPR) and false positive rates (FPR).

We repeat the binarization for many thresholds between −1 and +1, the minimum and

maximum possible values of Pearson’s correlation coefficient. The entire process results in

a tradeoff, or receiving operator characteristic (ROC), curve for the correlation network

R. We quantify the overall performance of the correlation network R as the maximum
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difference between TPR and FPR, which is known as Youden’s J-statistic or simply J [46].

The maximum difference J occurs at a particular threshold, the optimal threshold c∗.

We note that J = 1 is a “perfect” recovery, that is, there exists a threshold c for which

the thresholded correlation network Rc perfectly matches the binarized weighted interaction

network M̃0. On the other hand, J = 0 means that the thresholded correlation networks Rc

have a true positive rate (TPR) less than or equal to their false positive rate (FPR) across

all thresholds.

3 Results

3.1 Simple correlation networks

We computed simple Pearson correlation networks (Eqn 6) for two different in silico virus-

host communities. The two interaction networks each have 10 hosts and 10 viruses. One

interaction network is highly nested (Fig 2-A3) and the other is highly modular (Fig 2-

B3). The life history traits for the two networks were generated as described in §2.3, with

parameter ranges as specified in Table 1. The time-series were generated according to §2.4

with a timestep of
〈
1
r

〉
≈ 15 minutes and a relative error tolerance of 10−8 (Fig 2-A1 and

-B1). The time-series were sampled at a fixed frequency of 8 hours for 100 time-points per

host and per virus type, resulting in a sample period of 800 hours ≈ 1 month (Fig 2-A2 and

-B2).

We evaluated the efficacy of the two correlation networks with the procedure described

in §2.6 (Fig 3). For each correlation network, we report the maximum difference between

TPR and FPR, that is, Youden’s J-statistic or J , as well as the optimal threshold c∗. To

compute the p-value for J , we randomly shuffle the identities of the hosts and viruses in

the original time-series, and calculate correlation networks for these shuffled time-series. We

used N = 1000 random permutations and calculated J for each correlation network.

For the two in silico communities, simple correlation networks do not predict the inter-

action network. For the nested community we found J = 0.09 (p = 0.6; Fig 3-A3), and for
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the modular community we found J = 0.16 (p = 0.1; Fig 3-B3). The low J values mean that

the correlation networks have high FPR compared to TPR across all thresholds, whereas a

correlation network which successfully recovered the interaction network would have a high

TPR and low FPR for at least one threshold, resulting in J ≈ 1. The large p-values mean

that the reported J values are likely to occur by chance (see Supp Fig 1-A1 and -B1 for

distributions).

3.2 Community-wide time-delayed correlation networks

We computed time-delayed Pearson correlation networks (Eqn 7) with a community-wide

time-delay for the same two in silico communities, using the same time-series (Fig 2-A1

and -B1), sample frequency of 8 hours, and sampled time-points of 100. We considered

community-wide time-delays that were multiples of the sample frequency up to the sample

period, so that there was always some overlap between the sample times. The time-delay was

applied to the host time-series, that is, all host time-series were identically sampled later in

time, while the virus time-series were sampled as before. We computed correlation networks

for all considered community-wide time-delays, that is, we computed 100 correlation networks

where τ = 8 hours, 16 hours, . . . , 800 hours.

The correlation networks vary with the community-wide time-delay, as can be seen from a

few representative networks (Fig 4-A2 and -B2). For the nested community, none of the 100

time-delayed correlation networks successfully predict the interaction network (Fig 4-A3).

The best score is J = 0.22 (p = 0.08) which occurs at a time-delay of τ = 768 hours. The

low J value means that the correlation network has a high FPR compared to TPR across

all thresholds, and the high p-value means that the reported J value is likely to occur by

chance.

For the modular community, the best score is J = 0.46 (p = 0.001) which occurs at

τ = 464 hours. While the measured J value is significant (p < 0.05), it is still low, with

FPR = 0.2 and TPR = 0.66 (see Supp Fig 2). Thus, it is not evident that this is a
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“successful” correlation network for predicting interactions. Futhermore, without knowing

the interaction network a priori – as is the case with in situ communities – we have no way

of identifying the particular community-wide time-delay τ = 464 hours as the best choice.

3.3 Pairwise time-delayed correlation networks

We computed time-delayed Pearson correlation networks (Eqn 7) for the same two in silico

communities, now with unique time-delays for each host-virus pair. We used the same time-

series (Fig 2-A1 and -B1), sample frequency of 8 hours, and sampled time-points of 100. We

considered time-delays that were multiples of the sample frequency up to the sample period

as before. The time-delays were applied to the host time-series, with each host potentially

having a different time-delay, while the virus time-series were sampled as before. For host-

virus pair (i, j), we computed correlations for all considered time delays and recorded the

maximum correlation coefficient rmax
ij and its associated time-delay τmax

ij .

