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Abstract

The efficient coding hypothesis, which proposes that neurons
are optimized to maximize information about the environment,
has provided a guiding theoretical framework for sensory and
systems neuroscience. More recently, a theory known as the
Bayesian Brain hypothesis has focused on the brain’s ability to
integrate sensory and prior sources of information in order to
perform Bayesian inference. However, there is as yet no com-
prehensive theory connecting these two theoretical frameworks.
Here we bridge this gap by formalizing a Bayesian theory of ef-
ficient coding. We define Bayesian efficient codes in terms of
four basic ingredients: (1) a stimulus prior distribution; (2) an en-
coding model; (3) a capacity constraint, specifying a neural re-
source limit; and (4) a loss function, quantifying the desirability or
undesirability of various posterior distributions. Classic efficient
codes can be seen as a special case in which the loss function
is the posterior entropy, leading to a code that maximizes mu-
tual information, but alternate loss functions give solutions that
differ dramatically from information-maximizing codes. In par-
ticular, we show that decorrelation of sensory inputs, which is
optimal under classic efficient codes in low-noise settings, can
be disadvantageous for loss functions that penalize large errors.
Bayesian efficient coding therefore enlarges the family of nor-
matively optimal codes and provides a more general framework
for understanding the design principles of sensory systems. We
examine Bayesian efficient codes for linear receptive fields and
nonlinear input-output functions, and show that our theory invites
reinterpretation of Laughlin’s seminal analysis of efficient coding
in the blowfly visual system.

1 Introduction

One of the primary goals of theoretical neuroscience is to under-
stand the functional organization of neurons in the early sensory
pathways and the principles governing them. Why do sensory
neurons amplify some signals and filter out others? What can
explain the particular configurations and types of neurons found
in early sensory system? What general principles can explain
the solutions evolution has selected for extracting signals from
the sensory environment?
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Two of the most influential theories for addressing these ques-
tions are the “efficient coding” hypothesis and the “Bayesian
brain” hypothesis. The efficient coding hypothesis, introduced by
Attneave and Barlow more than fifty years ago, uses the ideas
from Shannon’s information theory to formulate a theory norma-
tively optimal neural coding [1, 2]. The Bayesian brain hypoth-
esis, on the other hand, focuses on the brain’s ability to per-
form Bayesian inference, and can be traced back to ideas from
Helmholtz about optimal perceptual inference [3–7].

A substantial literature has sought to alter or expand the original
efficient coding hypothesis [5, 8–18], and a large number of pa-
pers have considered optimal codes in the context of Bayesian
inference [19–26]. However, the two theories have never been
formally connected within a single, comprehensive theoretical
framework. Here we propose to fill this gap by formulating a
general Bayesian theory of efficient coding that unites the two
hypotheses. We begin by reviewing the key elements of each
theory and then describe a framework for unifying them. Our
approach involves combining a prior and model-based likelihood
function with a neural resource constraint and a loss functional
that quantifies what makes for a “good” posterior distribution. We
show that classic efficient codes arise when we use information-
theoretic quantities for these ingredients, but that a much larger
family of Bayesian efficient codes can be constructed by allowing
these ingredients to vary. We explore Bayesian efficient codes
for several important cases of interest, namely linear receptive
fields and nonlinear response functions. The latter case was ex-
amined in an influential paper by Laughlin that examined contrast
coding in the blowfly large monopolar cells (LMCs) [27]; we re-
analyze data from this paper and argue that LMC responses are
in fact better described as minimizing the average square-root
error than as maximizing mutual information.

2 Theoretical Background

2.1 Efficient coding hypothesis

The Efficient Coding hypothesis, set forth by Attneave [1] and
formalized by Barlow [2], proposes that sensory neurons are op-
timized to maximize the information they transmit about sensory
inputs. This hypothesis represents one of the most influential
theories in systems neuroscience, and was the first to apply
Shannon’s information theory to the problem of neural coding.
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Mutual information, as defined by Shannon [28], quantifies (in
units of bits) the information that neural responses y carry about
external stimuli x:

I(x,y) = H(y)−H(y|x), (1)

where H(y) is the marginal entropy and H(y|x) is the marginal
and conditional (or “noise”) entropy of the response:

H(y) = −
∫
P (y) logP (y) dy (2)

H(y|x) = −
∫
P (x,y) logP (y|x) dxdy. (3)

The marginal entropy H(y) quantifies the uncertainty (in bits) of
the marginal response distribution P (y), while conditional en-
tropy H(y|x) quantifies the uncertainty of the conditional re-
sponse distribution P (y|x), averaged over the joint distribution
P (x,y). The mutual information tells us how much uncertainty
about y is reduced when we know the stimulus x, on aver-
age. Remarkably, the mutual information is symmetric, so it can
equally be written as H(x) − H(x|y), the difference between
stimulus entropy H(x) and conditional entropy H(x|y), corre-
sponding to the average reduction in uncertainty about the stim-
ulus due to an observed neural response [29].

Barlow’s proposal, which he termed the redundancy-reduction
hypothesis, was that neurons maximize I(x,y)/C, the ratio be-
tween the mutual information between stimulus x and neural re-
sponse y, and the channel capacity C, which is an upper bound
(considered over all stimulus distributions) on the mutual infor-
mation. A perfectly efficient code in Barlow’s sense is one for
which I(x,y) = C, where mutual information equals the chan-
nel capacity.

Barlow himself focused on the deterministic case where noise
entropyH(y|x) = 0 and channel capacity is fixed. In this setting,
efficiency is achieved by maximizing response entropy H(y).
This specific setting yields two predictions most commonly as-
sociated with the efficient coding hypothesis: (1) single neurons
should nonlinearly transform the stimulus to achieve optimal use
of their full dynamic range [27, 30, 31]; and (2) neural popula-
tions should decorrelate their inputs, so the marginal response
distribution is more independent than their inputs [9, 32–35].

2.2 Bayesian Brain Hypothesis

The Bayesian Brain hypothesis provides a second theoretical
perspective on neural coding [4, 6, 7]. The core idea can be
traced back to Helmholtz’s 19th century work on perception: it
proposes that the brain seeks to combine noisy sensory infor-
mation about the current stimulus with prior information about
the environment. The product of these two terms, known as like-
lihood and prior, can be normalized to obtain the posterior distri-
bution, which captures all information about the state of the en-
vironment. In this view, sensory perception is a form of Bayesian
inference, and the brain’s goal is to compute the posterior distri-
bution over environmental variables given sensory inputs.

The two key ingredients for the Bayesian Brain hypothesis are a
prior distribution P (x) over the stimulus and an encoding distri-
bution P (y|x) that describes the mapping from stimuli x to neu-
ral responses y. These ingredients combine according to Bayes’
rule to form the posterior distribution:

P (x|y) ∝ P (x)P (x|y), (4)

which captures the observer’s beliefs about the stimulus x given
the noisy sensory information contained in y. This theory has
had major influences on the study of sensory and motor behavior
[6, 7, 26, 36–42], as well as on theories of neural population
codes that support Bayesian inference [19–21, 43–45]. Despite
its emphasis on normatively optimal perception and behavior,
the Bayesian brain literature and the efficient coding hypothesis
have not not yet been connected in full generality.

