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ABSTRACT 

Genome-wide association studies have revealed many loci contributing 

to the variation of complex traits, yet the majority of loci that contribute to 

the heritability of complex traits remain elusive. Large study populations 

with sufficient statistical power are required to detect the small effect 

sizes of the yet unidentified genetic variants. However, the analysis of 

huge cohorts, like UK Biobank, is complicated by incidental structure 

present when collecting such large cohorts. For instance, UK Biobank 

comprises 107,162 third degree or closer related participants. 

Traditionally, GWAS have removed related individuals because they 

comprised an insignificant proportion of the overall sample size, 

however, removing related individuals in UK Biobank would entail a 

substantial loss of power. Furthermore, modelling such structure using 

linear mixed models is computationally expensive, which requires a 

computational infrastructure that may not be accessible to all 

researchers. Here we present an atlas of genetic associations for 118 

non-binary and 599 binary traits of 408,455 related and unrelated UK 

Biobank participants of White-British descend. Results are compiled in a 

publicly accessible database that allows querying genome-wide 

association summary results for 623,944 genotyped and HapMap2 

imputed SNPs, as well downloading whole GWAS summary statistics for 

over 30 million imputed SNPs from the Haplotype Reference Consortium 

panel. Our atlas of associations (GeneAtlas, 

http://geneatlas.roslin.ed.ac.uk) will help researchers to query UK 

Biobank results in an easy way without the need to incur in high 

computational costs.  
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INTRODUCTION 

Most human traits are complex and influenced by the combined effect of large 

numbers of small genetic and environmental effects1. Genome-wide association 

studies (GWAS) have identified many genetic variants influencing many 

complex traits. The largest genetic effects were discovered with modest sample 

sizes, with researchers subsequently joining efforts to increase the size of the 

study cohorts, thus allowing them to identify much smaller genetic effects. The 

UK Biobank2, a large prospective epidemiological study comprising 

approximately 500,000 deeply phenotyped individuals from the United Kingdom, 

has been genotyped using an array that comprises 847,441 genetic 

polymorphisms, with a view to identify new genetic variants in a uniformly 

genotyped and phenotyped cohort of unprecedented size.  

The unprecedented size of this cohort has raised a number of analytical 

challenges. First, storing, managing and analysing the circa 96 million genetic 

variants for around half a million individuals is, in itself, a substantial endeavour. 

Second, the collection of samples at this scale has brought up an analytical 

challenge. As many relatives were unintentionally collected in the cohort, 

removing them from the analyses as traditionally done in GWAS would entail a 

substantial loss of statistical power.  Third, fitting a Linear Mixed Model (LMM), 

the standard analytical technique to perform GWAS when the sample contains 

related individuals, at this scale entails a computational burden which may be 
beyond the means of many institutions.  

The objective of the current study was to perform GWAS for 717 traits in UK 

Biobank, adjusting for the effect of relatedness to minimise the loss of statistical 

power whilst avoiding false positives due to family structure, in individuals of 

White-British descend and to make a searchable atlas of genetic associations in 
UK Biobank for the benefit of the research community. 

RESULTS 

Data overview  

In July 2017, the UK Biobank released genotyped data from circa 490,000 

individuals of largely White-British descend genotyped for 805,426 SNPs. We 
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performed GWASs for 599 binary traits and 118 non-binary traits, the latter 

including continuous traits and traits with multiple ordered categories 

(Supplementary Table 1). For each of these traits we used a LMM to test 

31,415,476 genetic polymorphisms for association. In total, we tested 623,944  

genotyped and 30,798,054 imputed genetic polymorphisms imputed using the 

Haplotype Reference Consortium3 as reference panel. All successfully tested 

polymorphisms are shown in the database and associated downloadable files to 

allow individual researchers to apply their own quality control thresholds. The 

summary results presented here are based on quality controlled genotyped 

polymorphisms (Methods). 

