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ABSTRACT 

 

Genome-wide RNA structure maps have recently become available through the coupling of 

in vivo chemical probing reagents with next-generation sequencing. Initial analyses relied on 

the identification of truncated reverse transcription reads to identify the chemically modified 

nucleotides, but recent studies have shown that mutational signatures can also be used. 

While these two methods have been employed interchangeably, here we show that they 

actually provide complementary information. Consequently, analyses using exclusively one 

of the two methodologies may disregard a significant portion of the structural information. We 

find that the identity and sequence environment of the modified nucleotide greatly affects the 

odds of introducing a mismatch or causing reverse transcriptase drop-off. Finally, we identify 

specific mismatch signatures generated by dimethyl sulfate probing that can be used to 

remove false positives typically produced in RNA structurome analyses, and how these 

signatures vary depending on the reverse transcription enzyme used. 
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INTRODUCTION 

 

In the last decades, it has become clear that RNAs are not simply intermediaries between 

DNA and protein, but are in fact functional molecules capable of regulating central cellular 

and developmental processes, such as genome organization and gene expression, and 

comprise the bulk of human genomic programming [1-4]. Because RNA is a single-stranded 

molecule, it tends to fold back on itself, forming stable secondary and tertiary structures by 

internal base pairing and other interactions. RNA structure plays an essential role in 

determining the function and dynamics of these molecules, and can vary depending on 

environmental conditions [5, 6]. Thus, accurate genome-wide RNA structural maps can allow 

for better understanding of the complexity, function, and regulation of the transcriptome [7, 8]. 

 

Dimethyl sulphate (DMS) and 2'hydroxyl acylation and primer extension (SHAPE) reagents 

have traditionally been used to obtain experimental measurements of RNA structure, 

providing information on base-pairing and tertiary interactions of the RNA molecules [9-11]. 

These chemicals show selective reactivity toward unpaired RNA bases. Until recently, 

limitations of probing reagents as well as sequencing and informatics had restricted 

structural profiling analyses to a few in vitro folded RNAs. In recent years, however, DMS 

and SHAPE chemical labeling have been coupled to next-generation sequencing [12-18], 

providing genome-wide RNA structure maps that have provided substantial information 

regarding the dynamics of RNA structures in a variety of cellular contexts [12, 15]. 

 

Initial attempts to analyze genome-wide RNA structure data relied on the truncation of 

reverse transcription upon reaching a nucleotide that has been chemically modified by 

probing reagents  [13, 15, 16, 19, 20]. However, these methods present several limitations 

and caveats, such as the presence of naturally occurring modified nucleotides and the 

addition of untemplated nucleotides by the reverse transcriptase (RT) [21], hindering the 

correct annotation of the modified base. At least 8% of the annotated positions constitute 

false positives, as 8% of annotated read ends of DMS-Seq analyses are typically mapped 

onto G and T bases [15], while only A and C bases should be identified by this technique. 

Moreover, RNA ligases commonly used for adapter ligation have distinct sequence 

preferences for the ends being ligated, thereby biasing the representation of the read ends in 

the resulting libraries [22]. 

 

To overcome these limitations, several groups have used the increased mismatch rates that 

occur at DMS- and SHAPE-modified nucleotides [23], known as mutational profiling (MaP), 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2017. ; https://doi.org/10.1101/176883doi: bioRxiv preprint 

https://doi.org/10.1101/176883
http://creativecommons.org/licenses/by-nc/4.0/


giving rise to SHAPE-MaP [24] and DMS-MaPSeq  [25], respectively. However, mutations 

occur at low frequency, and therefore, they can only be identified in transcripts with very high 

read coverage. Consequently, these methods are generally limited to the analysis of 

individual RNA transcripts [23, 24, 26], smaller genomes such as the HIV-1 RNA genome 

[23], or to highly expressed genes in more complex genomes [25]. 

 

Here we have analyzed transcriptome-wide DMS-seq datasets of in vivo probed zebrafish 

embryos (see Methods) - including well-characterized RNA structures as spike-ins -, and 

have compared the quantification of DMS modifications using either the reverse transcription 

truncation signals or MaP. Previous studies have employed either reverse transcription 

truncation signals [15] or MaP [25], with the underlying assumption that results will largely 

overlap. Contrary to expectations, we find a low correlation between the two methodologies, 

despite correct identification of unpaired nucleotides by each methodology. Furthermore, the 

probability of driving a mismatch or a RT-stop signal upon reverse transcription is dependent 

on both the identity of the modified nucleotide as well as on the sequence context. 

Considering our findings, we suggest that RNA structural analyses based on DMS or SHAPE 

probing should combine both RT truncation signals and MaP to best capture structural 

information.  

