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ABSTRACT 9 

Today most vision-science presentations mention machine learning. Many neuroscientists use 10 

machine learning to decode neural responses. Many perception scientists try to understand 11 

recognition by living organisms. To them, machine learning offers a reference of attainable 12 

performance based on learned stimuli. This brief overview of the use of machine learning in 13 

biological vision touches on its strengths, weaknesses, milestones, controversies, and current 14 

directions. 15 
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INTRODUCTION 17 

What does machine learning offer to biological-vision 18 

scientists? We suppose that most of our readers have 19 

heard of machine learning but are wondering how to 20 

interpret machine-learning results and whether it would 21 

be useful in their own research. We begin by naming 22 

some of its pluses and minuses. 23 

PLUSES: WHAT IT’S GOOD FOR  24 

Deep learning is the latest phase of machine learning, 25 

and is becoming very popular (Fig. 1). Is it just a fad? At 26 

the very least, machine learning is a powerful tool for 27 

interpreting biological data. For computer vision, the old 28 

paradigm was: feature detection, segmentation, and 29 

grouping (Marr, 1982). The new paradigm defines just 30 

the task and a feature set, and machine learning builds 31 

the classifier from a training set. Unlike the handcrafted 32 

pattern recognition (including segmentation and 33 

grouping) popular in the 70’s and 80’s, machine-learning 34 

algorithms are generic, with little domain-specificity. They 35 

replace hand-engineered feature detectors with filters 36 

that can be learned from the data. Advances in the mid 37 

90’s in machine learning made statistical learning theory 38 

useful for practical classification, e.g. handwriting 39 

recognition (Vapnik, 1999).  40 

GLOSSARY 
 
Machine learning is a computer 
algorithm that uses data from the 
environment to improve performance of a 
task. 
 
Deep learning is the latest version of 
machine learning, distinguished by having 
more than three layers. It is ubiquitous in 
the internet. 
 
Supervised learning refers to any 
algorithm that accepts a set of labeled 
stimuli — a training set — and returns a 
classifier that can label stimuli similar to 
those in the training set. 
 
Unsupervised learning works without 
labels. It is less popular, but of great 
interest because labeled data are scarce 
while unlabeled data are plentiful. Without 
labels, the algorithm discovers structure 
and redundancy in the data. 
 
Cost function. A function that assigns a 
real number representing cost to a 
candidate solution. Solving by 
optimization means minimizing cost. 
 
Gradient descent: An algorithm that 
minimizes cost by incrementally changing 
the parameters in the direction of 
steepest descent of the cost function. 
 
Convexity: A problem is convex if there 
are no local minima competing with the 
global minimum. In optimization, a convex 
cost function guarantees that gradient 
descent will always find the global 
minimum. 
 
Generalization tests how well a classifier 
performs on new stimuli, beyond the 
training set. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/178152doi: bioRxiv preprint 

https://doi.org/10.1101/178152


 

 
 

 

3 

 
Figure 1. Top: The frequency of appearance of each of five terms 
— “linear classifier”, "perceptron", "support vector machine", 
“neural net” and “backprop” — in books indexed by Google in each 
year of publication. Frequency is reported as a fraction of all 
instances of that number of words (1,2, or 3) normalized by the 
number of books published that year (ngram/year/books 
published). The figure was created using Google’s n-gram viewer 
(https://books.google.com/ngrams), which contains a yearly count 
of n-grams found in sources printed between 1500 and 2008. 
Bottom: Numbers represent worldwide search interest relative to 
the highest point on the chart for the given year for the term “deep 
learning” (as reported by https://trends.google.com/trends/).  

Machine learning allows a neurophysiologist to decode 41 

neural activity without knowing the receptive fields 42 

(Seung & Sompolinsky,1993; Hung et al., 2005). 43 

Machine learning shifts the emphasis from how the cells 44 

encode to what they encode, i.e. from how they encode 45 

the stimulus to what that code tells us about the stimulus. 46 

Mapping a receptive field is the foundation of 47 

neuroscience (beginning with Weber’s 1834/1996 48 

mapping of tactile “sensory circles”), but many young 49 

scientists are impatient with the limitations of single-cell recording: looking for minutes or hours 50 

at how one cell responds to each of perhaps a hundred different stimuli. New neuroscientists 51 

Cross validation assesses how well a 
classifier generalizes. Usually the training 
and test stimuli are chosen to be 
identically-distributed independent 
samples. 
 