3 Bayesian efficient coding

Here we make the connection between the Bayesian brain hy-
pothesis and efficient coding explicit by formulating a more gen-
eral theory of Bayesian efficient coding, which include classic
efficient coding as a special case. We will define a Bayesian
efficient code (BEC) as resulting from four basic ingredients:

1. P (x) - A stimulus distribution, or prior.

2. P (y|x, θ) - An encoding model, parametrized by θ, describ-
ing how stimuli x are mapped to responses y.

3. C(θ) - A capacity constraint on the parameters, specifying
a neural resource limit.

4. L(·) - A loss functional, quantifying the desirability or unde-
sirability of various posterior distributions.

Given these ingredients, a BEC corresponds to a setting of the
model parameters θ that achieves a minimum of the expected
loss,

L̄(θ) = E
[
L
(
P (x|y, θ)

)]
=

∫
P (y|θ)L

(
P (x|y, θ)

)
dy, (5)

subject to the capacity constraint C(θ) ≤ c, where P (x|y, θ) ∝
P (y|x, θ)P (x) denotes the posterior over x given y and θ, and
expectation is taken with respect to the marginal response distri-
bution P (y|θ) =

∫
P (y|x, θ)P (x)dx.

Each of the four ingredients plays a distinct role in determining
a Bayesian efficient code (see Fig. 1). The prior is determined
by the statistics of the environment, and provides a complete
description of the stimuli to be encoded. The model, in turn,
determines the form of the probabilistic encoding function to be
optimized; it determines the posterior distributions that the or-
ganism will utilize when the prior and likelihood are combined
after each sensory response y∗.

The capacity constraint C defines a neural resource limitation,
such as an energetic constraint on the average spike count or
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a physiological limit on the maximal firing rate. This makes the
problem of determining an optimal code well posed, since with-
out a constraint it is often possible to achieve arbitrarily good
codes, e.g., by using arbitrarily large spike counts to encode
stimuli with arbitrarily high fidelity.

Finally, the loss functional L is the key component that sets
Bayesian efficient codes apart from classic efficient codes: it
quantifies how much to penalize different posterior distributions
that may arise. For example, the brain might prefer posteriors
with small entropy, or small variance, or small standard devia-
tion. (These are not the same, as we shall see shortly.) Note
that in our formulation, the loss functional applies to the entire
posterior as a distribution function over x, not (for example) a
decoded point estimate of the stimulus, as in Bayesian estima-
tion settings. The posterior entropy, for one, cannot be written as
a function of the decoded estimate, making it desirable to con-
sider loss functions that apply to the entire posterior distribution.
We will discuss motivations for different loss functions in the fol-
lowing sections.

3.1 Bayesian vs. classical efficient codes

Given the above definition, it is natural to ask: when does a
Bayesian efficient code correspond to a traditional efficient code
as defined by Barlow? The answer is that classical Barlow effi-
cient codes are a special case of Bayesian efficient codes with
loss function set to the posterior entropy:

L
(
P (x|y, θ)

)
= −

∫
P (x|y, θ) logP (x|y, θ) dx. (6)

This results in a code that maximizes mutual information be-
tween stimulus and response because the expected loss L̄ =
Ey|θ[L] is the conditional entropy of the responses given the
stimuli H(y|x; θ); subtracting this from the prior entropy H(x),
which is is independent of θ, gives the mutual information
I(x,y). Thus, minimizing average posterior entropy is the same
as maximizing mutual information.

However, there is nothing privileged about minimizing entropy or
maximizing information from a general coding perspective. In the
next sections we will show that it is often natural to consider other
loss functions, and that the Bayesian efficient codes that re-
sult from doing so can differ strongly from classical, information-
theoretically optimal codes.

4 Simple Examples

We will motivate a Bayesian theory of efficient coding by show-
ing two simple examples that illustrate the appeal of using loss
functions other than posterior entropy, one with continuous and
one with discrete encoding.

4.1 Continuous example: 2D Gaussian

To illustrate the role played by the loss function in Bayesian ef-
ficient codes, we first consider a simple example with two noisy
neurons encoding a bivariate Gaussian stimulus (Fig. 2A). Sup-
pose that a 2D stimulus x = (x1, x2) has an independent Gaus-
sian distribution with standard deviation 10 in both directions.
Then consider three possible noisy encoders, each of which cor-
responds to making a measurement of x corrupted by additive
Gaussian noise:

• encoder 1: y1 = x1 + ε, ε ∼ N (0, 100/99).

• encoder 2: y1 = x1 + ε1, y2 = x2 + ε2, ε1 ∼
N (0, 100/49), ε2 ∼ N (0, 700/93).

• encoder 3: y1 = x1 + ε1, y2 = x2 + ε2, ε1 ∼
N (0, 100/19), ε2 ∼ N (0, 100/19).

The first encoder makes a low-noise measurement of x1 and ig-
nores x2, whereas the other two encoders distribute noise more
or less evenly across x1 and x2, resulting in posteriors with stan-
dard deviations (σ1 = 1, σ2 = 10), (σ1 = 2, σ2 = 7), and
(σ1 = 5, σ2 = 5), respectively, as depicted in Fig. 2A.

It should be obvious from this example that there is no clear
sense in which any of these posteriors can be declared better
in general. The three posteriors differ in how uncertainty is dis-
tributed across the two stimulus dimensions; which is better de-
pends entirely on what the organism cares about. To make this
concrete, we consider three loss functions: the posterior entropy,
L1 = − log(2πe σ1σ2), (equivalent to maximizing mutual infor-
mation), the total standard deviation, L2 = σ1 +σ2, and the total
variance, L3 = σ2

1 + σ2
2 . Each loss function gives a different

best encoder. The first encoder achieves the smallest entropy,
and therefore achieves the highest mutual information between
stimulus and response, even though it entirely ignores x2. The
second encoder achieves minimal total-deviation loss, because
2+7=9 (encoder 2) is less than 1+10=11 (encoder 1) or 5+5=10
(encoder 3). The third encoder minimizes total-variance loss L3,
because 25 + 25 = 50 is smaller than either 1 + 100 = 101
(encoder 1) or 4 + 49 = 53 (encoder 2).