The resulting correlation networks for the two in silico communities consist of positive

correlations which are almost uniformly high (Fig 5-A3 and -B3). Neither interaction network

is successfully recovered. For the nested community, J = 0.17 (p = 0.2), and for the modular

community, J = 0.04 (p = 0.9).

3.4 Effects of sampling frequency

We repeated the three procedures for calculating correlation networks with and without time-

delays (§3.1, 3.2, and 3.3) for varying sample frequencies. We used the same two in silico

communities and time-series as before (Fig 2-A1 and -B1). We examined sample frequencies

between 15 minutes and 48 hours. For each sample frequency considered, we sampled for

100 time-points. Since the number of sampled time-points was fixed, the sample periods

varied between 25 hours and 4800 hours (≈ 6 months).

For the simple correlation networks without time-delays, we calculated the networks in

the same way as described in §3.1. For the time-delayed correlation networks, we used
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time-delays as described in §3.2, that is, we considered time-delays that were multiples of

the sample frequency up to the sample period. For the community-wide implementation,

we report the maximum J across all considered time-delays for each sample frequency. For

the pairwise implementation, we determined time-delays for each host-virus pair such that

correlation was maximized as described in §3.3 for each sample frequency.

For both the nested and modular communities, moderate sample frequencies (1−12 hours)

performed slightly better than very high sample frequencies (15 minutes) or very low sample

frequencies (24 − 48 hours) across the three implementations (Fig 6). For the nested com-

munity, the highest score was J = 0.23 (p = 0.1) for a sample frequency of 4 hours, using a

community-wide time-delay. The simple and pairwise time-delay implementations had only

slightly lower scores. For the modular community, the highest score was J = 0.6 (p = 0.001)

for a sample frequency of 12 hours, using a community-wide time-delay, which outperformed

both the simple and pairwise time-delay implementations.

4 Discussion

Using in silico virus-host communities, we calculated correlation networks amongst viral

and microbial population time-series using both simple correlations and time-delayed cor-

relations. In the case of time-delayed correlations, we considered a two implementations: a

single community-wide time-delay and unique pairwise time-delays. The correlation networks

for all three implementations failed to effectively recover the original interaction networks,

as quantified by the efficacy score J , the maximum difference between true positive and false

positive rates. There was a single test scenario involving a modular network where inference

was found to be statistically significant (Supp Fig 2). Although significant, the efficacy score

was still low. Furthermore, without knowing the interaction network a priori – such as when

considering in situ communities – it is not clear which particular community-wide time-delay

and threshold should be used, nor that they would be robust properties of the community

(e.g. to different initial conditions or measurement noise). Because we observed low ef-
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ficacy scores which were non-significant, we conclude that the correlation networks do not

meaningfully predict interactions given this mechanistic model of virus-microbe interactions.

In this work, we examined virus-microbe interaction networks which were highly nested

as well as networks which were highly modular. These structures are characteristic of com-

plex networks where each host and virus population interacts with many others, as observed

in virus-microbe communities using culture-based assays [8, 9, 10]. Complex interaction net-

works can drive weak correlations amongst interacting taxa and strong correlations amongst

non-interacting taxa, due in part to mutual interactions which act as confounding variables

(e.g. taxa A and B both interact with taxa C but not with each other) [41, 42]. It is also

worth noting that counfounding effects from nonlinearities and feedbacks in the underly-

ing dynamical system might cause correlation networks to fail even for simple interaction

networks.

Our results came from generating time-series via a particular dynamical model and apply-

ing a correlation-based inference method. There is some evidence that correlation performs

poorly regardless of the underlying model (see [41, 42]). This has important implications

for using correlation-based methods with experimental time-series: if correlation performs

poorly for a wide range of in silico models, similar or even worse performance should be

expected for in situ communities. At the very least, the particular correlation-based method

of interest should be benchmarked in silico before its use with experimental data, including

examining the effects of measurement noise and internal system stochasticity.

Despite the difficulties and ambiguities associated with correlation-based inference meth-

ods, they are still widely used within in situ studies of virus-microbe interactions and

microbe-microbe interactions more generally. In light of the poor performance of correlation-

based approaches, we advocate for increased studies of model-based inference. In essence,

such model-based approaches ask the question: which interaction network is compatible with

the observed changes in populations arising from an underlying dynamical model? Thus

model-based approaches avoid the assumption that correlations provide direct information
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on interactions. Given favorable results of in silico benchmarking of model-based methods