Backprop, short for "backward 
propagation of errors", is widely used to 
apply gradient-descent learning to 
multi-layer networks. It uses the chain 
rule from calculus to iteratively compute 
the gradient of the cost function for each 
layer. 
 
Hebbian learning and spike-timing 
dependent plasticity (STDP). According to 
Hebb’s rule, the efficiency of a synapse 
increases after correlated pre- and 
post-synaptic activity. In other words, 
neurons that fire together, wire together 
(Löwel & Singer, 1992). 
 
Support Vector Machine (SVM) is a 
learning machine for classification. SVMs 
generalize well. An SVM can quickly learn 
to perform a nonlinear classification using 
what is called the “kernel trick”, mapping 
its input into a high-dimensional feature 
space (Cortes & Vapnik, 1999). 
 
Convolutional neural networks 
(ConvNets) have their roots in the 
Neocognitron (Fukushima 1980) and are 
inspired by the simple and complex cells 
described by Hubel and Wiesel (1962). 
ConvNets apply backprop learning to 
multilayer neural networks based on 
convolution and pooling (LeCun et al., 
1989; LeCun et al., 1990; LeCun et al., 
1998). 
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are the first generation for whom it is patently clear that characterization of a single neuron’s 52 

receptive field, which was invaluable in the retina and V1, fails to characterize how higher visual 53 

areas encode the stimulus. Statistical learning techniques reveal “how neuronal responses can 54 

best be used (combined) to inform perceptual decision-making” (Graf, Kohn, Jazayeri, & 55 

Movshon, 2010).  56 

For psychophysics, Signal Detection Theory (SDT) proved that the optimal classifier for a signal 57 

in noise is a template matcher (Peterson, Birdsall, & Fox, 1954; Tanner & Birdsall, 1958). SDT 58 

has been a very useful reference in interpreting human psychophysical performance (e.g. 59 

Geisler, 1989; Pelli et al., 2006). However, it provides no account of learning. Machine learning 60 

shows promise of guiding today’s investigations of human learning and may reveal the 61 

constraints imposed by the training set on learning. It can be hard to tell whether behavioral 62 

performance is limited by the set of stimuli, or the neural representation, or the mismatch 63 

between the neural decision process and the stimulus and task. Implications for classification 64 

performance are not readily apparent from direct inspection of families of stimuli and their neural 65 

responses. SDT specifies optimal performance for classification of known signals, but does not 66 

tell us how to generalize beyond a training set. Machine learning does. 67 

 68 
MINUSES: COMMON COMPLAINTS 69 
 70 

Some biologists complain that neural nets do not match what we know about neurons (Crick, 71 

1989; Rubinov, 2015). In particular, it is not clear, given what we know about neurons and 72 

neural plasticity, whether a backpropagation network can be implemented using biologically 73 

plausible circuits (but see Mazzoni et al., 1991, and Bengio et al., 2015). With a different, 74 

perspective, engineers and computer scientists, though inspired by biological vision, focus on 75 

what works.  76 
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Some biological modelers complain that neural nets have alarmingly many parameters. Deep 77 

neural networks continue to be opaque, especially if the problem is not known to be convex. 78 

Before neural-network modeling, a model was simpler than the data it explained. Deep neural 79 

nets are typically as complex as the data, and the solutions are hard to visualize (but see Zeiler 80 

& Fergus, 2013). However, while the training sets and learned weights are long lists, the 81 

generative rules for the network (the computer programs) are short. 82 

Some cognitive psychologists dismiss deep neural networks as unable to “master some of the 83 

basic things that children do, like learning the past tense of a regular verb” (Marcus et al., 1992). 84 