 

The phenotypes selected comprise a mix of baseline measurements (e.g. 

height), self-reported traits at recruitment (e.g. self-reported depression), and 

Hospital Episode Statistics (i.e. data collected during hospital admissions) as 

well as cancer diagnoses from the appropriate UK Cancer Registry. Since UK 

Biobank is a recently stablished prospective cohort, we allowed for potential 

differences in statistical power among binary and non-binary traits by splitting 

the presentation of the data into non-binary and binary traits. 

 

Heritability Estimates  

Heritability estimates inform about the contribution of genetics to the observed 

phenotypic variation. The heritability of many of the 717 traits analysed here has 

never been reported, but even if they have been reported it is useful to know 

how much phenotypic variation is captured by the SNPs in a cohort of the size 

and interest of UK Biobank. The majority (78.4%) of the traits analyzed had a 

significant SNP-heritability (P<0.05; Figure 1), with the largest SNP heritability 

being for ankylosing spondylitis, which was 0.9 on the liability scale. The mean 

and median heritability among those that were significant were 0.12 and 0.09, 

respectively. Mean heritabilities were significantly different for binary and non-

binary traits (h2
Non-binary=0.16; h2

Binary=0.11; P=1.7x10-7). A total of thirty-one 

traits, all binary, had a heritability estimate close to zero (h2
Liability < 10-4). Only 

two of those thirty-one traits had no genome-wide significant hits (P<10-8) and 
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three of them had more than ten hits. This scenario could arise for monogenic 

and oligogenic traits for which the model assumptions do not hold or because of 

false positives. The Manhattan plots for the traits that had the largest numbers 

of hits are consistent with these hits being false positives and not with the 

violation of the model assumptions (Supplementary Fig. 1). 

 

Estimates of genetic and environmental correlations show that for 29% of the 

pairs of non-binary traits the genetic and environmental correlation changes 

sign (Supplementary Fig. 2, GeneAtlas web page). In other cases, the 

environmental and genetic correlation had the same sign, but the environmental 

correlation were larger than the genetic correlation. For instance, a behavioural 

trait such as time spent watching television, had lower genetic than 

environmental correlations with obesity traits. Similarly, the environmental 

correlation of obesity related traits and the number of medications taken was 

larger than the genetic correlation. Across all non-binary pairs of traits for which 

the genetic and environmental correlation had the same sign the absolute value 

of the genetic correlation was smaller in 38% of the cases. Overall, taking into 

account the size of observed heritabilities, this suggests that the phenotypic 

covariance of many of these traits is mainly driven by the environment and not 

genetics. 

 

Distribution of genotyped GWAS hits among non-binary trait 
Just below a quarter of a million of the circa 73 million tests performed across 

118 non-binary traits were significant at a conventional genome wide threshold 

(P<10-8) (Supplementary Table 2), and 204,374 were significant after Bonferroni 

correction (P<0.05/(623944*118). The significant associations where distributed 

across 22,497 leading polymorphisms mapping to 16,148 independent loci 

(Methods, Figure 2). A large proportion of these associations (37.7%) were 

within the HLA region (Supplementary Table 2). The fraction of significant 

polymorphisms was always larger than expected by chance under the 

assumption that all traits and polymorphisms were independent. For example, 

even at a threshold of P=10-2, we observed a ~4 fold enrichment of significant 
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associations, consistent with the hypothesis that complex traits are extremely 

polygenic and determined by many variants of very small effect. In such a case, 

these effects are so small that we anticipate that it will be practically impossible 

to detect them at the levels of genome-wide statistical significance currently 

used as this would require studies of extremely large sample sizes. 