This simple example illustrates the manner in which different loss
functions give rise to different notions of optimal coding. The
loss functions differ in how they penalize the allocation of un-
certainty across stimulus dimensions. Entropy is only sensitive
to the product σ1σ2, which corresponds to the volume of the
posterior. We could stretch the posterior by an arbitrary con-
stant a in one dimension and by 1/a in the other, and we would
not affect entropy. The other two loss functions, on the other
hand, seek to minimize the summed uncertainty (standard de-
viation or variance) along the two axes. Compared to the en-
tropy, they disfavor posteriors with large uncertainty in one di-
rection, an effect that is larger for variance than for standard de-
viation. For Gaussian posteriors, they can also be interpreted
in terms of minimizing error in an optimal decoder. Minimizing
total standard deviation is equivalent to finding an encoder that
minimizes the summed absolute error of a decoded estimate:
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Figure 1: Bayesian efficient coding schematic. The theory is governed by four basic ingredients, highlighted in dark gray boxes. During
any perceptual interval, a stimulus x∗ is drawn from the prior P (x) and presented to the organism. The nervous system encodes this stimulus
with a sample y∗ from the encoding distribution P (y|x∗, θ), which is governed by parameters θ (e.g., defining a neuron’s receptive field,
nonlinearity, noise, etc). An application of Bayes’ rule leads to the posterior distribution P (x|y∗, θ), which captures all information available
to downstream brain areas about the stimulus given the sensory response y∗. The loss function L(·) characterizes the desirability of this
posterior. A Bayesian efficient code is one for which parameters θ are set to minimize the average loss over stimuli and responses drawn from
the prior and encoding model, subject to the resource constraint on the encoder, C(θ) < c.

E[||x̂− x||1] = E[|x̂1 − x1|+ |x̂2 − x2|], where x̂ is an estimate
that minimizes the `1 error ||x̂ − x||1. Similarly, minimizing total
variance is equivalent to minimizing the mean squared error of
an optimal decoder: E[||x̂− x||22] = E[(x̂1 − x1)2 + (x̂2 − x2)2],
where x̂ is the posterior mean1, also known as the Bayes’ least
squares (BLS) or minimum mean squared error (MMSE) estima-
tor.

We could of course have considered other loss functions that
would have given us different reasons for preferring any of these
three encoders. For example, a “minimax” loss function L =
max(σ1, σ2), which cares only about minimizing the worst pos-
sible performance in any dimension, would also favor the third
encoder. Thus, optimality is in the eye of the loss function, and
for any set of encoders there may be multiple ways to regard
them as optimal in a Bayesian sense.

4.2 Discrete example: multiple choice exam

As second example, consider the case of a discrete stimulus
that takes on one of four possible values {a, b, c, d}, each with
prior probability 0.25, and a noisy neuron that can respond with
1, 2, 3, or 4 spikes. We will consider the following two possible
encoding rules (See Table 1 and Fig. 2B).

The first encoder maps stimuli a and b to responses 1 and 2 ran-
domly with equal probability, and similarly maps stimuli c and d
to responses 3 and 4. The second encoder, on the other hand,
maps a → 1, b → 2, c → 3, d → 4 with probability 0.8, and
with probability 0.2 maps to one of the other three responses
selected at random. Fig. 2B shows the kinds of posteriors that
arise under these two encoders—these are in fact equal to the
rows of the encoding tables given above, since the prior is uni-

1Note that this connection between sum of moments and minimization of error
does not hold in general. See supplemental information for detail.

P (y|x)

y

1 0.5 0.5 0 0
2 0.5 0.5 0 0
3 0 0 0.5 0.5
4 0 0 0.5 0.5

a b c d
x

(a) encoder 1

P (y|x)

0.8 0.2/3 0.2/3 0.2/3
0.2/3 0.8 0.2/3 0.2/3
0.2/3 0.2/3 0.8 0.2/3
0.2/3 0.2/3 0.2/3 0.8
a b c d

x

(b) encoder 2

Table 1: Discrete encoding for multiple choice test

form and each row already sums to 1. For the first encoder, the
posterior assigns probability 0.5 to two stimuli and rules out the
other two. For the second encoder, the posterior concentrates
on one stimulus with probability 0.8, and spreads the remaining
0.2 evenly across the other three stimuli.

It is now interesting to consider which of these two encoders
is best according to different loss functions. First, let us con-
sider posterior entropy, which corresponds to maximizing infor-
mation as in Barlow’s classic definition. The prior has an entropy
H(x) = −4 × 0.25 log2 0.25 = 2 bits. The mean posterior en-
tropy of the first encoder H(x|y, θ1) = −2× 0.5 log2 0.5 = 1 bit,
so the mutual information between stimulus and response is 1
bit. By contrast, the posterior entropy of the second encoder is
H(x|y, θ2) = −0.8 log2 0.8 − 0.2 log2(0.2/3) = 1.04 bits, which
gives mutual information of only 2−1.04 = 0.96 bits. This means
that the second encoder preserves strictly less Shannon infor-
mation about the stimulus than the first, so the first encoder is
more efficient2. A second natural choice of loss function, how-
ever, is the “percent correct”, defined as the percent of the time
a maximum a posteriori decoder chooses the correct stimulus.

2Strictly speaking the two channels have different capacity, the definition of
redundancy doesn’t apply directly.
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Figure 2: Optimal encoding depends critically on choice of loss function. (A) Illustration showing three possible encoders of a stimulus
with an independent bivariate Gaussian prior distribution. The encoders produce three different Gaussian posteriors, shown at right. For
axis-aligned Gaussian distributions, the entropy depends on the product of standard deviations σ1σ2, whereas the “total deviation” depends
on the sum of standard deviations σ1 + σ2, and total variance depends on the sum of variances σ2

1 + σ2
2 . According to entropy loss, the top

encoder is best (achieving a mutual information of log2(10 · 10) − log2(10 · 1) = 3.2 bits), but for total-deviation loss, the middle encoder
is best (achieving σ1 + σ2 = 9), and for total-variance loss, the bottom encoder is best (achieving σ2

1 + σ2
2 = 50). (B) Discrete encoding

example, showing two possible encoders for a multiple-choice exam. The prior is an equal p = 1/4 probability for each of the four possible
stimuli {a, b, c, d}. The top encoder eliminates two possibilities so that the posterior assigns probability pi = 1/2 to two stimuli and 0 to the
other two. The bottom encoder gives a posterior distribution with probability pi = 0.8 for one stimulus and the remaining 0.2 probability spread
evenly among the other three. The top encoder is optimal for information theoretic loss, since it achieves a mutual information of 1 bit, vs.
only 0.96 bits for the bottom encoder. However, for “percent correct” loss, which is sensitive only to max({pi}), the bottom encoder is clearly
better. It identifies the correct stimulus 80% of the time (good for a grade of B-), whereas the top encoder achieves only 50% (an F).

According to this loss function, the second encoder is clearly
superior, since 80% of the time it concentrates on the correct
stimulus, whereas the best possible decoding of responses from
the first encoder can only answer correctly 50% of the time.