Some statisticians worry that rigorous statistical tools are being displaced by machine learning, 85 

which lacks rigor (Friedman, 1998; Matloff, 2014, but see Breiman, 2001; Efron & Hastie, 2016). 86 

Assumptions are rarely stated. There are no confidence intervals on the solution. However, 87 

performance is typically cross-validated, showing generalization, and it has been proven that 88 

convex networks can compute posterior probability (Rojas, 1996). 89 

Some of the best classifiers in computer science were inspired by biological principles 90 

(Rosenblatt, 1957; 1958; Rumelhart et al., 1986; LeCun, 1985; LeCun et al. 1989; LeCun et al. 91 

1990; Riesenhuber & Poggio, 1999; and see LeCun, Bengio, Hinton 2015). Those classifiers 92 

are now so good that they occasionally exceed human performance and might serve as models 93 

for how biological systems classify (e.g. Ziskind, Hénaff, LeCun, & Pelli, 2014). 94 

MATHEMATICS VS. ENGINEERING 95 

The history of machine learning has two threads: mathematics and engineering. In the 96 

mathematical thread, two statisticians, Fisher and later Vapnik, developed mathematical 97 

transformations to uncover categories in data, and proved that they give unique answers. They 98 

assumed distributions and proved convergence.  99 
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In the engineering thread, a loose coalition of psychologists, neuroscientists, and computer 100 

scientists (e.g. Rosenblatt, Minsky, Fukushima, Hinton, Sejnowski, LeCun, Poggio) sought to 101 

reverse-engineer the brain to build a machine that learns. Their algorithms are typically applied 102 

to stimuli with unknown distributions and lack proofs of convergence. 103 

MILESTONES IN CLASSIFICATION 104 

1936: Linear discriminant analysis 105 

1953: Machine learning 106 

1958: Perceptron 107 

1969: Death of the perceptron 108 

1974: Backprop 109 

1980: Neocognitron 110 

1987: NETtalk 111 

1989: ConvNets 112 

1995: Support Vector Machine (SVM) 113 

2006: Backprop, revived 114 

2012: Deep learning 115 

 116 

1936: Linear discriminant analysis. Fisher (1936) introduced linear discriminant analysis to 117 

classify two species of iris flower based on four measurements per flower. When the distribution 118 

of the measurements is normal and the covariance matrix between the measurements is known, 119 
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linear discriminant analysis answers the question: Supposing we use a single-valued function to 120 

classify, what linear function y = w1x1 + w2x2 + w3x3 + w4x4, of four measurements x1, x2, x3, x4 121 

made on flowers, with free weights w1, w2, w3, w4, will maximize the ratio of the difference 122 

between the means to the standard deviations within species?1 Linear classifiers are great for 123 

simple problems for which the category boundary is a hyperplane in a small number of 124 

dimensions. However, complex problems like object recognition typically require more complex 125 

category boundaries in a large number of dimensions. Furthermore, the distributions of the 126 

features are typically unknown and not necessarily normal. 127 

Cortes & Vapnik (1995) note that the first algorithm for pattern recognition was Fisher’s optimal 128 

decision function for classifying vectors from two known distributions. Fisher solved for the 129 

optimal classifier in the presence of gaussian noise and known covariance between elements of 130 

the vector. When the covariances are equal, this reduces to a linear classifier. The ideal 131 

template matcher of signal detection theory is an example of such a linear classifier (Peterson et 132 

al., 1954). This fully specified simple problem can be solved analytically. Of course, many 133 

important problems are not fully specified. In everyday perceptual tasks, we typically know only 134 

a “training” set of samples and labels. 135 

1953: Machine learning. The first developments in machine learning were to play chess and 136 

checkers. “Could one make a machine to play chess, and to improve its play, game by game, 137 

profiting from its experience?” (Turing, 1953). Arthur Samuel defined machine learning as the 138 

“Field of study that gives computers the ability to learn without being explicitly programmed.” 139 