 

RESULTS 

 

Mutational profiling and RT drop-off analyses contain non-overlapping 

complementary information 

DMS has traditionally been used to probe RNA structure in vivo. It reacts with the N1 of 

adenosines, N3 of cytosines and N7 of guanosines in single stranded (ss) RNA, resulting in 

chemically modified nucleosides 1-methyladenosine (m1A), 3-methylcytosine (m3C) and 7-

methylguanosine (m7G), respectively. Reverse transcription is typically blind to m7G 

modifications, as they do not affect the hydrogen bonds involved in Watson-Crick base 

pairing. In contrast, methylations occurring in the N3 moiety of cytosine (m3C) and N1 of 

adenosines (m1A) affect the Watson-Crick base-pairing (Figure 1A), and can therefore 

cause RT drop-off [27] as well as increased error rates (‘mismatch’ patterns) upon reverse 

transcription [28, 29] (Figure 1B).  

 

To compare the set of DMS-modified positions identified using either the reverse 

transcription truncation methodology (RT drop-off) or the mutational profiling methodology 

(Figure 1B), we first examined the RT-stop signals and mutational profiles of two spike-ins 
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with known RNA structure—the Tetrahymena ribozyme (Rz) [30] and the tRNA spinach 

cassette (Spi) [31]. Read coverage for these two molecules was extremely high (~50,000X), 

facilitating the identification of low frequency mismatch positions observed upon DMS 

probing with high confidence. We find that both methodologies quantify the level of per-

nucleotide DMS modification with high replicability in both spike-ins (Pearson’s r=0.92-0.99) 

(Figure 1C). However, when we compared the individual positions identified by each 

methodology, we found only a partial overlap between the two methods (Figures 1D and 

1E), suggesting that mutational profiling and RT truncation methods are capturing non-

overlapping sets of DMS-modified nucleotides.  

 

Direct comparison of the identified positions shows that RT drop-off methodologies are 

unable to capture DMS-modified positions at the 5’ and 3’ end of the molecule (Figures 1D 

and 1E), which is an intrinsic limitation of the RT-stop methodology, due to the size selection 

step. In contrast, mutational profiling methods are capable of identifying DMS-modified 

positions in these regions. When comparing the overlap of positions identified by each 

methodology, we find that 40% of the positions identified using mutational profiling are not 

identified by RT-stop methodologies in transcriptome-wide analyses (Figure 2A). Similarly, 

in the spike-ins, 11-26% of mismatched positions are not identified by RT methodologies 

(Figure 2B). 

 

The number of positions identified by the RT-stop signal methodology is ~2-fold higher than 

the mutational profiling methodology in the spike-ins (Figure 2B), and up to 15-fold higher 

when analyzing transcriptome-wide datasets (Figure 2A). This difference is partly due to the 

size-selection step in the library preparation, which enriches the sample in RT truncated 

reads, as well as on the coverage requirement of 50 reads/nucleotide that was used to 

identify mismatched positions (see Methods), which greatly limits the set of predicted 

mismatches to highly expressed genes. 

 

Both methodologies correctly identify unpaired nucleotides   

To ascertain whether both methodologies correctly identified unpaired positions, we 

superimposed the predicted mismatch and RT-stop positions onto the known secondary 

structure of the Tetrahymena ribozyme, finding that both methods correctly identify unpaired 

positions (Figure 2C and S1). We find that some unpaired nucleotides are preferentially 

identified using the RT truncation methodology (green), whilst others are preferentially 

identified using mutational profiling (red), further supporting the idea that the two 

methodologies capture non-overlapping information.  
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Intriguingly, most of the ‘preferentially identified’ nucleotides by mutational profiling appeared 

to be Cs, whereas most of the ‘preferentially identified’ nucleotides by the RT truncation 

method tended to be As (Figure 2C). Based on this observation, we hypothesized that the 

underlying reference nucleotide might affect the fate of the reverse transcriptase, i.e. the 

reverse transcriptase might preferentially incorporate mutations or drop-off depending on the 

identity of the modified-nucleotide. Then, we compared the signal from both methodologies 

at individual As and Cs (Figure 2D), to see if there were quantitative differences between the 

two. We find that, both in the spike-ins and transcriptome-wide analyses, positions 

predominantly identified by the mutational profiling methodology were largely Cs (red) 

whereas those predominantly identified by the RT-stop method corresponded to As (blue). 

Moreover, we observe no correlation between the two signals (Figure 2D). This observation 

further supports that both methodologies are capturing, at least in part, non-overlapping 

information.  

 

Choice of mismatch or RT stop is dependent on the nature of the DMS-modified 

nucleotide  

Previous genome-wide studies employing RT truncation methodologies to retrieve DMS-

modified positions had reported that 68% of the modified positions had an adenosine as 

underlying nucleotide, while only 24% of the positions had a cytosine [15]. Consequently, 

DMS probing has been generally assumed to be biased towards modifying adenosines 

compared to cytosines [1]. Here we find that RT-stops tend to occur more frequently at 

adenosines (54%), in agreement with previous reports [15]. However, we observe that 66% 

of the mutational profiling signal arises from cytosines (Figure 2E). Our results contrast with 

the belief that DMS preferentially reacts with adenosines, and suggest that DMS does not 

preferentially react with one nucleotide or another, but instead, that the method of analysis 

largely determines which DMS-modified positions will be detected.  