 

About 6.7% of the tested polymorphisms reached genome-wide significant 

thresholds (P<10-8) for at least one of the 118 tested traits, whilst 78% of the 

tested polymorphisms were associated with at least one of these 118 traits at a 

significance level of 10-2 (Supplementary Table 3). There were 1405 variants 

which each were associated with more than 30 of the tested non-binary traits 

(Figure 3, Supplementary Fig. 3). The intronic variant (rs1421085) within the 

FTO gene had the largest number of genome-wide significant associations, 

being found to be associated with 57 traits (Supplementary Fig. 3). The variant 

at the FTO locus also had the largest average significance across non-binary 

traits (Plog-mean<10-59) (Supplementary Fig. 4), which was largely contributed by 

the associations to anthropometric traits with BMI and Weight measures 

showing the strongest associations (P<10-200). The HLA region contained 

twenty-nine genetic variants which where significantly (P<10-8) associated with 

50 or more of the non-binary traits compared to only eleven such variants in the 

remaining autosomal variants. Four traits ('Standing height', 'Sitting height', 

'Platelet count', 'Mean platelet (thrombocyte) volume') had over 6,000 significant 

associations (P<10-8) across 8556 different independent lead genetic variants 

(Methods). Over three quarters of the non-binary traits had more than 100 

genome-wide significant hits distributed in 22,242 different lead genetic variants. 

Considering the criteria for inclusion of genetic polymorphisms on the 

genotyping array, the HLA polymorphisms were the most enriched for 

associations with at least one trait (83% had a P<10-8), followed by the 

Cardiometabolic, ApoE and Autoimmune/Inflammatory criteria, whilst the lowest 

enrichment was for two low frequency variants categories (“Genome-wide 

coverage for low frequency variants” and “Rare, possibly disease causing, 
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mutations”). Less than 4 in 100 of these polymorphisms was associated with 

any non-binary trait (Supplementary Table 4).  

 

We found a significant correlation (r=0.91, P<10-46) between the number of hits 

and the SNP heritability of the traits, suggesting that the number of loci affecting 

a trait might be proportional to the heritability of the trait (Figure 4, 

Supplementary Fig. 5). Consistent with this model and variation in the 

distribution of linkage disequilibrium across the genome, the correlation of the 

SNP heritability with the number of identified independent loci was similarly high 

(r=0.89, P<10-47). The number of hits (P<10-8) per chromosome was highly 

correlated (r=0.70) with the length of the chromosome covered by the 

genotyped SNPs (Supplementary Fig. 6, Supplementary Table 5). Although this 

correlation could arise under a polygenic model where the length of the 

chromosome is correlated with the number of possible variants affecting the 

traits, the simplest explanation is that it arises as a consequence of the 

correlation of chromosomal length and number of variants per chromosome. 

Comparing the fit of two nested models to explain the number of hits per 

chromosome as a function of number of genetic variants in the array and length 

of the chromosome or just the number of genetic variants was consistent with 

the later explanation (Methods). 

 

Standing height was the trait with the largest number of hits (Figure 5) with 

12,135 significantly associated variants distributed across 4,090 independent 

loci. We estimated that the leading polymorphisms across the 118 traits studied 

are distributed among 16,148 independent loci, therefore 25% of these 

independent loci contribute to the variation of height, as expected by a highly 

polygenic trait4. 

 

Distribution of genotyped GWAS hits among binary traits 

The binary trait with the largest number of cases was self-reported 

hypertension, with an average across binary traits of 6,332 cases 

(Supplementary Table 1). Consistent with the reduced statistical power to detect 
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association with binary phenotypes (mainly diseases) compared to non-binary 

traits we detected 49,974 associations at a P<10-8 (Supplementary Table 2), 

80% of those were within the HLA region.  One in ~7500 genotyped variants 

was genome-wide significant (P<10-8) for binary traits, whilst 1 in ~300 

genotyped variants was significant for non-binary traits. Only genetic variants 

within the HLA region were associated with more than 20 binary traits each 

(Figure 3, Supplementary Fig. 3). 

 

We found a positive correlation (r=0.83, P<10-150) between the heritability of the 

binary trait and the number of genome-wide significant variants, albeit of smaller 

magnitude to that found for the non-binary traits (Figure 4). Some of these traits 

were obvious outliers as they had large heritabilities but few significantly 

associated variants. The three largest heritabilities for binary traits were for 

three autoimmune diseases (ankylosing spondylitis, coeliac disease and 

seropositive rheumatoid arthritis) but few significant variants were found outside 

the HLA region. For instance, 1,031 out 1,035 genome-wide significant 

associations for ankylosing spondylitis were within the HLA region. 

