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Abstract

The accurate alignment of brains is fundamental to the statistical sensi-

tivity and spatial localisation of group studies in brain imaging, and cortical

surface-based alignment is generally accepted to be superior to volume-based
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approaches at aligning cortical areas. However, human subjects have con-

siderable variation in cortical folding, and in the location of cortical areas

relative to these folds, which makes aligning cortical areas based on fold-

ing alone a challenging problem. The Multimodal Surface Matching (MSM)

tool is a flexible spherical registration approach that enables accurate reg-

istration of surfaces based on a variety of different features. Using MSM,

we have previously shown that using areal features such as resting state-

networks and myelin maps to drive cross-subject surface alignment improves

group task fMRI statistics and map sharpness. However, the initial imple-

mentation of MSM’s regularisation function did not penalize all forms of

surface distortion evenly. In some cases, this allowed peak distortions to

exceed neurobiologically plausible limits unless the regularisation strength

was increased, in which case this prevented the algorithm from fully max-

imizing surface alignment. Here, we propose a new regularisation penalty,

derived from physically relevant equations of strain (deformation) energy,

and demonstrate that its use leads to improved and more robust alignment

of multi-modal imaging data. In addition, since spherical warps incorporate

projection distortions that are unavoidable when mapping from a convoluted

cortical surface to the sphere, we also propose constraints to enforce smooth

deformation of cortical anatomies. We test the impact of this approach for

longitudinal modeling of cortical development for neonates (born between

32 and 45 weeks) and demonstrate that the proposed method increases the

biological interpretability of the distortion fields and improves the statistical

significance of population-based analysis relative to other spherical methods.

Keywords: Surface-based cortical registration; longitudinal registration;
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neonatal brain development; Discrete Optimisation; biomechanical priors
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1. Introduction

The cerebral cortex is a highly convoluted structure, with complex pat-

terns of folding that vary considerably across individuals. Accurate cross-

subject volumetric registration, in the face of folding variability, is far from

straightforward as relatively small deformations in three dimensions risk

matching opposing banks of cortical folds, or aligning brain tissue with cere-

brospinal fluid. For this reason surface registration methods have been pro-

posed, which constrain alignment to the 2D cortical sheet (Durrleman et al.,

2009; Fischl et al., 1999b; Gu et al., 2004; Lombaert et al., 2013; Lyu et al.,

2015; Robinson et al., 2014; Tsui et al., 2013; Wright et al., 2015; Yeo et al.,

2010; Van Essen, 2005). These are generally accepted to have better perfor-

mance at aligning cortical areas Glasser et al. (2016b)

Often, surface registration techniques have focused on the alignment of

cortical convolutions. Examples include, spectral embedding approaches,

which learn fast and accurate mappings between low-dimensional representa-

tions of cortical shapes (Lombaert et al., 2013; Orasanu et al., 2016b; Wright

et al., 2015); Large Deformation Diffeomorphic Metric Mapping (LDDMM)

frameworks, which learn vector flows fields between cortical geometries (Dur-

rleman et al., 2009), to allow smooth deformation of cortical shapes (Dur-

rleman et al., 2013); and spherical projection methods (Fischl et al., 1999b;

Lyu et al., 2015; Van Essen et al., 2012; Yeo et al., 2010), which simplify

the problem of cortical registration by projecting the convoluted surface to

a sphere. All methods demonstrate clear advantages in terms of: improving

the speed and accuracy of alignment (Lombaert et al., 2013; Wright et al.,

2015; Yeo et al., 2010); increasing the correspondence of important features
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on the cortical surface, such as brain activations (Fischl et al., 2008; Lombaert

et al., 2015; Yeo et al., 2010); and providing a platform through which cor-

tical shapes can be statistically compared (Durrleman et al., 2013; Orasanu

et al., 2016b)

Ultimately, however, shape based alignment of the brain is limited as

cortical folding patterns vary considerably across individuals, and correspond

poorly with the placement of cortical architecture, function, connectivity, and

topographic maps across most parts of the cortex (Amunts et al., 2000, 2007;

Glasser et al., 2016a). For this reason several papers have been proposed

to drive cortical alignment using ’areal’ features (descriptors that correlate

with the regional organisation of the human brain). These include Conroy

et al. (2013); Frost and Goebel (2013); Nenning et al. (2017); Sabuncu et al.