 

We then investigated whether the sequence context was affecting the outcome of the 

reverse transcription. We find that sequence contexts using either methodology appear to be 

slightly enriched in AT-rich contexts (Figure 2F), which may be due to biases introduced 

during library preparation [32]. When comparing the two methodologies, we observe no 

differences in the sequence context in the 5’ vicinity of the modified positions. In contrast, we 

do observe that the sequence context found in the 3’ vicinity of the modified positions is 

different (Figure 2F). At first sight, our analysis would suggest that the sequence context is 

playing a role in determining the fate of the reverse transcription (i.e. mismatch or RT-stop). 
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Unfortunately, library preparation biases, such as ligation bias, will also affect the sequence 

context identified using RT-stop methodologies, but not the sequence context identified using 

mutational profiling. Consequently, we cannot exclude the fact that the observed sequence 

context differences may be partially arising from library preparation biases that are unequally 

affecting the two methodologies. 

 

DMS probing generates distinct mismatch signatures for m3C and m1A 

In the last years, it has been suggested that each RNA modification may produce a different 

mismatch “signature”, where the identity and relative proportion of the misincorporated 

nucleotides may provide a clue on the nature of the underlying RNA modification [28, 29]. 

Previous works have employed machine learning algorithms –trained with known tRNA 

modifications–  to predict the nature of each RNA modification based on its mismatch pattern 

[28]. However, in our hands, mismatch patterns observed in tRNA molecules were not 

representative of those found in other RNA subtypes, likely due to the enriched modification 

environment and limited sequence diversity of tRNAs. In contrast, DMS-Seq allows for 

building mismatch signatures for both m1A and m3C, as these modifications will be in high 

abundance and in heterogeneous sequence contexts.  

 

To characterize the mutational signal that is produced upon DMS modification, we first 

compared the mismatch frequencies across replicates using 64c zebrafish embryo DMS-Seq 

datasets (Figure 3A). For comparison, we analyzed mismatch frequencies across replicates 

of 64c zebrafish embryo RNA-Seq datasets (Figure 3B). As could be expected, we find that 

the majority of mismatches identified in RNA-Seq datasets show mismatch frequencies ~1, 

suggesting that all these positions actually correspond to single nucleotide polymorphisms 

(SNPs). In contrast, mismatches identified in DMS-Seq datasets display a bimodal 

distribution, where some have mismatch frequencies ~1 -corresponding to SNPs-, whereas a 

second population displays very low mismatch frequencies. By comparing the patterns of 

RNA-Seq and DMS-Seq datasets, it is clear that low frequency mismatches observed in 

DMS-Seq datasets are the ones of interest, i.e. appearing upon DMS treatment. Therefore, 

we discarded those positions whose mismatch frequency was greater than 0.25, and applied 

the same filter both to DMS-Seq and RNA-Seq datasets (Figures 3A and 3B, right panels). 

Surprisingly, there were still a significant amount of mismatched positions that were still 

present in RNA-Seq datasets. Indeed, most of these mismatch positions observed in RNA-

Seq datasets were consistent across replicates, and were also found in DMS-Seq datasets 

(Figure 3C), suggesting that these positions may correspond to naturally occurring RNA 
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modifications or low frequency SNP alleles in our population of embryos, which can act as 

confounders in our analysis, and therefore, should be discarded from the analysis. 

 

To identify the substitution patterns that occur at DMS-modified positions, we then 

subdivided the mismatched positions based on their reference nucleotide, and compared the 

relative frequencies of misincorporated nucleotides (Figure 3D). From the ternary plot 

representations, we observed that both A and C mismatch positions did not randomly 

incorporate nucleotides (which would lead to scattered accumulation of points near the 

triangle’s center), but rather showed a biased “signature”, introducing mismatched 

nucleotides at specific frequencies. More specifically, A-mismatch positions preferentially 

misincorporated G and T bases, while C-mismatch positions preferentially misincorporated T 

bases (Figure S2). 

 

Upon examining all the mismatched positions, with no filter, we found that the majority (66%) 

of mismatched positions were found at A and C bases (Figure 3D). However, we also 

identified mismatches at G and U bases, which are not generated by DMS modification and 

should therefore not be observed. We hypothesized that, as we had seen before, these 

mismatches may be generated by SNPs, as well as by naturally occurring RNA modifications. 

We therefore discarded those positions with mismatch frequencies higher than 0.25, and 

removed mismatches with insufficient coverage or with very low frequency of mismatches, 

which are likely PCR/sequencing artifacts (see Methods). Applying these filters removed 

most of the mismatches observed at G and T bases (Figure 3E), supporting the validity of 

pairing RNA-Seq with DMS-Seq for mutational profile analysis of RNA structure datasets. 

The inclusion of this filtering step led to 89% of the filtered mismatches at A and C bases 

(Figure 3E). Furthermore, the mutational signature observed in A and C was enhanced, as 

could be expected from the mutational profile that has been generated by a single RNA 

modification (m1A and m3C, respectively), thus supporting our filtering steps as means to 

increase the signal-to-noise ratio, even though some true positives may be lost in the 

process. Thus, we conclude that this filtering step, although stringent, is essential for 

increasing the signal-to-noise ratio, and allows for correct identification of DMS-specific 

mutational profiles (Figure 3E). 