This example has perhaps greater cultural and psychological
salience if we reframe it terms of students studying for a mul-
tiple choice exam. Each question on the exam will have four
possible choices (a, b, c, and d), which occur equally often. Stu-
dent 1 adopts a study strategy that allows her to rule out two
of the four choices with absolute certainty, but to have total un-
certainty about which of the two remaining options is correct for
each exam question. Student 2, on the other hand, adopts a
study strategy that allows her to know the correct answer 80% of
the time, but has uniform uncertainty about the remaining three
options, which are correct the remaining 20% of the time. Which
student’s strategy is better? If we judge them according to mu-
tual information, the first student has clearly learned more; her
brain has stored 0.04 more bits about the subject matter than
the second student. However, if we judge them according to the
number of questions they can answer correctly on the exam, the
second student’s strategy is clearly better: her expected grade
is a B-, with a score of 80%, whereas the second student is ex-
pected to fail with only half the questions answered correctly.

An interesting corollary of this example, therefore, is that al-
though information-theoretic learning (cf. [12, 46]) is optimal
for True/False exams, it can be substantially sub-optimal for

multiple-choice exams.

5 Linear receptive fields

Now we turn to an application motivated by biology. Neurons in
the early visual system are often described as performing an ap-
proximately linear transformation of the light pattern falling on the
retina. A large body of previous work has examined the optimal-
ity of these linear weighting functions under the efficient coding
paradigm and its variants [10, 15, 16, 18, 33, 47–52].

Here we re-examine this problem through the lens of Bayesian
efficient coding. We consider the following simplified model for
linear encoding of sensory stimuli:

stimulus distribution: x ∼ N (0, Q); (7)

(noisy) encoding model: y = Wx + ε, ε ∼ N (0, R) (8)

s.t. E[y>y] ≤ c. (“power constraint”) (9)

In this setup, we assume that the stimulus, an image consisting
of n pixels, is encoded into a population of n neurons via a weight
matrix W . Each row of W corresponds to the linear receptive
field of a single neuron. For tractability, we assume that the stim-
ulus has a Gaussian distribution (with covariance Q defining the
correlations between pixels), and the neural population response
is corrupted by additive Gaussian noise with covariance R. We
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impose a power constraint on the response, corresponding to a
bound on the sum of squared responses y. This is a common
choice of constraint in the efficient coding and engineering liter-
ature due to differentiability and analytic tractability [29, 47]. In
practice, the power constraint restricts the model from achieving
infinite signal-to-noise ratio by growing W without bound.

For this model, the marginal response distribution P (y) is Gaus-
sian, y ∼ N (0,WQW> + R), so the power constraint can be
written in terms of the trace of the marginal covariance:

E[y>y] = E[Tr[yy>]] = Tr[WQW> +R] ≤ c. (10)

The posterior distribution P (x|y) is also Gaussian, N (µ,Σ),
with mean and covariance

µ = ΣW>R−1y, Σ = (W>R−1W +Q−1)−1. (11)

In this setup, the coding question of interest is: given stimulus
covariance Q, noise covariance R, and power constraint c, what
is the optimal linear encoding matrix W? That is, what receptive
fields are optimal for encoding of the stimuli from P (x) in the
face of noise and a constraint on response variance? Here we
consider two possible forms for the loss functional:

Lentropy = H(x|y) = 1
2 log |2πeΣ| = 1

2

∑
i

log σi + c (12)

Lcovtropy = Tr[Σ
p
2 ] =

∑
i

σpi (13)

where σ2
i are the eigenvalues of posterior covariance Σ, or the

variances of the posterior along its principal axes.

The first loss function, posterior entropy, corresponds to clas-
sic infomax efficient coding, since minimizing posterior entropy
corresponds to maximizing mutual information between stimulus
and response. The second loss function, which we term covtropy
due to its similarity to entropy, is the summed p’th powers of pos-
terior standard deviation along each principal axis. Like entropy,
the covtropy depends only on the eigenvalues of the posterior
covariance matrix, and is thus invariant to rotations (See Sup-
plementary Information). For p = 2, covtropy corresponds to
the sum of posterior variances along each axis; minimizing it is
equivalent to minimizing the mean squared error [15–17] (see
Appendix for proof).

For p = 1, covtropy corresponds to a sum of standard devia-
tions; this penalizes a posterior with large variance in one direc-
tion less severely than covtropy with p = 2. In the limit p → 0,
minimizing covtropy is identical to maximizing mutual informa-
tion, since log σ = limp→0

1
pσ

p. In this limit, the optimal code
minimizes the sum of log standard deviations,

∑
i log σi, which is

equivalent to minimizing the product
∏
i σi. The other interesting

regime to consider is the limit p → ∞. In this regime, minimiz-
ing covtropy is equivalent to minimizing maxi{σi}, the maximal
posterior standard deviation, a form of “mini-max” encoding. The
optimal code is therefore the one that achieves smallest maximal
posterior standard deviation in any direction.

Note that for the linear Gaussian model considered here, the
posterior covariance Σ is independent of the response y. This

makes the problem easier to analyze because there is no need
to compute average loss over the response distribution P (y)
(eq. 5). We show here that there is an analytic solution for the
optimal linear encoding matrix W in this setting, for both infomax
loss and covtropy loss (with any choice of p > 0), if we assume
that Q, R, and W have a common diagonalization. This condi-
tion arises naturally for a convolutional code, that is, W contains
a single receptive field shape that is circularly shifted by one pixel
for each neuron in the population, and noise is spatially shift in-
variant (i.e., R is a circulant matrix). In the following, we ex-
amine the properties of Bayesian efficient linear receptive field
codes for both information-theoretic and covtropy loss functions
(derivation in the Supplementary Information).

5.1 Infomax encoding

The optimal weight matrix W for infomax coding is given by:

WMI =
(
c
dI −R

) 1
2 Q−

1
2 , (14)

where c is the power constraint and d is the number of stimu-
lus dimensions. For this encoder, the responses y are perfectly
whitened, meaning the response covariance is proportional to
the identity, E[yy>] ∝ I, and the posterior covariance of x|y
is proportional to the product of signal and noise covariances,
Σ ∝ (QR).

5.2 Minimum covtropy encoding

For covtropy loss with exponent p, the optimal encoding weights
W are given by

Wp =
(
α(RQ)

p
p+2 −R

) 1
2

Q−
1
2 , (15)

where constant α = c/
(

Tr
[
(RQ)

p
p+2

])
simply enforces the

power constraint. For these weights, the marginal covariance
is

E[yy>] ∝ (QR)
p

p+2 (16)

which implies that optimal responses can be more or less corre-
lated than the stimulus. For example, when noise covariance
R is proportional to stimulus covariance Q, then for p = 2
(minimum mean-square error encoding), the optimal receptive
fields perfectly preserve the correlations in the stimulus, that is
cov[Y ] ∝ Q. For p > 2, the optimal receptive fields increase cor-
relations so that responses are more correlated than the stimuli
(See Fig. 3).