(Samuel, 1959) 140 

                                                
1 Linear discriminant analysis is an outgrowth of regression which has a much longer history. Regression 
is the optimal least-squares linear combination of given functions to fit given data and was applied by 
Legendre (1805) and Gauss (1809) to astronomical data to determine the orbits of the comets and 
planets around the sun. The estimates come with confidence intervals and the fraction of variance 
accounted for, which rates the goodness of the explanation. 
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1958: Perceptron. Inspired by physiologically measured receptive fields, Rosenblatt (1958) 141 

showed that a very simple neural network, the perceptron, could learn to classify from training 142 

samples. Perceptrons combined several linear classifiers to implement piecewise-linear 143 

separating surfaces. The perceptron learns the weights to use in a linear combination of feature-144 

detector outputs. The perceptron transforms the stimulus into a feature vector and then applies 145 

a linear classifier to the feature vector. The perceptron is piecewise linear and has the ability to 146 

learn from training examples without knowing the full distribution of the stimuli. Only the final 147 

layer in the perceptron learns.  148 

1969: Death of the perceptron. However, it quickly became apparent that the perceptron and 149 

other single-layer neural networks cannot learn tasks that are not linearly separable, i.e. cannot 150 

solve problems like connectivity (Are all elements connected?) and parity (Is the number of 151 

elements odd or even?); people solve these readily (Minsky & Papert, 1969). On this basis they 152 

announced the death of artificial neural networks. 153 

1974: Backprop. The death of the perceptron showed that learning in a one-layer network was 154 

too limited. This impasse was broken by the introduction of the backprop algorithm, which 155 

allowed learning to propagate through multiple-layer neural networks. The history of backprop is 156 

complicated (see Schmidhuber, 2015). The idea of minimisation of error through a differentiable 157 

multi-stage network was discussed as early as the 1960s (e.g. Bryson, Denham, & Dreyfus, 158 

1963). It was applied to artificial neural networks in the 1970s (e.g. Werbos, 1974). In the 1980s, 159 

efficient backprop first gained recognition, and led to a renaissance in the field of artificial neural 160 

network research (LeCun, 1985; Rumelhart, Hinton, & Williams, 1986). During the 2000s 161 

backprop neural networks fell out of favor, due to four limitations (Vapnik, 1999): 1. No proof of 162 

convergence. Backprop uses gradient descent. Gradient descent with a nonconvex error 163 

function with multiple minima is only guaranteed to find a local, not the global of the error 164 
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function. This has long been considered a major limitation, but Yann LeCun et al. (2015) claim 165 

that it hardly matters in practice in current implementations of deep learning. 2. Slow. 166 

Convergence to a local minimum can be slow due to the high dimensionality of the weight 167 

space. 3. Poorly specified. Backprop neural networks had a reputation of being ill-specified, an 168 

unconstrained number of units and training examples, and a step size that varied by problem. 169 

“Neural networks came to be painted as slow and fussy to train [,] beset by voodoo parameters 170 

and simply inferior to other approaches.” (Cox & Dean, 2014). 4. Not biological. Lastly, 171 

backprop learning may not to be physiological: While there is ample evidence for Hebbian 172 

learning (increase of a synapse’s gain after correlated activity of the two cells that it connects), 173 

such changes are never propagated farther back, beyond the one synapse, to a previous layer. 174 

1980: Neocognitron, the first convolutional neural network. Kunihiko Fukushima (1980) 175 

proposed and implemented the Neocognitron, a hierarchical, multilayered artificial neural 176 

network. It recognized stimulus patterns (numbers) despite small changes in position and 177 

shape. It didn' 178 

1987: NETtalk, the first impressive backprop neural network. Sejnowski et al. (1987) reported 179 

the exciting success of NETtalk, a neural network that learned to convert English text to speech: 180 

“The performance of NETtalk has some similarities with observed human performance. (i) The 181 

learning follows a power law. (ii) The more words the network learns, the better it is at 182 

generalizing and correctly pronouncing new words. (iii) The performance of the networks 183 

degrades very slowly as connections in the network are damaged: no single link or processing 184 

unit is essential. (iv) Relearning after damage is much faster than learning during the original 185 

training. (v) Distributed or spaced practice is more effective for long-term retention than massed 186 

practice.”  187 
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1989: ConvNets. Yann LeCun and his colleagues combined convolutional neural networks with 188 

backprop to recognize handwritten characters (LeCun et al., 1989; LeCun et al., 1990). This 189 

network was commercially deployed by AT&T, and today reads millions of checks a day 190 