 

The class of reverse transcriptase enzyme impacts the mismatch frequency and 

mutational signature  

The retroviral reverse transcriptase SuperScript-III (SS3) enzyme is the most commonly 

used RT enzyme in next-generation sequencing library preparations, including RNA-Seq and 
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DMS-Seq. However, in the presence of modified RNA nucleotides that affect Watson-Crick 

base pairing, retroviral reverse transcriptases lead to a large proportion of RT drop-off 

compared to mismatched nucleotide incorporation [25, 33]. In contrast, the thermostable 

group II intron reverse transcriptase (TGIRT) enzymes have higher processivity, fidelity, and 

thermostability than retroviral RTs [34], leading to lower RT drop-off rates [33], and it has 

been shown that TGIRT increases the mismatch frequency in DMS-modified datasets [25].  

 

Previous studies pioneering DMS-MaPSeq employed TGIRT to increase the proportion of 

mismatched positions in their datasets, and identified 51% of the DMS-modified positions to 

be adenosines [25]. This finding is in contrast with our results, where our mutational profiling 

identifies 66% of DMS-probed positions at cytosines, and only 23% at adenosines (Figure 

2E). We hypothesized that the choice of reverse transcriptase enzyme may not only increase 

the number of mismatches, but also unequally increase the mismatch frequency of m1A 

positions compared to m3C positions. To test this hypothesis, we compared DMS-modified 

64c zebrafish embryo datasets, where samples had been reverse transcribed using either 

SS3 or TGIRT employing a Structure-Seq protocol. We find that the proportion of reference 

nucleotides in DMS-modified samples is largely affected by the enzyme used for reverse 

transcription (Figure 4A).  

 

In agreement with this observation, we find that the increased processivity of TGIRT is not 

equal across DMS-modified positions; more specifically, m1A positions exhibit higher 

processivity than m3C positions (Figure 4B). Consequently, the mismatch signal from the 

TGIRT experiment was enriched at adenosines, whereas the SS3 experiment displayed a 

stronger signal at cytosines (Figure 4A). Interestingly, the relative proportions of reference 

nucleotides of SS3 samples that have been analyzed using RT-stop methodologies, are 

highly similar to those that have been reverse transcribed using TGIRT and analyzed using 

MaP (Figure 4C). This coincidental similar proportion of relative reference nucleotides may 

explain why prior works had not further characterized the non-overlapping nature of the two 

methodologies. 

 

We finally wondered whether the mismatch signatures revealed by our analysis was 

conserved when using different RT enzymes. We find that the mismatch signatures observed 

in Structure-Seq datasets are similar to those found in DMS-Seq datasets using SS3 for both 

m1A and m3C (Figures 4D and 4E). In contrast, the mismatch signature drastically changes 

when using the TGIRT enzyme. Specifically, m1A favors a substitution for a thymine while 

m3C doesn’t exhibit such a clear preferential mutational signature as with SS3 (Figure 4D 
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and 4F). Altogether, RT enzymes alter the processivity of the enzyme unequally across RNA 

modifications, and also affect the proportion and identity of the nucleotides that are 

misincorporated. Hence, we propose that mismatch signatures are not an intrinsic property 

of RNA modifications, but rather, they are specific to each RNA modification-reverse 

transcriptase combination. 

 

DISCUSSION 

 

Next-generation sequencing (NGS) has revolutionized the field of molecular biology, opening 

new avenues to explore the genome, epigenome and transcriptome. In the last few years, 

genome-wide techniques to explore additional layers of regulation, such as RNA structure or 

the epitranscriptome, have become available. Due to their relatively recent appearance, we 

are still facing the challenges of determining how to best analyze these data, as well as 

properly interpreting the results. 

 

Current RNA structure studies are mainly limited to probing single-stranded (ss) regions. 

Thus, it is essential to maximize the analysis of such datasets and to capture the whole 

spectrum of the provided structural information. Here we show that mutational profiling and 

reverse truncation signals are both valid methodologies to identify DMS-modified positions, 

however, the two methodologies capture only part of the structural information. Although 

there is a significant overlap of identified positions between the two methodologies (Figures 

1D, 1E, 2A-C and S1), the quantitative correlation between mismatch frequencies and RT 

drop-offs (accessibilities) is nonexistent or even negative (Figures 2C and D). Therefore, 

contrary to current practice, we suggest that the optimal identification of RNA structure is 

generated by the union of mismatch and RT drop-off signals. 

 

Upon DMS treatment, single-stranded RNA undergoes methylation in three of its four 

nucleotides, giving rise to m1A, m3C and m7G, respectively. In addition to the methylations 

that occur upon DMS treatment, around 20 different naturally occurring RNA modifications 

can also affect reverse transcription, causing both reverse transcription truncation as well as 

increased mismatch rates at the modified position [28, 29, 33, 35]. Here we show that 

multiple mismatch positions in DMS-Seq datasets are present in RNA-seq (Figure 3C), and 

thus, unrelated to DMS probing. We show that coupling RNA-Seq to DMS-Seq allows to filter 

out these positions, increasing the signal-to-noise ratio. Unfortunately, RT truncations 

generated by naturally occurring RNA modifications will still be a source of error in our 

analyses, which could be partially alleviated by using highly processive reverse 
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transcriptases, such as thermostable group II intron reverse transcriptases [34], rather than 

the commonly used viral reverse transcriptases. The use of these enzymes can increase the 

number of identifiable positions using mutational profiling, especially m1A positions (Figure 

2E). 