Although the responses become more correlated with increasing
p, the posterior covariance, given by

Σ ∝ (QR)
1

p+1 (17)

becomes increasingly whitened (i.e., closer to identity) with in-
creasing p, due to the fact that lima→0M

a = I for any non-
singular matrix M . This results in a posterior with the same
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Figure 3: Bayesian efficient codes for a linear receptive field model with Gaussian noise. (A) Gaussian stimulus distribution with strong
correlations (ρ = 0.9), with 50 samples shown (blue dots). (B) Neural responses (red dots) corresponding to optimal representations under
infomax and covtropy loss functions, under infinitesimal Gaussian noise with covariance proportional to the stimulus distribution. Responses
are uncorrelated (“white”) for the infomax encoder, but unchanged for the p = 2 (minimum variance) encoder and stronger for p = 4. (C)
Posterior distribution shape for each optimal encoder, showing that the infomax encoder achieves small posterior entropy using a long narrow
posterior, whereas optimal covtropy posteriors grow more spherical with increasing p. (D) Relative performance of each encoder according to
the loss function considered, normalized so the optimum is 1. Each encoder does best according to its own loss function, and the fall-off in
efficiency between infomax and covtropy encoders is substantial; the infomax coder captures almost twice as much information as the p = 4

covtropy encoder in terms of bits (left plot), while the infomax coder exhibits nearly 4 times higher p = 4 covtropy than the optimal p = 4

encoder (right plot).

uncertainty in all directions, regardless of the prior or noise co-
variance, in accordance with the “minimax” property for p = ∞
noted above.

6 Nonlinear response functions

So far we have focused on encoders that linearly transform the
stimulus. However, many neurons exhibit rectifying or saturat-
ing nonlinearities that map the raw stimulus intensities so as to
make optimal use of a neuron’s limited response range. Bar-
low’s efficient coding theory states that the nonlinearity should
map the stimulus distribution so as to maximize information be-
tween stimulus and response [2, 31], which naturally depends on
the prior distribution over stimuli, the conditional response distri-
bution, and the particular constraint on neural responses. For
the case of noiseless responses and a simple constraint over
the range of allowed responses, the shape of the information-
maximizing nonlinearity is proportional to the cumulative distri-
bution function (CDF) of the stimulus distribution, producing a
uniform marginal distribution over responses [53].

In a groundbreaking paper that is widely considered the first
experimental validation of Barlow’s theory, Simon Laughlin [27]

measured graded responses from blowfly large monopolar cells
(LMC) to contrast levels measured empirically in natural scenes.
Laughlin found that the LMC response nonlinearity, measured
with responses to sudden contrast increments and decrements,
exhibited a striking resemblance to the shape of the empirically
measured CDF of contrast levels in natural scenes. Fig. 4A
shows a reproduction of the original figure, showing that the non-
linear response is closely matched with the stimulus distribution
expected by the infomax solution.

Here we reexamine Laughlin’s conclusions by analyzing the
same dataset through the enlarged framework of Bayesian ef-
ficient coding. We can formalize the coding problem as follows:

stimulus distribution: x ∼ P (x) (18)

encoding model: y = g(x); (19)

s.t. y ∈ {0, . . . , ymax} (20)

Here x is a scalar stimulus with prior distribution P (x), and the
encoding model is described by g(x), a noiseless, quantizing
transformation from stimulus to discrete response levels. Note
that some information about the stimulus is lost due to quanti-
zation error. For classical infomax encoding, we know that op-
timal g performs histogram equalization by taking on the quan-
tiles of P (x), resulting in a uniform marginal response distribu-
tion P (y) [27, 53].
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We extracted the stimulus distribution from (Laughlin [27], Fig. 2)
in order to determine the optimal nonlinearity under Bayesian
efficient coding paradigms for several different choices of loss
function. In particular, we considered the p-th power loss func-
tion of the form:

L = E [|x− x̂(y)|p] =

∫
|x− x̂(y)|p P (x|y) dx (21)

where x̂(y) is the Bayesian optimal decoder for x from y [54].
For p = 2, this loss is equal to mean squared error, and estimate
x̂(y) is equal to the mean of the posterior over x given y. Smaller
values of p correspond to reducing the relative penalty on large
errors and increasing the relative penalty on small errors; in the
limit of p→ 0, the loss converges to posterior entropy, making it
equivalent to the infomax setting [24, 54].

We used numerical optimization to find the optimal nonlinearity
g(x) for p = 1

2 , 1, 2 (see Methods). We plotted these Bayes op-
timal nonlinearities against the infomax nonlinearity from Laugh-
lin, as well as the empirically measured LMC response nonlin-
earity (Fig. 4B). Although the infomax nonlinearity resembles the
true nonlinearity by eye, close inspection reveals the BEC non-
linearity with p = 1

2 provides a much closer fit. This means that
the LMC response function is more accurately described as min-
imizing average decoding error raised to the one-half power than
as maximizing information.

The difference between infomax and p = 1
2 loss appears slight

when viewed in terms of the optimal nonlinearity g(x), but is
more dramatic when we consider the predicted marginal distri-
bution over responses P (y) (Fig. 4C). We fit the neuron’s true re-
sponse nonlinearity with a sigmoid function (Naka-Rushton CDF;
See Methods), and computed the predicted marginal response
distribution P (y) for each nonlinearity g(x). As expected, the in-
fomax nonlinearity (dashed trace) produces a flat (uniform) dis-
tribution over response levels. However, both the p = 1

2 non-
linearity and the predicted LMC response distribution exhibit a
noticeable peak around intermediate response levels, with inter-
mediate response levels used more often, and responses at the
extreme left and right tails used less often. We note that such
peaking is expected under loss functions that penalize the mag-

nitude of decoding errors. In fact, the optimal nonlinearities for
p = 1 and p = 2 generate responses distributions that are even
more peaked than the real data, since they assign less proba-
bility mass to outermost response levels, where decoding errors
are largest. The infomax loss function, by contrast, ignores the
size of errors and simply seeks to match quantiles of the stimulus
distribution.

7 Discussion

We have synthesized Barlow’s efficient coding hypothesis with
the Bayesian brain hypothesis in order to formulate a Bayesian
theory of efficient neural coding. In this theory, an efficient neural
code corresponds to an encoding model that produces optimal
posteriors over stimuli under a capacity constraint on the neural
response. The optimality of the posterior is determined by a loss
function L, and the choice of loss function can have major effects
on the optimal code. We have shown that Barlow’s original the-
ory corresponds to a special case of this theory in which the loss
function is the Shannon entropy of the posterior, corresponding
to codes that maximize mutual information between stimulus and
response. However, such codes may be inefficient with respect
to loss functions that are sensitive to the shape of the posterior,
or the size of different decoding errors.

To illustrate our framework, we have derived Bayesian efficient
codes for two canonical neural coding problems: (1) population
encoding of high-dimensional stimuli with linear receptive fields;
and (2) single-neuron encoding of low-dimensional stimuli with
a nonlinear response function. In the first case, we showed
that the “whitening” solution favored by classic efficient coding
can be sub-optimal for other loss functions, and that even in the
high-SNR (signal-to-noise ratio) regime, optimal codes may in-
crease the correlations between neurons. In the second case,
we re-examined the classical results of Laughlin, and showed
that the nonlinear response functions of the blowfly LMC neu-
rons are in fact more consistent with a Bayesian efficient code
that minimizes the average square root of the decoding error
than a code that maximizes mutual information. While these two
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examples are both highly simplified, they illustrate the power of
this general formulation of efficient coding, and show surprising
and non-intuitive results that contrast with previous findings.