(LeCun, 1998). Later, adding half-wave rectification and max pooling greatly improved its 191 

accuracy in recognizing objects (Jarrett et al., 2009). 192 

1995: Support Vector Machine (SVM). Cortes & Vapnik (1995) proposed the support vector 193 

network, a learning machine for binary classification problems. SVMs generalize well and are 194 

free of mysterious training parameters. Many versions of the SVM are convex (e.g. Lin, 2001). 195 

2006: Backprop, revived. Hinton & Salakhutdinov (2006) sped up backprop learning by 196 

unsupervised pre-training. This helped to revive interest in backprop. In the same year, a 197 

supervised backprop-trained convolutional neural network set a new record on the famous 198 

MNIST handwritten-digit recognition benchmark (Ranzato et al., 2006). 199 

2012: Deep learning. Geoff Hinton says, “it took 17 years to get deep learning right; one year 200 

thinking and 16 years of progress in computing, praise be to Intel.” (Cox & Dean, 2014; LeCun, 201 

Bengio, & Hinton, 2015). It is not clear who coined the term “deep learning”.2 In their book, Deep 202 

Learning Methods and Applications, Deng & Yu (2014) cite Hinton et al. (2006) and Bengio 203 

(2009) as the first to use the term. However, the big debut for deep learning was an influential 204 

paper by Krizhevsky et al. (2012) describing AlexNet, a deep convolutional neural network that 205 

classified 1.2 million high-resolution images into 1000 different classes, greatly outperforming 206 

previous state-of-the-art machine learning and classification algorithms.  207 

                                                
2 The idea of “deep learning” is not exclusive to machine learning and neural networks (e.g. Dechter, 
1986) 
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CONTROVERSIES 208 

Unproven convexity. A problem is convex if there are no local minima other than the global 209 

minimum. This guarantees that gradient-descent will converge to the global minimum. As far as 210 

we know, classifiers that give inconsistent results are not useful. Conservation of a solution 211 

across seeds and algorithms is evidence for convexity. For some combinations of stimuli, 212 

categories, and classifiers, convexity can be proved. For others, empirical tests can provide 213 

qualified assurance that the solution is a global minimum. Many widely used networks are not 214 

convex, but still give mostly consistent answers (LeCun, Bengio, & Hinton, 2015). In machine 215 

learning, kernel methods, including learning by SVMs, have the advantage of easy-to-prove 216 

convexity, at the cost of limited generalization. In the 1990s, SVMs were popular because they 217 

guaranteed fast convergence even with a large number of training samples (Cortes & Vapnik, 218 

1995). Thus, when the problem is convex, the quality of solution is assured and one can rate 219 

implementations by their demands for size of network and training sample. Deep neural 220 

networks, on the other hand, generalize well, but are not convex.  221 

Shallow vs. deep networks. The field’s imagination has focused alternately on shallow and 222 

deep networks, beginning with the Perceptron in which only one layer learned, to backprop, 223 

which allowed multiple layers and cleared the hurdles that killed the Perceptron. Then SVM, 224 

with its single layer, sidelined the multilayer backprop, and today the multilayer deep learning 225 

seems to reign. Krizhevsky et al. (2012) attributed the success of their network to its 8-layer 226 

depth; it performed worse with fewer layers.  227 

Supervised vs. unsupervised. Learning algorithms for a classifier can be supervised or not, 228 

i.e. need labels for training, or don’t. Today most machine learning is supervised (LeCun, 229 

Bengio, & Hinton, 2015). The images are labeled (e.g. “car” or “face”), or the network receives 230 

feedback on each trial from a cost function that assesses how well its answer matches the 231 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/178152doi: bioRxiv preprint 

https://doi.org/10.1101/178152


 

 
 

 