 

Among the categories for inclusion of genetic variants in the genotyping array 

there was a substantial enrichment for HLA (82%), ApoE (50%), Alzheimer’s 

disease (43%) and cancer common variants (38%). The categories with the 

lowest enrichment were genome-wide coverage for low frequency variants 

(1.7%) and Rare, possibly disease causing, mutations (3.4%) (Supplementary 

Table 4). 

 

We show three examples of Manhattan plots (Figure 5). The first example 

shows were there are associations with skin cancer (i.e melanoma and other 

malignant neoplasms of the skin). There are 329 variants associated (P<10-8) 

with skin cancer distributed among 88 independent loci. We found associations 

in genetic variants in or around known susceptibility genes (e.g. MC1R, IRF4, 

TERT, TYR) for melanoma5, but also novel associated genes like FOXP1 

(rs13316357, P=1.6x10-16). FOXP1 has been reported to be a potential 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2017. ; https://doi.org/10.1101/176834doi: bioRxiv preprint 

https://doi.org/10.1101/176834


therapeutic target in cancer6 and its expression shown to change in a patient 

treated with immunotherapy7. The other two examples show the similarity 

between the results of one of the self-reported and clinically defined traits 

available in UK Biobank. The Manhattan plots for self-reported and clinically 

defined coeliac disease are very similar but not identical, which suggests that 

generally there will be benefit in analyzing both clinically and self-reported traits. 

 

DISCUSION 
We used circa 410,000 related and unrelated white-British UK Biobank 

participants to build the largest atlas of genetic associations to date. Summary 

statistics for 717 traits will be available to the research community to help them 

gain further insight into the genetic architecture of complex traits. Unlike other 

currently available databases, like the GWAS catalog (which contains 

39,366 unique SNP-trait associations), our database includes significant and 

non-significant associations, providing thus an unbiased view of phenotype-

genotype associations across a large number of traits. In addition, the database 

contains 76,345 independent genotype-phenotype associations, genetic and 

environmental correlations, and estimates of SNP heritability to allow 

researchers to perform their own filters on what a meaningful association or 

heritability is. We hope this database will be useful to those working on complex 

traits genetics, but also to those that have not got the expertise or capabilities to 

perform analyses at this scale.  

 
URLs 
Geneatlas, http://geneatlas.roslin.ed.ac.uk; UK Biobank, 

http://www.ukbiobank.ac.uk/; ARCHER UK National Supercomputing Service, 

http://www.archer.ac.uk; DISSECT, https://www.dissect.ed.ac.uk; GWAS 

catalog https://www.ebi.ac.uk/gwas/; Affymetrix array 

https://affymetrix.app.box.com/s/6gc2mcw2s6a7zbb7wijn 
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Figures and Tables 

Figure 1. Numbers of phenotypes of different SNP heritability. Colours 
indicate the fraction of phenotypes with heritability significantly (P < 
0.05) different from zero in each bin.  
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Figure 2. Histograms of numbers of significant associations (P < 10-8) 
for each phenotype (left) and independent locus (right) for non-binary 
(top) and binary (bottom) phenotypes. 
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Figure 3. Number of significant associations (P < 10-8) at each tested 
genetic variant for all traits, non-binary and binary phenotypes. The HLA 
region (±10Mb) is indicated.        
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Figure 4. Relationship between estimated SNP heritability and numbers 
of genome wide significant associations (P < 10-8) outside the HLA and 
surrounding 10Mb region for non-binary and binary phenotypes 
respectively. 
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Figure 5. Manhattan plots for chosen phenotypes with the largest 
number of genome wide significant associations (P < 10-8) within each 
of four categories (all phenotypes, cancer registry, hospital episode 
statistics and self-reported non cancer illness). From top to bottom: 
amongst all phenotypes (Standing height), cancer registry phenotypes 
(Melanoma and other malignant neoplasms of skin), clinical information 
from hospital episode statistics and self-reported non cancer illness 
(intestinal malabsorption and malabsorption/coeliac disease 
respectively). Genetic variants with P < 10-30 are indicated by marks 
along the top of each plot.  
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ONLINE METHODS  

Phenotypes  

In total we analysed 717 phenotypes in White-British UK Biobank participants. 