7.1 Relationship to previous work

In the years since the seminal papers of Attneave and Barlow,
a large literature has taken up the problem of optimal neural
coding, spanning a wide range of both information and non-
information-theoretic frameworks. Barlow’s original paper con-
sidered only noiseless encoding, where each stimulus maps to
a deterministic response [2]. Atick and Redlich extended this
framework to incorporate noise, deriving the remarkable result
that optimal receptive field shapes change with SNR, consistent
with observed changes in retinal ganglion receptive fields [10].
They showed that whitening is optimal only at high SNR, and
that optimal responses become correlated at lower SNR—note
that this differs from our result showing that whitening can be
sub-optimal even at high SNR for other loss functions (Figs. 3 &
5).

Several alternate versions of efficient coding based on informa-
tion theory were advanced in the early years. Barlow first pro-
posed that neurons optimize a quantity he called redundancy,
given by 1− I(x,y)/C, or one minus the mutual information di-
vided by the channel capacity C [2]. (In fact, Barlow referred
to his theory as the “redundancy reduction hypothesis”, and the
more common “efficient coding hypothesis” label has only ap-
peared more recently, e.g., [55]) Atick and Redlich modified Bar-
low’s theory to replace the C in the denominator by Cout, a
modified notion of channel capacity related to the system’s total
power, which they held to be more biologically plausible [10, 48].
Neither theory therefore amounted to a pure “infomax” hypothe-
sis, such as that advanced by [8], since optimality could be in-
creased either by increasing mutual information or decreasing
the channel capacity C or Cout in the denominator.

It bears mentioning that Barlow’s definition of redundancy has
no relationship to the concepts of redundancy and synergy later
introduced by Brenner and colleagues, which quantify whether
groups of neurons encode more or less information jointly than
separately [56–59]. An efficient code according to Barlow or At-
ick & Redlich may be perfectly efficient in the sense of maximiz-
ing the ratio of information to capacity, while being either redun-
dant or synergistic in the (more widely used) sense defined by
Brenner et al [60].

Theories of efficient coding based on information-theory have
been applied to a wide variety of different sensory systems and
brain areas. These can be roughly grouped into those focused
on linear receptive fields [32, 35, 61, 62], those focused on tuning
curves [23–26, 63], and those addressing some aspect of popu-
lation coding, such coupling strengths between neurons [64, 65]
or use of multiple pathways [51, 66–68]. A substantial portion of
this literature work has approached the problem of optimal cod-
ing through the lens of Fisher information [23, 24, 26, 63, 67, 69],
although Fisher information may not accurately quantify coding
performance in low SNR settings (e.g., short time windows or

low firing rates) [17, 22, 25, 70].

A substantial literature has also considered optimal coding un-
der alternate loss functions, and recent work has shown that
codes optimized for mutual information may perform poorly for
non-information-theoretic loss functions [71]. The most well-
studied alternate loss function is the squared loss, E[(x−x̂(y))2],
which results in so-called “minimum mean squared error” codes;
such codes achieve minimum expected posterior variance (as
opposed to minimum posterior entropy). These codes have re-
ceived substantial attention in both engineering [72, 73] and neu-
roscience [15, 16, 18, 22, 25, 74]. Optimal codes for a wide vari-
ety of other losses or optimality criteria have also been proposed,
including: minimization of motor errors [14], maximization of ac-
curacy [75–77], optimal coding for control applications [78], and
optimal future prediction [12, 79–83], and loss based on natu-
ral selection [6]. Other recent work has considered codes that
maximize metabolic efficiency [11, 13], which in our framework
corresponds more naturally to the constraint (which is concerned
with use of finite resources) than the loss function (which is con-
cerned with the posterior distribution).

In the statistics and decision-making literature, our work is
closely related to Bayesian statistical decision theory [84–86],
although such work has tended not to consider the problem of
optimal sensory coding. One noteworthy difference between our
framework and classical Bayesian decision-making theory is that
the loss functions in decision theory are typically defined in terms
of an expected cost of making a categorical decision or a point
estimate. In our framework, by contrast, the loss is defined as
a functional of the posterior; this allows us to consider a wider
class of loss functions such as the posterior entropy or the av-
erage posterior standard deviation, which cannot in general be
written as an expectation of a cost function involving the true
stimulus and its estimate. Thus, our loss function merely spec-
ifies what counts as a good or desirable posterior distribution,
without assuming how the posterior will be used (e.g., to gener-
ate a point estimate).

7.2 Relevance of Shannon information theory

Shannon’s information theory holds a special status in engineer-
ing, signal processing, and other fields due to its universal im-
plications for communication, compression, and coding in set-
tings of perfect signal recovery. However, it is unclear whether
information-theoretic quantities like entropy and mutual informa-
tion are necessarily relevant to information processing and trans-
mission in biological systems [87]. In particular, Shannon’s the-
ory (1) requires complex computation and long delays to encode
and decode in ways that achieve optimality [5]; (2) ignores bi-
ological constraints (e.g., neurons cannot implement arbitrary
nonlinear functions, and are inherently noisy); (3) applies to set-
tings of perfect signal recovery, which may not be possible or
even desirable in biological settings.

In the Bayesian efficient coding, the encoder is selected from a
biologically relevant parametric family. And although we consider
the (negative) mutual information as one possible choice of loss
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Figure 5: Optimal linear receptive fields for different loss functions. (A) Optimal 1D linear receptive fields for a neuron population with
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function, there is no a priori reason for preferring it to other loss
functions; as we have shown, optimizing MI it will not necessarily
give good performance for other losses (e.g., Figs. 2 & 3). We
therefore find no justification for claims (commonly found in the
neuroscience literature) that, in the absence of knowledge about
the brain’s true loss function, it is somehow best to maximize
mutual information.

A framework more relevant to sensory coding in the nervous
system is Shannon’s rate distortion theory for lossy encoding
[28]. Given an allowed maximum distortion (as a measure of
encoding-decoding error) L∗, the rate distortion function R(L∗)
describes the minimum necessary mutual information of the
channel (implemented by the encoder-decoder pair) to achieve
it: R(L∗) = infL(θ)≤L∗ I(x; x̂(θ)). One can prove that the more
mutual information is allowed, the smaller the achievable distor-
tion; in fact R(L∗) is a non-increasing convex function [29]. This
allows an interesting overlap between the two theories: a sub-
class of BEC theory with mutual information as constraint can
be reformulated as a special case of rate distortion theory. Con-
sider the following dual formulations:

θRD = arg min
θ

I(x;y|θ) subject to L̄(θ) ≤ L∗ (22)

θBEC = arg min
θ

L̄(θ) subject to I(x;y|θ) ≤ R(L∗) (23)

where L̄(θ) is the loss given in eq. 5. The rate distortion solution
θRD coincides with the BEC solution θBEC , because the distor-
tion function is monotonically decreasing. Although this provides
a insightful connection, such relations do not always exist, and
more generally it is not clear why a bound on mutual information
would be a biologically relevant constraint on a sensory encoder.

