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Abstract 

 

TDCPP is one of the most common organophosphate flame retardant, which has 

been widely used in many products. It has been detected in the environment and 

biota; however, its potential affect to the wildlife and human health remains largely 

unknown. In this study, we aimed to investigate the effect of long-term exposure to 

TDCPP on fish reproduction. Zebrafish eggs were treated with various concentration 

of TDCPP (0, 1, 10 and 100 μg/L) from 1 day post-fertilization (hpf) to 6 months. 

The fecundity of female fish was significantly decreased as indicated by reduced 

embryos production. The egg quality was decreased and the malformation rates 

were increased in the F1 generation. Taken together, long-term exposure to TDCPP 

affects the reproduction of zebrafish.   
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Background 

 

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an orgnophosphate flame 

retardant, which has been widely applied in the products of resins, latexes and 

polyurethane foams in the furniture [1-5]. TDCPP is easily to be released into the 

environment because its non-chemically bounding property to the household items 

[3, 6-10]. Thus, TDCPP can cause pervasive contamination in the air, surface and 

ground water [11-15]. TDCPP is relatively stable in water because it is lipophilic and 

therefore hard to be decomposed in the environment and could lead to 

bioaccumulate in the aquatic animals [4, 16-18].  

Previous studies have reported that TDCPP could affect the sex hormone levels in 

human cells and induce the transcriptional expression of estrogenic receptors and 

related genes in zebrafish [19]. TDCPP affects the estrogenic activity and interrupts 

endocrine levels in fish [20-22], however, the effect of TDCPP on the reproductively 

in TDCPP exposure on zebrafish reproduction, especially in a long-term exposure 

period, which most reflects the affection of TDCPP pollution in the aquatic 

environment.  

 

Materials and methods 

 

Chemicals  
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TDCPP, [(1,3-dichloro-2-propyl) phosphate] (analytical standard) was purchased 

from Sigma Aldrich. Stock solutions were prepared in dimethyl sulfoxide (DMSO, 

purity > 99%) and stored at – 20 °C.  

 

Zebrafish maintenance and TDCPP treatment 

 

Wild type zebrafish were raised as described previously [23-27]. The fish were kept 

at 28 ± 0.5 °C in a 14 h light/10 h dark cycle. Fish were naturally crossed and eggs 

were collected. Five hundred fertilized zebrafish embryos were treated with TDCPP 

(0, 1, 10 and 100 μg/L) in 1-L tanks. The zebrafish larvae were put into 2.8-L 

aquariums at 20 dpf. Each exposure groups and controls had three replicates and 

received 0.001% (v/v) DMSO. Fish were mated in groups weekly to evaluate the 

reproductive capacity. Fecundity was calculated as the cumulative average number 

of embryos produced per female each time.  

 

Measurement of hormone concentrations 

 

The estradiol and testosterone levels were examined in the blood samples of 

TDCPP-treated zebrafish as previously described [28-30]. In brief, fish were 

euthanized in MS-222 (200 mg/L), the blood samples from caudal vein were 

collected, centrifuged at 5000 × g for 10 min at 4 °C. The supernatant was collected 

for hormones extraction.  
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Data analysis 

 

All analyses were carried out using SPSS 18.00 (SPSS, Chicago, IL, USA). Differences 

between the control and TDCPP-treated group were assessed by one-way analysis 

of ANOVA followed by a Tukey’s test. All data were presented as the mean ± SE, P< 

0.05 was considered statistically significant.  

 

Results 

 

Toxicological effects of TDCPP exposure to zebrafish 

 

The hatching, malformation and survival rates of the F1 generation were recorded 

from 1 dpf to 5 dpf. There was no significantly difference in the F1 eggs derived 

from the P0 fish exposed to 1 and 10 μg/L TDCPP. However, the malformation rate 

in the F1 eggs derived from P0 fish that were treated with 100 μg/L TDCPP was 

significantly increased (Data not shown).  

The survival rates in the TDCPP-exposed P0 fish had no significant difference during 

the six months of treatment. As shown in Fig. 1, the average numbers of embryos 

produced were significantly decreased in the groups treated with 10 and 100 μg/L 

TDCPP compared to the controls.  

 

Hormones levels in TDCPP exposed fish 
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Compared to the controls, the estradiol (E2) and testosterone (T) levels in female 

fish treated with 10 and 100 μg/L TDCPP were increased (Fig. 2); however, the E2 

and T levels in the male fish treated with TDCPP had no significant changes (Fig. 3).  

 

Discussion 

 

In this study, we investigated the effects of long-term exposure to TDCPP on plasma 

hormone levels in zebrafish, which is consistent with the previous studies that 

report TDCPP alters steroidogenesis in fish [31-35]. In addition, we observed that 

exposed to high concentration of TDCPP reduced the embryos production and 

caused higher malformation rates in the F1 eggs. There results confirmed that long-

term exposure to environmental concentrations of TDCPP affect the fish 

reproductive system [35-40].  

We also found that the E2 and T levels were higher in the female but not in the male 

fish exposed to TDCPP, which indicated that TDCPP might have gender-specific 

effects on the zebrafish steroidgenesis. These data were in consistent with the 

previous studies that endocrine disrupting chemicals have estrogenic activity and 

could affect the sex hormones in fish in a gender-specific manner [41-48]. 

The toxicity of TDCPP treatment was investigated in P0 and F1 zebrafish. We 

observed the malformation rate in F1 embryos that derived from P0 fish treated 

with TDCPP was increased. This data suggested that TDCPP had developmental 

toxicity to the offspring when the parental fish were treated with TDCPP. Thus, our 
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results suggested that long-term exposure to environmental concentration of 

TDCPP to P0 fish resulted in developmental toxicity to the F1 embryos.  

Taken together, our study confirmed that chronic treatment with environmental 

concentrations of TDCPP impaired zebrafish reproductive system [5, 32, 35, 38, 49, 

50]. However, the effects of TDCPP on the sex hormone levels in fish still need 

further investigation.  
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Figure Legends 

 

Figure 1. The productions of embryos in zebrafish treated with TDCPP in 

different concentration. *p< 0.05 present significance between exposed group and 

the controls. 

 

 

 

 

Figure 2. The estradiol (E2)  and testosterone (T) contents in the female fish 

treated with TDCPP. *p< 0.05 present significance between exposed group and the 

controls. 
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Figure 3. The estradiol (E2)  and testosterone (T) contents in the male fish 

treated with TDCPP.  
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