 

Compared to other genome-wide RNA structure probing reagents such as SHAPE, DMS is 

especially valuable to optimize the filtering step, as it only modifies A and C bases, thus we 

can assess the noise-to-signal ratio based on the number of predicted DMS-modified 

positions that fall in G and T bases. Although this work is mainly focused on the analysis of 

DMS-modified datasets, our findings should be applicable to any probing methodology. In a 

similar fashion to DMS-modified samples, SHAPE-modified datasets are currently being 

analyzed using either RT truncation methodologies [20, 36] or mutational profiling [23, 26], 

but not both. 

 

Importantly, our findings are not only applicable to the field of RNA structure, but also to the 

field of RNA modifications. RNA modifications are known to modulate the structure, function 

and activity of RNA molecules [37-43]. Recent papers have analyzed multiple RNA-Seq 

datasets looking for mismatched nucleotide signatures, finding that many RNA sequences 

contain modified nucleosides, [28, 29, 44], and in the last year, genome-wide maps 

identifying thousands of m1A modifications have been made available [45]. However, 

previous studies have been mainly utilizing mutational profiling as a means to identify RNA 

modifications from RNA-Seq datasets [28]. Therefore, for a more complete identification of 

genome-wide RNA modifications, we suggest that a combination of both RT truncation and 

mutational profiling methodologies should also be employed. 

 

Furthermore, our analysis shows that the choice of the RT enzyme does not only affect the 

mismatch/RT drop-off ratio, but also affects the relative proportion of misincoporated 

nucleotides, dramatically affecting the mismatch signatures. Consequently, mismatch 

signatures obtained with a given RT enzyme (e.g. SS3) cannot be used to predict DMS-

modified positions in datasets that have been reverse-transcribed with a different RT enzyme 

(e.g. TGIRT). This statement is also true for analyses aiming to detect naturally occurring 

RNA modifications based on mismatch signature [28, 29, 44]. Whether additional variables, 

such as RT temperature or salt concentration, may affect the mismatch signature of RNA 

modifications is still an open question. 
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Overall, here we show that the DMS signal cannot be entirely captured neither qualitatively 

nor quantitatively using only mutational profiling or RT drop-off methodologies. Indeed, not 

only DMS-modified positions are exclusively identified by one of the two methodologies 

(Figures 2B-2C), but also, amongst the positions identified by both methodologies, the level 

of modification does not correlate with each other (Figure 2D), suggesting that the actual 

level of modification is the sum of the two methodologies. On the other hand, we also find 

that mutational profiling preferentially identifies DMS-modified C bases (m3C) whereas RT 

drop-off methodologies preferentially identify DMS-modified A bases (m1A) (Figures 2C and 

2E). Therefore, the relative proportion of mismatch/RT drop-off is dependent on the identity 

of the modified base, as well as on the sequence context. While more processive RT 

enzymes, such as TGIRT, can increase RT processivity, here we show that this increased 

processivity is not equal across all RNA modifications. Consequently, we propose that a 

combination of both MaP and RT drop-off signals should be employed to obtain the most 

from genome-wide RNA structure probing datasets, regardless of the reverse transcriptase 

employed during the library preparation. 

 

MATERIALS AND METHODS 

 

Zebrafish maintenance 

Wild-type zebrafish embryos were obtained through natural mating of TU-AB strain of mixed 

ages (5-18 months). Mating pairs were randomly chosen from a pool of 70 males and 70 

females allocated for each day of the month. Fish lines were maintained following the 

International Association for Assessment and Accreditation of Laboratory Animal Care 

research guidelines, and approved by the Yale University Institutional Animal Care and Use 

Committee (IACUC). 

 

DMS-Seq, RNA-Seq and Structure-Seq datasets 

DMS-Seq datasets of in vitro DMS treated known RNA structure spike-ins (Tetrahymena 

ribozyme and DsRed mRNA containing a tRNA-spinach cassette in its 3’UTR) and in vivo 

DMS treated 64c stage zebrafish embryos (samples: SRS2404542 and SRS2404544) were 

taken from SRP114782. RNA-Seq datasets from 64c stage zebrafish embryos (samples: 

SRS2404514 and SRS2404517) were also taken from SRP114782. The manuscript 

associated to SRP114782 is currently under review and all samples will be released 

immediately after acceptance.  In the meantime, all datasets mentioned above related to 

SRP114782 are available upon request. Structure-Seq datasets of 64c stage zebrafish 
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embryos using either SSIII or TGIRT reverse transcription enzymes are accessible at 

SRP115809. See Table S1 for more details on all datasets.  

 

Structure-Seq experiments 

For in vivo modification of zebrafish embryo transcriptome, 150 64-cell embryos were 

transferred to 5 mL eppendorf tubes containing 400 µL of system water from the fish facility. 