7.3 Limitations and future directions

What cost or loss function is the nervous system optimizing for?
We emphasize that BEC alone cannot serve as a normative
theory to answer this question; each problem and environment
should dictate the loss functional and prior. Rather, BEC should
be used as a guiding principle that frees the theory of efficient
coding from its traditional reliance on information theoretic prin-
ciples, and to cover an appropriately broad range of theories of
optimal neural encoding.

BEC on its own has many degrees of freedom and is likely
under-constrained by current neural and behavioral observa-
tions. Moreover, different combinations of constraints and loss
functions may be consistent with a single encoding model, pro-
viding multiple “optimal” explanations for a single encoder. The
priors, encoding models, constraints, and loss functions we have
considered here were guided primarily by tractability as opposed
to neural or biological plausibility, but some of these compo-
nents (e.g., prior and noise) can be quantified with measure-
ments [36, 88, 89]. We can start to make reasonable inferences
about constraints and loss functions through careful study of the
brain’s resource consumption [90, 91] or the behavioral conse-
quences of different kinds of errors [92, 93].

A variety of other issues relating to normatively optimal neural
coding remain to be addressed by our theory:

Computational demands: the BEC framework does not con-
sider constraints on the brain’s computational capabilities. In
particular, our theory—like with the Bayesian brain hypothesis
itself—assumes that the brain can compute the desired posterior
distribution over stimuli given the response, or at least extract the
posterior statistics needed for optimal behavior. This is almost
certainly not the case for many of the complex inference prob-
lems the brain faces. It seems more likely that the brain relies on
shortcuts, heuristics, and approximate inference methods that
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result in sub-optimal use of the stimulus information contained
in neural responses relative to a Bayesian ideal observer [94].
The BEC paradigm could therefore be extended to incorporate
computational constraints: for example, linear readout of neural
activity is linear, or the use of particular approximate Bayesian
inference methods [95]).

The role of time: we have focused our analyses on coding
problems that follow the sequential nature of Bayesian inference
(stimulus→ response→ posterior distribution) and have ignored
the continuous-time nature of stimuli, responses, and behavior.
However, there is nothing about our theory that precludes appli-
cation to continuous-time problems, and previous work has for-
mulated population codes capable of updating a posterior dis-
tribution in continuous time [96–100]. In many cases optimal
coding depends on the timescale over which information is inte-
grated: for example, previous work has shown that optimal tun-
ing curve width depends on the time over which spikes are gen-
erated, with longer time windows necessitating narrower tuning
[17, 25]. Recent work has discovered limits on fast timescale
transmission of information in physical and biological systems
[101], but there is still a need for a theory of optimal coding in
settings where there is uncertainty about the time (or times) at
which the posterior distribution will be evaluated or “read out”.

Latent variables: we have not so far discussed latent vari-
able models, in which there are additional unobserved stochastic
components affecting either the stimulus or the neural response.
In stimulus latent variables models, the quantity of interest is a
latent variable z that may be regarded as underlying or generat-
ing the sensory stimulus x. (For example, z might the velocity
of an object or the identity of a face, and x is the resulting im-
age or image sequence presented to the retina [102]). In such
settings, the posterior over the latent variable z might be the
quantity of interest for an optimal code; BEC can handle this
case by defining a loss function sensitive to the posterior p(z|y).
This can be seen as a valid instance of BEC because this dis-
tribution can be written as a functional of the stimulus posterior:
p(z|y) =

∫
p(z|x)p(x|y) dx, where p(z|x) is the posterior over

the latent given the stimulus under the generative model. La-
tent variables also arise in models of neural activity with shared
underlying variability [103–106]. In such cases, it is natural to
write the encoding model itself as a joint distribution over activity
and latents, p(y, z|x); the BEC paradigm can once again handle
this case by marginalizing over the latent to obtain p(x|y). Thus,
BEC can accommodate both kinds of latent variable models typ-
ically used in neuroscience, and the consideration of stimulus-
related latent variables may motivate the design of loss functions
are sensitive to particular latent variables while discarding other
aspects of the stimulus (e.g., as in the information bottleneck [81]
or accuracy maximization analysis [75, 102]).

Although we have focused on two canonical problems that arise
repeatedly in the neural coding literature, namely optimal linear
receptive fields and optimal nonlinear input-output functions, we
hope that future work will address other coding problems rele-
vant to information processing in the nervous system (e.g., multi-
layer cascades, dynamics, correlations), and will be extended to
non-Bayesian frameworks (e.g., that take into account computa-

tional costs or constraints). We believe that the BEC paradigm
provides provides a rigorous theoretical framework for neurosci-
entists to evaluate neural systems, synthesizing the Bayesian
brain and efficient coding hypothesis into a formalism that can in-
corporate diverse optimality criteria beyond classic information-
theoretic costs.

Methods

Blowfly data from Laughlin [27]

We extracted the data points from the figures in the original pa-
per [27] to fit the models in section 6 and for the plots in Fig. 4.
The data are available as supplementary data files.

To fit the stimulus CDF and the response nonlinearity of the
blowfly LMC, we fit a 3-parameter Naka-Rushton function |(x −
a)b|/(|x− a|b + c) (plotted as grey dotted line in Fig. 4B) to
estimate the stimulus CDF (Fig. 4A). The parameters for the
stimulus CDF were a = −1.52, b = 5.80, c = 7.55, and a =
−1.90, b = 5.84, c = 37.17 for the LMC response.

To compute the optimal nonlinearities plotted in Fig. 4B, we
parametrized the nonlinearity as a piecewise constant function
defined on 25 bins, and numerically minimized the loss (eq. 21)
using MATLAB’s fminunc to optimize the location of the bin
edges for each value of p. To compute the marginal response
distributions for different nonlinearities (Fig. 4C), we transformed
the quantization bin edges through the prior CDF.
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Supplementary Information

Appendix A: Loss functionals

Loss functionals quantifies the goodness of the posterior distri-
bution P (x |y, θ). There are broadly two classes of loss func-
tionals: entropic loss or reconstruction loss. Entropic losses
quantify the average uncertainty of the posterior: More concen-
trated the posterior, the better.

L(P (x |y)) =



Ex|y [− logP (x|y)] (1a)

(Shannon entropy)
1

1− α
logEx|y

[
P (x|y)α−1

]
(1b)

(Rényi α-entropy)
1

1− α
Ex|y

[
P (x|y)α−1 − 1

]
(1c)

(Tsallis entropy)

tr
(

cov [x |y]
p
2

)
(1d)

(p-covtropy)

Both eq. 1b and eq. 1c converges to eq. 1a in the limit of α→ 1.