(2010), which drive spherical registration using features derived from func-

tional Magnetic Resonance Imaging (fMRI), and Tardif et al. (2015), who

register level-set representations of cortical volumes using combinations of ge-

ometric features and cortical myelin. Further, in Lombaert et al. (2015) and

Orasanu et al. (2016a) spectral shape embedding approaches are extended

to utilise broader feature sets, with Lombaert et al. (2015) adapting spectral

alignment of the visual cortex to improve transfer of retinotopic maps, and

Orasanu et al. (2016a) improving correspondence matching between neonatal

feature sets by performing multimodal spectral embeddings of cortical shape

and diffusion MRI (dMRI).

Most of these methods are optimised for alignment of specialised feature

sets, whether that be fMRI time series (Sabuncu et al., 2010), functional

connectivity patterns (Conroy et al., 2013; Nenning et al., 2017) or fixed
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combinations of cortical geometry with fMRI/dMRI (Lombaert et al., 2015;

Orasanu et al., 2016a). Furthermore, methods which enforce geometric con-

straints on the mapping (Durrleman et al., 2013; Lombaert et al., 2013, 2015;

Orasanu et al., 2016b; Wright et al., 2015) are not well placed to address the

known disconnect between the functional and morphological organisation of

the human brain (Amunts et al., 2000; Nenning et al., 2017)

Therefore, in Robinson et al. (2014) we proposed Multimodal Surface

Matching (MSM), a spherical deformation approach that enables flexible

alignment of any type or combination of features that can be mapped to the

cortical surface. MSM is inspired by DROP (Glocker et al., 2008) a discrete

optimisation approach for non-rigid registration of 3D volumes. Like DROP,

MSM has advantages in terms of reduced sensitivity to local minima (Glocker

et al., 2011), and a modular optimisation framework. This means that any

combination of similarity and regularisation terms can be used, which al-

lows the framework to adapt to alignment of any type, or combination, of

features provided that an appropriate similarity cost can be found. Accord-

ingly, MSM has been used to drive alignment of a wide variety of different

feature sets, including correlates of cortical folding, MR-based estimates of

cortical myelination, resting-state network maps, and multi-modal combi-

nations of folding and myelin (Božek et al., 2016; Glasser et al., 2016a,b;

Harrison et al., 2015; Robinson et al., 2014). Experiments show that this

also leads to improvements in correspondence of unrelated areal features in-

cluding retinotopic maps (Abdollahi et al., 2014) and task fMRI (Glasser

et al., 2016a; Robinson et al., 2014; Tavor et al., 2016).

One limitation of the original MSM implementation was that the choice
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of discrete optimisation allowed only for first-order (pairwise) smoothness

constraints. These was implemented by penalising the method from esti-

mating very different transformations for neighbouring points on the surface.

Unfortunately, this is suboptimal, as the penalty for doubling the size of a

region is equal to that of reducing the area to zero. Further, it is not pos-

sible to optimally weight isotropic and anisotropic distortions. We therefore

required a method for considering higher-order deformations, through com-

paring displacements of triplets of points; for this we implemented a method

for higher-order discrete optimisation through clique reduction (Ishikawa,

2009, 2014), which has already been successfully applied to 2D registration

in (Glocker et al., 2010)

A prototype of this framework proved fundamental to the methods used

during developed of the HCP’s multi-modal parcellation (Glasser et al.,

2016b,a). For (Glasser et al., 2016a), we proposed an triplet-based angu-

lar deviation penalty, that penalised change in the angles of each triangular

mesh face. Unfortunately, this new regularization penalty measure also had

drawbacks. In particular, it did not have any direct penalty for increasing

or decreasing the size of a feature. With careful tuning of the regularization

strength, based on elimination of neurobiologically implausible individual

subject peak distortions, we were able to produce the publicly released MS-

MAll aligned HCP results and the HCP’s multi-modal parcellation Glasser

et al. (2016b,a). However, the need to eliminate neurobiologically implausi-

ble peak distortions limited the registration’s ability to maximize functional

alignment. In particular, the method struggled to sufficiently penalize exces-

sive distortion in regions where the individual topological layout of cortical
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areas deviated from the group (Amunts et al., 2000; Gordon et al., 2017;

Glasser et al., 2016a; Haxby et al., 2011; Wang et al., 2015). High regu-

larization strength was required to prevent extreme distortions that would

have led to issues with circularity and poor individual subject areal classi-

fier performance (described in detail in Glasser et al. (2016a) Supplementary

Methods sec 6.4).