100% DMS (Sigma-Aldrich) was diluted in 100% ethanol to obtain a 20% DMS stock solution. 

The DMS stock solution was then diluted to 6% DMS in 600 mM Tris-HCl pH 7.4 

(AmericanBio) in system water from the fish facility. This DMS/Tris-HCl solution was 

immediately mixed vigorously and 200 µL was added to each embryo containing tube to 

reach a final concentration of 2% DMS and 200 mM Tris HCl pH 7.4. Embryos were 

incubated at room temperature for 10 min with occasional gentle mixing. The DMS solution 

was then quickly removed from the tubes and the embryos were flash frozen in liquid 

nitrogen. Frozen embryos were thawed and actively lysed with 800 µL of TRIzol (Life 

Technologies) supplemented with 0.7 M ß-mercaptoethanol (Sigma-Aldrich) to quench any 

remaining trace of DMS. After 2 min incubation, TRIzol was added to reach a final volume of 

4 mL and total RNA extracted following the manufacturer’s protocol. Poly(A)+ transcripts 

were purified using oligo d(T)25 magnetic beads (New England BioLabs) following the 

manufacturer’s protocol and eluted in 35 µL of water. DMS treatments were performed in 

duplicate from different clutches and days. For each replicate, an untreated control was 

performed following the same steps, omitting the DMS the different solutions. 

 

Structure-Seq libraries were prepared similar to Ding et al. [13] with few changes. Briefly, 

DMS treated or untreated poly(A)+ RNA duplicates were pooled together and subjected to 

reverse transcription using a partially degenerated primer fused with part of an Illumina 

TruSeq adapter (5’- AGACGTGTGCTCTTCCGATCTNNNNNN-3’) and either the SuperScript 

III First Strand Kit (Invitrogen) or the TGIRTTM-III (InGex) following manufacturer’ protocols. 

Therefore, each type of reverse transcription reactions was performed using the same pool 

of DMS-modified RNAs allowing a direct comparison of the two enzymes. For reverse 

transcription reactions with the SuperScrit III enzyme, samples were heated at 25°C for 10 

min, 42°C for 30 min, 50°C for 10 min, 55°C for 20 min, and 75°C for 15 min to deactivate 

the enzyme. For reverse transcription reactions with the TGIRTTM-III enzyme, samples were 

heated at 25°C for 10 min, 42°C for 10 min, 50°C for 10 min, 55°C for 10 min, 60°C for 30 

min, 65°C for 20 min, and 75°C for 15 min to deactivate the enzyme. All samples were 

treated with RNAse H at 37°C for 20 min. cDNAs were purified using 36 µL of Agencourt 
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AMPure XP beads (Beckman Coulter) following manufacturer’ protocol and resuspended in 

10 µL of water. ssDNA linker 

(/5Phos/NNNNNGATCGTCGGACTGTAGAACTCTGAAC/3InvdT/) was ligated at cDNA 3’-

ends using the CircLigase ssDNA ligase (Epicentre) with slightly modifications to the 

manufacturer’s protocol, i.e. where the different reagents were added to 3 µL of cDNAs to 

reach the following final concentrations: 50 units of CircLigase, 0.05 mM ATP, 2.5 mM MnCl2, 

10% PEG 6000, 1 M betaine, and 5 µM ssDNA linker in a final volume of 10 µL. Ligation 

reactions were incubated at 60°C for 2h, 68°C for 1h, and 80°C for 10 min to deactivate the 

ligase. 10 µL of water was added to each reaction. The resulting 20 µL ligation products 

were purified using 36 µL of Agencourt AMPure XP beads and dissolved in 16 µL of water. 

PCR amplification was performed on the ligated cDNA using Illumina primers (Small RNA 

PCR Primer 2 5’-AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA-3’ 

and PCR primer index 5’- 

CAAGCAGAAGACGGCATACGAGATbarcodeGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCT-3’, where barcode is the 6-nucleotide index). PCR products were purified and 

concentrated using MinElute PCR Purification Kit (QIAGEN) and eluted in 10 µL of water. 

Eluted PCR products were separated in a 2% agarose gel and products of 200-1,000 

nucleotide were extracted and purified using the MinElute Gel Extraction Kit (QIAGEN). 

Libraries were sequenced on Illumina HiSeq 2000/2500 machines producing single-end 76 

nucleotide reads. Sequencing samples are summarized in Table S1. 

 

Read filtering and mapping 

DMS-seq raw reads contained the following features: NNNN-insert-NN-barcode(4-mer)-

adapter where the 6N (NNNN+NN) sequence composes the Unique Molecular Identifier 

(UMI), “barcode” is the sample 4-mer in-house barcode and adapter is the 3'-illumina adapter. 