[41, 42, 47, 48, 49, 50], it will be important to take the next step: to investigate the efficacy

of model-based inference of virus-microbe interaction networks in situ.
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Figure 1: Six example interaction networks characterized by A) nestedness and B) modular-
ity. These are 10 by 10 networks, with rows representing host types and columns representing
viral types. Navy squares indicate interaction (Mij = 1), that is, the virus can infect and
lyse the host. From right to left, the nestedness values are NODF = 1, 0.8, and 0.3, and the
modularity values are Qnorm = 1, 0.8, and 0.3. The networks are generated as described in
§2.2 and are arranged in their most nested or most modular forms using [43]. Nestedness
and modularity values are measured using [43].

parameter sampling range units
H∗i host i target steady-state density 103 − 104 cells/mL
V ∗j virus j target steady-state density 106 − 107 virions/mL
K community-wide host carrying capacity 106 cells/mL
φij adsorption rate of virus j into host i 10−7 − 10−6 mL/ (virion · day)
βij burst size of virus j per host i 10− 100 virions/cell
H∗0i host i target steady-state density 103 − 106 cells/mL

in the absence of viruses
aii′ competitive effect of host i′ on host i 0− 1

Table 1: Sampling ranges for the target steady-state densities and the life history traits in
the virus-host dynamical system (Eqns 1 and 2). The remaining life history traits, the viral
decay rates mj and host growth rates ri, are solved for in terms of these sampled parameters
and the interaction network M (Eqns 4 and 5). Sampling ranges are taken from [45].

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2017. ; https://doi.org/10.1101/176628doi: bioRxiv preprint 

https://doi.org/10.1101/176628
http://creativecommons.org/licenses/by/4.0/


Figure 2: Calculating simple correlation networks for the in silico A) nested and B) modular
communities. A1-B1) Original weighted interaction networks, generated as described in §2.3
from sample ranges in Table 1. A2-B2) Simulated time-series of the virus-host dynamical
system (Eqns 1 and 2), generated as described in §2.4. A3-B3) Log-transformed samples of
the time-series, sampled every 8 hours for 800 hours. A4-B4) Simple correlation networks,
calculated from the log-transformed time-series samples (Eqn 6).
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Figure 3: Evaluating correlation network efficacy for the in silico A) nested and B) modular
communities. A1-B1) The correlation networks are binarized according to thresholds c be-
tween −1 and +1, three of which are shown here (c = −0.5, 0, and 0.5). A2-B2) The original
interaction networks are also binarized. A3-B3) For each threshold, the two binary networks
are compared by calculating true positive rates (TPR) and false positive rates (FPR). On
the resulting ROC curve, the three example thresholds (c = −0.5, 0, and 0.5) are marked
(red, white, and blue circles). The dashed line, or “non-discrimination” line, is where TPR
is equal to FPR. The optimal threshold c∗ is marked (green triangle) and yields the greatest
difference J between TPR and FPR. Distributions for the reported p-values are shown in
Supp Fig 1-A1 and -B1.
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Figure 4: Time-delayed correlation networks with a community-wide time-delay for the
in silico A) nested and B) modular communities. A1-B1) Original weighted interaction
networks. A2-B2) Representative correlation networks for community-wide time-delays τ =
200, 400, and 600 hours (Eqn 7), with ROC curves below. On the ROC curves, the thresholds
c = −0.5, 0, and 0.5 are marked (red, white, and blue circles), as well as the optimal threshold
c∗ (green triangle). Distributions for the reported p-values are shown in Supp Fig 1-A2
and -B2. A3-B3) Scores J for every considered community-wide time-delay (blue line) and
associated p-values (grey line). The representative time-delays τ = 200, 400, and 600 hours
are marked (orange stars).
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Figure 5: Time-delayed correlation networks with pairwise time-delays for the in silico A)
nested and B) modular communities. A1-B1) Original weighted interaction networks. A2-
B2) Pairwise time-delays applied to the host time-series samples. Time-delays are chosen so
that the host-virus pair’s correlation is maximized as described in §3.3. A3-B3) The time-
delayed correlation networks (Eqn 7). A4-B4) ROC curves for the correlation networks.
The thresholds c = −0.5, 0, and 0.5 are marked (red, white, and blue circles), as well as the
optimal threshold c∗ (green triangle). Distributions for the reported p-values are shown in
Supp Fig 1-A3 and -B3.
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Figure 6: Correlation network efficacy J for varying sample frequencies for the in silico A)
nested and B) modular communities. The correlation networks were implemented with A1-
B1) no time-delays A2-B2) community-wide time-delays, and A3-B3) pairwise time-delays.
The 8-hour sampling frequency used in earlier results (§3.1, 3.2, 3.3) is marked (orange star).
For the community-wide time-delayed correlation networks, we report the maximum J across
all considered time-delays for each sample frequency. Pairwise time-delays were chosen as
described in §3.3 for each sample frequency. The number of sampled time-points was held
constant at 100 as described in §3.4.
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