These included 596 binary phenotypes generated from self-reported disease 

status, ICD10 codes from hospitalization events, and ICD10 codes from 

cancer registry, as well as a further 3 binary and 118 non-binary (comprising 

continuous and integral measures) phenotypes from across the UK Biobank. 

A description of each phenotype, its category and the relevant UK Biobank 

fields can be found in Supplementary Table 1. Some of the traits analysed 

have some redundancy that has been left for completeness, that is some of 

these traits were measured in different ways during the study (e.g. weight) or 

are analysed as self-reported traits and clinical traits (e.g. malabsorption). For 

disease traits all individuals reporting a disease code were coded as cases 

with all other individuals considered controls. Only non-disease phenotypes 

with missing data rate < 5% were selected for analysis. For these phenotypes 

missing values were imputed to the age and sex specific mean in the White-
British cohort.  

 

Genotypes 

The genotypes of the UK Biobank participants were assayed using either of 

two genotyping arrays, the Affymetrix UK BiLEVE Axiom or Affymetrix UK 

Biobank Axiom array. These arrays were augmented by imputation of ~96 

million genetic variants from the Haplotype Reference Consortium3, the 

thousand genomes8 and the UK 10K8 projects. Full details regarding these 

data have been published elsewhere9.  

 

We excluded individuals who were identified by the UK Biobank as outliers 

based on either genotyping missingness rate or heterogeneity, whose sex 

inferred from the genotypes did not match their self-reported sex and who 

were not of white British ancestry. Finally, we removed individuals with a 

missingness >5% across variants which passed our QC procedure. The 

resulting White-British cohort comprised 408,455 individuals.  
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From the genotyped data we only retained bi-allelic autosomal variants which 

were assayed by both genotyping arrays employed by UK Biobank. We 

furthermore excluded variants which had failed UK Biobank quality control 

procedures in any of the genotyping batches. Additionally we excluded 

variants with P < 10-50 for departure from Hardy-Weinberg, computed on a 

subset of 344,057 unrelated (Kinship coefficient < 0.0442) individuals in the 

White-British cohort, and with a missingness rate > 2% in the White-British 

cohort. Only variants with MAF>10-4 in the White-British cohort were tested for 

association in the GWAS of the 717 traits, this cut-off corresponds to less than 

82 occurrences of the minor allele in the White-British cohort.  

 

GWAS Analysis 
To test each genetic variant whilst taking into account population structure in 

UK Biobank (e.g. presence of related individuals or local structure), we used a 

Linear Mixed Model. Specifically, the model takes the form 
𝐲 = 𝐗𝛃+ 𝐠+ 𝛜, 

where y is the vector of phenotypes, X, is the matrix of fixed effects, and β the 

effect size of these effects. We included as fixed effects sex, array batch, UK 

Biobank Assessment Center, age, age2, and the leading 20 genomic principal 

components as computed by UK Biobank. g is the polygenic effect that 

captures the population structure, fitted as a random effect. It follows the 

distribution 𝐠~𝐍 0,𝐀𝜎!! , with A the Genomic Relationship Matrix (GRM), and 

𝜎!! the variance explained by the additive genetic effects. The GRM was 

computed using common (MAF > 5%) genotyped variants that passed quality 

control. Finally, 𝛜~𝐍 0, 𝐈𝜎!!  is a residual effect not accounted for by the fixed 

and random effects. Under this model, the phenotype vector 𝐲, follows the 

distribution 𝐍 𝐗𝛃,𝐀𝜎!! + 𝐈𝜎!! . 

 

Fitting one instance of such a LMM model is computationally very demanding. 