The UMI was used to discard PCR duplicates and count single ligation event. The barcode 

was used to mark individual replicate following the 3'-adapter ligation step. Base calling was 

performed using CASAVA-1.8.2. The Illumina TruSeq index adapter sequence was then 

trimmed by aligning its sequence, requiring 100% match of the first five base pairs and a 

minimum global alignment score of 60 (Matches: 5, Mismatches: -4, Gap opening: -7, Gap 

extension: -7, Cost-free ends gaps). Trimmed reads were demultiplexed based on the 

sample’s in-house barcode, the UMI was clipped from the 5'- and 3'-end and kept within the 

read name, for marking PCR duplicates. Structure-Seq reads contained the following 

features: NNNNN-insert, where 5N correspond to the UMI, and were processed as for the 

DMS-Seq reads omitting the Illumina index adapter trimming and clipping only the 5’-end 

UMI. DMS-Seq and Structure-Seq reads were then depleted of rRNA, tRNA, snRNA, 
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snoRNA and miscRNA, using Ensembl78 annotations, as well as from RepeatMasker 

annotations, using strand-specific alignment with Bowtie2 v2.2.4 [46]. The remaining reads 

were aligned to the zebrafish Zv9 genome assembly using STAR version 2.4.2a [47] with the 

following non-default parameters: --alignEndsType EndToEnd --outFilterMultimapNmax 100 -

-seedSearchStartLmax 15 --sfbdScore 10 --outSAMattributes All. Genomic sequence indices 

for STAR were built including exon-junction coordinates from Ensembl 78. Only reads of 

unique UMI were kept at each genomic coordinate for DMS-seq and ribosome profiling 

experiments. Raw reads from RNA-seq experiments were processed using the same 

pipeline, omitting the adapter trimming, barcoding demultiplexing and UMI clipping steps. 

The filtered reads were aligned onto Zebrafish Zv9 assembly using STAR, with the same 

parameters as described above. STAR genomic sequence indices were built including exon-

junction coordinates from Ensembl 78. 

  

Analysis of accessibility (RT-stop methodology) 

Per-transcript profiles were computed using uniquely mapped reads overlapping at least 10 

nucleotides with the transcripts annotation. Each read count was attributed to the nucleotide 

in position –1 of the read's 5'-end within the transcript coordinate, to correct for the fact that 

reverse transcription stops one nucleotide prior to the DMS-modified nucleotide. To 

determine read distributions for each nucleotide, only transcripts with a minimum of 100 

counts were considered. Accessibilities were calculated following the 2%-8% rule [48], i.e. by 

normalizing the read counts proportionally to the most reactive As and Cs within the region 

after the removal of outliers. More specifically, the 2% most reactive As and Cs were 

discarded and each position was divided by the average of the next 8% most reactive As and 

Cs. Accessibilities greater than 1 were set to 1, and accessibilities for G and T were set to 0. 

 

Analysis of mutational profiles (MaP methodology) 

DMS-Seq, Structure-Seq and RNA-Seq mapped bam files were processed using in-house 

scripts to produce a bed file of mismatched positions, including metadata information 

regarding reference nucleotide, coverage (number of reads at that given base pair), and 

relative nucleotide frequencies at each given position (measured as total number of A, C, G, 

and T nucleotides, normalized by the coverage).  Mismatched positions were then filtered to 

remove SNPs, naturally occurring RNA modifications and sequencing artifacts. Due to the 

low mismatch frequencies that m1A and m3C modifications cause, a minimum of reads/bp 

was required. Overall, the set of filtered mismatch positions met all the following criteria: i) 

mismatches are found in both DMS-Seq replicates; ii) they are not found in the set of 

replicable RNA-Seq mismatches; iii) minimum coverage of 50 reads/bp; iv) minimum of 2 
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mismatched reads/bp; and v) maximum of 0.25 mismatch frequency. For Structure-Seq 

datasets, the set of mismatched positions was filtered by the control (untreated) Structure-

Seq mismatches, instead of the RNA-Seq mismatches. Accessibility values from mismatch 

frequencies (Figures S1C and S1D) were calculated using the 2%-8% rule as for the RT-

stop signal. 
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FIGURE LEGENDS 

 

Figure 1. Mutational profiling and RT drop-off analyses contain non-overlapping 

information. (A) DMS methylates nitrogen atoms (red), some of which are involved in 

Watson-Crick base pairing (m1A and m3C), causing RT drop-off and increased mutational 

rates during reverse transcription. (B) Overview of the two major methodologies relying 

either on RT drop-off or mutational profiling to quantify DMS signal. (C) Replicability of 

mutational profiles and RT drop- off accessibilities of two known RNA structures. (D and E) 

Correlation between mutational profiles (“mismatch”, black) and RT stops (“accessibility”, 

blue) in the Tetrahymena ribozyme (D) and the DsRed mRNA containing a spinach tRNA 

cassette in its 3’UTR (E) spike-ins. Overlapping positions (“common”) that are detected by 

both methodologies are depicted in orange. 