Traditional entropic losses do not discriminate points in the stim-
ulus domain, that is, any error is treated equally. However, when
stimulus space is Rn, it makes sense to prefer locally tight pos-
terior distributions. One such measure is the p-covtropy which
measures the posterior concentration around the posterior mean
(only defined for distributions in Rd). Note that p2 ’th power of the
posterior covariance matrix corresponds to taking p’th power of
the standard deviations along each principal axis through diago-
nalization.

The second class of loss functionals depend on a specific read-
out (a.k.a. estimator or reconstruction) x̂(y) that maps the neu-
ral response y back to the stimulus domain. We consider a
general average reconstruction error loss functional of the form:
L(P (x |y)) = Ex|y [d(x, x̂(y))] where d(·, ·) is a distortion mea-
sure.

L(P (x |y)) =



Ex|y‖x− x̂(y)‖p (2a)

(p-norm error)

Ex|y‖x− x̂(y)‖22 (2b)

(mean squared error)

Ex|y [1− δ(x− x̂(y))] (2c)

= P (x 6= x̂(y)|y) (0-1 loss)

Mean squared error and the 0-1 loss are widely used in commu-
nication theory, machine learning, and statistics in general.

There are loose bounds that connect the posterior entropy with
Bayesian error rate (e.g. Fano bound for classification) [73].
However, these bounds do not justify infomax strategy because
better Bayesian error rate can be achieved with a system that
directly optimizes for the target error measure.

Note the similarity between p-norm error and the p-covtropy
when posterior mean is used for decoding. They coincide when

p = 2, however for p 6= 2, unlike the p-norm error, p-covtropy
is invariant under unitary transformation of the stimulus space
(which is the key difference between the 2D Gaussian and the
linear receptive field examples). This is an important distinction
if axes in x do not have special meaning, and rotated posteri-
ors are considered equally good. We can make this connec-
tion rigorous for a Gaussian posterior, x |y ∼ N (µ,C). Let
C = UDU−1 be the eigendecomposition of the covariance ma-
trix. Let Z ∼ N (0, D) be aligned on the principal axes, the p-th
power of the p-norm is given by,

EZ

[∑
i

|zi|p
]

=
∑
i

EZ [|zi|p] =
∑
i

κ(p)σpi

= κ(p) tr
(
D

p
2

)
= κ(p) tr

(
C

p
2

)
where κ(p) = 1√

π
2

p
2 Γ
(
p+1
2

)
.

In section 5, we discuss the loss functions only for Gaussian
posteriors. However, covtropy is well defined for any distribution
with a valid covariance matrix. Note that minimizing the limiting
case of covtropy for p → 0 and maximizing mutual information
do not coincide in general since posterior entropy is not a sole
function of the covariance in general.

Appendix B: Equivalence of MSE and
covtropy for p = 2

Here we provide a simple proof showing that minimizing cov-
tropy for p = 2 corresponds to minimizing mean-squared error
(MSE). Let E[‖x − x̂(y)‖22] denote the MSE for any estimator
x̂(y), where expectation is taken with respect to the posterior
P (x|y). It is well known that the posterior mean or “Bayes
least squares” estimator x̂BLS = E[x|y] achieves the mini-
mum of the MSE, which is then given by E[‖x − x̂BLS‖22] =
E[(x − x̂BLS)>(x − x̂BLS)]. We can use identities involving
trace and the definition of covariance to show that MSE is equal
to E[Tr[(x − x̂BLS)>(x − x̂BLS)]] = E[Tr[(x − x̂BLS)(x −
x̂BLS)>]] = Tr[E[(x − x̂BLS)(x − x̂BLS)>]] = Tr[Σ], which is
the covtropy with p = 2. Thus, the code that achieves minimum
p = 2 covtropy corresponds to the code that achieves minimum
MSE point estimation of the stimulus.

Appendix C: Linear receptive fields

Here we derive the optimal receptive fields for linear encoding
under Gaussian noise (Sec. 5). Recall the model (eqs. 7-9):

x ∼ N (0, Q); (3)

y = Wx + ε, ε ∼ N (0, R), (4)

and we wish to find the optimalW subject to the power constraint

E[y>y] = Tr[WQW> +R] ≤ c. (5)
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We make the assumption that Q,R, and W matrices commute,
which means they share a common eigenbasis or can be diago-
nalized by the same orthogonal matrix. This occurs, for example,
if all three are circulant matrices, so that W consists of shifted
copies of a single RF shape.

C.1 Infomax

Maximizing information is equivalent to minimizing the posterior
entropy:

L = H(x|y, θ) = 1
2 log |2πeΣ|

= − 1
2 log |W>R−1W +Q−1|+ const. (6)

We can find the optimal W subject to the power constraint above
using the method of Lagrange multipliers:

∂

∂W
(L+ λTr[WQW> +R])

= − 1
2 (W 2R−1 +Q−1)−12WR−1 + 2λWQ = 0, (7)

where λ is a Lagrange multiplier. This implies

(W 2R−1 +Q−1)RQ = 1
2λI, (8)

giving

W 2Q+R = 1
2λI, (9)

and finally
W = ( 1

2λI −R)
1
2Q−

1
2 . (10)

Plugging his solution into the constraint (eq. 5) gives

Tr[ 1
2λI] ≤ c (11)

which implies 1/(2λ) = c/n, where n = dim(y) is the number
of neurons. Substituting for λ gives the desired expression:

Ŵinfomax = ( cnI −R)
1
2Q−

1
2 . (12)

C.2 Minimum p-Covtropy

We can take a similar approach for the loss function we have
called p-covtropy, which is effectively the mean p’th power error
in the eigenbasis of the posterior distribution. This is given by

Lp = Tr[Σ
p
2 ], (13)

which involves the posterior covariance matrix Σ to the matrix-
power p/2. It turns out this loss function has the same optimum
as infomax loss in the limit p→ 0.

Once again, the method of Lagrange multipliers allows us to
solve for W explicitly in the case that W , R, and Q commute.
Taking the derivative of the Lagrangian with respect to W and
setting to zero yields

∂

∂W

(
L+ Tr

[
cov(y)

])
=

∂

∂W
(Tr[Σ

p
2 ] + λTr[WQW> +R])

= −p(W 2R−1 +Q−1)−
p
2−1WR−1 + 2λWQ = 0.

This can be simplified to

(W 2R−1 +Q−1)−
p+2
2 = 2λ

p QR

and so

W 2 = R
(

2λ
p QR

) −2
p+2 −RQ−1 (14)

=
(

( p
2λ )

2
p+2 (QR)

p
p+2 −R

)
Q−1 (15)

and finally

Ŵp =
(
α(QR)

p
p+2 −R

) 1
2
Q−

1
2 , (16)

with α = ( p
2λ )

2
p+2 . Substituting Ŵp into the power constraint

(eq. 5) gives:
Tr[α(QR)

p
p+2 ] ≤ c, (17)

which achieves the constraint with equality when

α =
c

Tr[(QR)
p

p+2 ]
, (18)

which completes the derivation.
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