12 

image’s category. In unsupervised learning, the network processes images, typically to minimize 232 

error in reconstruction, with no extra information about what is in the (unlabeled) image. A cost 233 

function can also reward decorrelation and sparseness. This allows learning of image statistics 234 

and has been used to train early layers in deep neural networks. Human learning of 235 

categorization is sometimes done with explicitly named objects — “Look at the tree!” — but 236 

more commonly the feedback is implicit. Consider reaching your hand to raise a glass of water. 237 

Contact informs vision. 238 

CURRENT DIRECTIONS 239 

What does deep learning add to the vision-science toolbox? Deep learning is more than 240 

just a souped up regression (Marblestone et al., 2016). Like Signal Detection Theory (SDT), it 241 

allows us to see more in our behavioral and neural data. In the 1940’s, Norbert Wiener and 242 

others developed algorithms to automate and optimize signal detection and classification. A lot 243 

of it was engineering. The whole picture changed with the SDT theorems, mainly the proof that 244 

the maximum-likelihood receiver is optimal for a wide range of simple tasks (Peterson et al., 245 

1954). Later work added prior probability, for a Bayesian approach. Tanner & Birdsall (1958) 246 

noted that, when figuring out how a biological system does a task, it is very helpful to know the 247 

optimal algorithm and to rate observed performance by its efficiency relative to the optimum. 248 

SDT solved detection and classification mathematically, as maximum likelihood. It was the 249 

classification math of the sixties. Machine learning is the classification math of today. Both 250 

enable deeper insight into how biological systems classify. In the old days we used to compare 251 

human and ideal classification performance. Today, we can also compare human and machine 252 

learning. 253 

What computer scientists can learn from psychophysics. Computer scientists build 254 

classifiers to recognize objects. Vision scientists, including psychologists and neuroscientists, 255 
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study how people and animals classify in order to understand how the brain works. So what do 256 

computer and vision scientists have to say to each other? Machine learning accepts a set of 257 

labelled stimuli to produce a classifier. Much progress has been made in physiology and 258 

psychophysics by characterizing how well biological systems can classify stimuli. The 259 

psychophysical tools (e.g. threshold and signal detection theory) developed to characterize 260 

behavioral classification performance are immediately applicable to characterize classifiers 261 

produced by machine learning (e.g. Ziskind, Hénaff, LeCun, & Pelli, 2014).  262 

Psychophysics. “Adversarial” examples have been presented as a major flaw in deep neural 263 

networks. These slightly doctored images of objects are misclassified by a trained network, 264 

even though the doctoring has little effect on human observers. The same doctored images are 265 

similarly misclassified by several different networks trained with the same stimuli (Szegedy, et 266 

al., 2013). Humans too have adversarial examples. Illusions are robust classification errors. The 267 

blindspot-filling-in illusion is a dramatic adversarial example in human vision. While viewing with 268 

one eye, two finger tips touching in the blindspot are perceived as one long finger. If the image 269 

is shifted a bit so that the fingertips emerge from the blindspot the viewer sees two fingers. 270 

Neural networks lacking the anatomical blindspot of human vision are hardly affected by the 271 

shift. The existence of adversarial examples is intrinsic to classifiers trained with finite data, 272 

whether biological or not. In the absence of information, neural networks interpolate and so do 273 

biological brains. Psychophysics, the scientific study of perception, has achieved its greatest 274 

advances by studying classification errors. Such errors can reveal “blindspots”. Stimuli that are 275 

physically different yet indistinguishable are called metamers. The systematic understanding of 276 

color metamers revealed the three dimensions of human color vision (Palmer, 1777; Young, 277 

1802; Helmholtz, 1860). 278 
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CONCLUSION 279 

Machine learning is here to stay. Deep learning is better than the “neural” networks of the 280 

eighties. Machine learning is useful both as a model for perceptual processing, and as a 281 

decoder of neural processing, to see what information the neurons are carrying. The large size 282 

of the human cortex is a distinctive feature of our species and crucial for learning. It is 283 

anatomically homogenous yet solves diverse sensory, motor, and cognitive problems. Key 284 

biological details of cortical learning remain obscure, and may preclude backprop, but the 285 

performance of current machine learning algorithms is a useful benchmark. 286 
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