Following a naïve approach, the required computational time increasing with 

the cube of the sample size, ~O(N3), and the memory requirements with the 

square of the sample size, ~O(N2). Consequently, fitting a single model on a 

cohort of the size of UK Biobank is challenging, and fitting millions of these 
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models, one for each analysed genetic variant and phenotype is not feasible 

with standard computational and statistical approaches. To address this 

problem, we took advantage of three different tools. First, we used a large 

supercomputer (5,040 processor cores working together for ~10h, and using 

~5TB of memory for computing the GRM eigen-decomposition), and 

DISSECT10 to speed up the calculations. Second, we computed the full eigen 

decomposition of the GRM, 𝐀 = 𝚲𝚺𝚲!, where 𝚲 is the matrix  of eigenvectors, 

and 𝚺 is a diagonal matrix containing the eigenvalues. This allowed us to 

transform all the other model matrices, y, X, and 𝛜 to the new space where the 

GRM is diagonal. Although the eigen-decomposition is a computationally 

intensive process, once diagonalized, the computational time of fitting a model 

is reduced considerably to ~O(N), thus enabling us to perform several tests 

using Mixed Linear Models on a cohort of hundreds of thousands of 

individuals. Finally we performed over 23 billion tests using a two-step 

approximation that optimizes the computational resources11. The first step of 

the approximation fits a LMM that adjusts by the relevant fix (e.g. age, sex, 

etc.) and random effects (genetic effects) to each trait, the second step uses 

the residuals of LMM to test all available genetic markers for significance in a 

linear model. We adjusted for the genetic variants genotyped in the odd 

chromosomes when testing polymorphisms in the even chromosomes, and for 

the genetic variants genotyped in the even chromosomes when testing 

genetic variants in the odd chromosomes.  

 

HLA Region  
We defined the HLA region as the region of chromosome 6 spanning base 

pairs 28,866,528 to 33,775,446. Throughout all analyses we included 10Mb 

either side of the above HLA region to account for LD with variants outside 

this region. 

 

Estimation of Genetic Parameters 

In order to estimate heritabilities and genetic correlations we fitted LMMs for 

each trait with a GRM containing all common (MAF > 5%) autosomal genetic 

variants which passed QC. The heritability was estimated as ℎ!! = 𝜎!!/ 𝜎!! +
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𝜎!! , where 𝜎!! and 𝜎!! are the estimates of the genetic and residual variance. 

For all binary outcomes, we transformed heritabilities on the observed scaled 

to the liability scale using the population prevalence of the disease. We 

provide sex-specific prevalences to allow sex-specific transformations 

(Supplementary Table 1). Using the model fits we computed best linear 

unbiased predictor estimates of genetic additive values for each individual. 

The genetic correlations were estimated by computing correlations between 

these additive genetic values. Environmental correlations were estimated as 

𝑟! = (𝑟! − ℎ!!ℎ!! 𝑟!)/ (1− ℎ!!)(1− ℎ!!), where 𝑟!, 𝑟! are the phenotypic and 

genetic correlations for traits 𝑖, 𝑗 and. 

  

Independent Loci 
We clustered GWAS results into independent loci using the --clump option of 

the plink 1.9 software12. Specifically for each trait individually, we clustered 

GWAS results by selecting genome wide significant variants as lead variants 

and assigning to them unassigned variants within 10Mb, that have P<10-2 and 

a 𝑟! > 0.3 with the lead variant. To compute the total number of independent 

loci across all traits, we performed the same clustering on the lead variants of 

loci across all traits, choosing the lowest P value for variants which were lead 

variants of a locus in different traits.     
 

Relation of association count and chromosome length  
We regressed the number of significant associations (P<10-8) across traits for 

each chromosome on the covered length of the chromosome, i.e., distance in 

base pairs of the first and last genetic variants contained on the genotyping 

array, and the number of genetic variants on the chromosome contained on 

the genotyping array. For chromosome 6 we excluded the HLA region and 

variants contained therein from the statistics. We compared the full model to 

one with either the chromosomal length or number of genetic variants 

removed using the likelihood ratio test. The full model was not significantly 

better than either of the reduced models, which both were significant when 

compared to a null model containing only an intercept.         
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