 

Figure 2. DMS-mediated mutational profiling gives reliable structural information and 

is influenced by the nature of the DMS-modified nucleotide. (A and B) Overlap of DMS-

modified positions identified using mutational profiling or RT truncation methodologies in the 

zebrafish transcriptome (A), and the Tetrahymena ribozyme (B, top) and DsRed mRNA with 
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a spinach tRNA cassette (B, bottom) spike-ins. (C) Comparison of the mismatch frequencies 

(MaP) and the accessibilities (RT-stop) onto the experimentally determined RNA secondary 

structure of the domain P4-5-6 of the Tetrahymena ribozyme. Nucleotide positions that are 

preferentially identified by MaP are coloured in red, while those that are preferentially 

identified by RT stops are coloured in green. Those equally identified by both approaches 

are coloured in yellow. See also Figure S1. (D) Correlation between the accessibility and the 

mismatch frequency of the DMS-modified positions detected (“common”) by both 

methodologies in the two spike-ins. Each nucleotide is coloured according to its reference 

nucleotide. The area of the plot is divided into 3 regions: i) mismatch preference (high 

mismatch frequency, low accessibility), shaded in red; ii) RT-stop preference (high 

accessibility, low mismatch frequency), shaded in green; and iii) no preference, shaded in 

orange. (E) Proportion of reference nucleotides in transcriptome-wide DMS-seq experiments 

from 64c stage zebrafish embryos, using the RT-stop (left) or the mutational profiling (right) 

methodologies. (F) Comparison of the sequence context of mismatched positions and RT-

stop positions in DMS-probed 64c-stage zebrafish embryos. 

 

Figure 3. Mismatch signature analysis of DMS signal across a vertebrate 

transcriptome. (A and B) Replicability of mismatch frequencies for both DMS-Seq (A) and 

RNA-Seq (B) datasets, using raw mismatches (no filtering, left panels) and filtered 

mismatches (right panels, see Methods). (C) Mismatch positions (frequency > 0.01) along 

exon 9 of the RPL4 gene, in DMS-Seq and RNA-Seq datasets. Mismatches identified by 

each individual replicate are shown. Highlighted in green squares are those positions that 

have mismatch frequency greater than 1% in both RNAseq and DMSSeq, and that are 

consistent across replicates. (D and E) Ternary plots highlighting the mismatch signature 

found in DMS-modified transcriptome. For each reference nucleotide, the relative proportion 

of the other three nucleotides at mismatched positions is shown. The top (D) and bottom (E) 

rows depict transcriptome-wide DMS-Seq mismatches found in zebrafish 64c-stage embryos, 

pre- and post-filtering. The right column shows the frequency of reference nucleotides at 

mismatch positions.  

 

Figure 4. Mutational profiling signatures differ between reverse transcriptases. (A) 

Proportion of reference nucleotides in transcriptome-wide Structure-seq experiments, using 

either the SuperScript-III (left) or TGIRT (right) reverse transcriptases. The set of DMS-

modified positions has been identified using mutational profiling in both conditions. (B) 

Proportion of mismatched positions identified with the SS3 and the TGIRT reverse 

transcriptases. (C) Comparison of the relative proportion of reference nucleotides, when 
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using different reverse transcriptases as well as different analysis methodologies. (D) 

Proportion of misincorporated nucleotides at mismatched positions, using either the SS3 or 

TGIRT reverse transcriptase, at m1A (left) and m3C positions (right). Boxplot outliers have 

been removed for enhanced visualization. (E and F) Ternary plots showing the 

transcriptome-wide mismatch signatures induced by m1A (left) and m3C (right), when using 

either the SS3 (E) or the TGIRT (F) enzymes in Structure-Seq datasets.  

 

SUPPLEMENTARY FIGURE LEGENDS 

 

Figure S1. (A and B) Comparison of the overlay of accessibilities (left) and the overlap of 

mismatch frequencies (right) onto two different regions of the experimentally determined 

RNA secondary structure of the Tetrahymena ribozyme.  Each nucleotide has been colored 

based on either their normalized accessibility (left) or their mismatch frequency (right), 

respectively. Arrows point to examples where the nucleotide is: i) preferentially predicted by 

the RT truncation method (green), ii) preferentially predicted by mismatch profiling (red), or 

iii) equally predicted by both methods (orange) (C and D) Box plots of the agreement 

between accessibilities calculated from either RT stop or mismatch signals and A/C pairing 

statuses (ss, single-stranded; ds, double-stranded) for the Tetrahymena ribozyme (C) and 

the tRNA-Spinach cassette (D). 

 

Figure S2. (A and B) Mismatch signature ternary plots for the two spike-ins, the 

Tetrahymena ribozyme and Spinach tRNA cassette, prior to filtering (A) and after filtering (B). 

For filtering details, see Methods. (C) Relative proportion of misincorporated nucleotides at 

mismatched positions, when the reference nucleotide is A (top) or C (bottom) in the spike-ins. 

Boxplot outliers have been removed for enhanced visualization (D) Relative proportion of 

misincorporated nucleotides at mismatched positions, when the reference nucleotide is A 

(top) or C (bottom) in transcriptome-wide DMS-probed 64c stage zebrafish embryos. Outliers 

have been removed for better visualization of the boxplot differences. 

 

Figure S3. Mismatch signature plots of 64c zebrafish transcriptome-wide DMS-Seq samples, 

for each reference nucleotide. The relative proportion of the other three nucleotides at 

mismatched positions is shown as a ternary plot. Ternary plots have been computed at each 

stage of the filtering that has been performed. The proportion of reference nucleotides after 

each filtering step is depicted on the right side of the figure.  
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