In this paper we therefore present the high-order MSM framework with a

new penalty inspired by the hyperelastic properties of brain tissue, to min-

imize surface deformations in a physically plausible way (Knutsen et al.,

2010); fully controlling both isotropic and anisotropic distortions, such that

peak distortions can be robustly controlled in areas affected by topologi-

cal variation or noise without requiring an excessively high regularization

strength that decrease the overall alignment. We test this new strain-based

regularization by re-optimizing the alignment of data from the adult Human

Connectome Project (HCP), for both folding alignment (MSMSulc) and the

multi-modal alignment protocol (MSMAll) described in Glasser et al. (2016a)

(sec 6.4). This uses myelin maps, resting state network maps, and resting

state visuotopic maps to align cortical areas.

A further limitation of the original MSM framework for longitudinal anal-

yses is that use of spherical alignment complicates the neurobiological inter-

pretation of deformation fields, since spherical projection distorts the relative

separation of vertices between the 3D anatomical surface (’cortical anatomy’)

and the sphere, such that spherical regularisation has a varying influence on

different parts of the cortical anatomy. These differences vary across the

brain, and are size and shape dependent (Figure 1), implying spherical regu-
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larisation has a varying influence on different parts of the cortical anatomy,

and these effects vary across brains. In this paper, therefore, we propose an

extension to the spherical alignment method, adapted from Knutsen et al.

(2010), to deform points on the sphere but regularise displacements on the

real anatomical surface meshes. This novel method retains the flexibility of

the spherical framework (which allows registration of any type of feature that

can be projected to the cortical surface), while harnessing spatial information

from the anatomical surface to produce physically meaningful warps.

We test the approach on alignment of 10 longitudinally-acquired neona-

tal cortical surface data sets imaged twice between 31 and 43 weeks post-

menstrual age and explore whether the deformation fields generated using the

proposed method display improved correspondence (relative to other spheri-

cal alignment approaches) with expected growth trajectories over this devel-

opmental period.

The rest of paper is organised as follows: we first give an overview of the

original spherical MSM method (sMSM), proposed in (Robinson et al., 2014)

(sec. 2), and discuss the extension to higher-order regularisation penalty

terms (sec. 3). Methods for approximating and regularising anatomical

warps (aMSM) are then presented (sec. 4). Finally, experiments and re-

sults are presented on a feature sets derived from adult and developing

Human Connectome Project (sec.6). Code and configuration files for run-

ning these experiments are available (https://www.doc.ic.ac.uk/~ecr05/

MSM\_HOCR\_v2/); note, that the released HCP MSMAll data used an older

version of MSMAll (see above, https://db.humanconnectome.org), how-

ever the MSMSulc and MSMAll pipelines based on strain-based regulariza-
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Figure 1. Metric distortions in the relative spacing of vertices occur as a result of the

projection from anatomy to a sphere. These change across the surfaces and between

brains. Differences are particularly obvious for longitudinally acquired data. Shown here:

A) White matter surfaces extracted from the same subject at 34 weeks post-menstrual age

(PMA, top row), and 44 weeks PMA (bottom row) are projected to a sphere; B) metric

distortions estimated in terms of isotropic expansion of mesh faces (log2 J, for J defined

in eq. 4), shown aligned and resampled to the 44 week subject (inflated brain view); C)

metric distortion difference between time points

tion is publicly available (https://github.com/Washington-University/

Pipelines) and will be used in follow up HCP projects on development,

aging and human disease and preliminary dHCP data can be found from

https://data.developingconnectome.org (version 1.1).

2. Multimodal Surface Matching

We begin with an overview of the original MSM method, first proposed

in Robinson et al. (2014). In this framework, we seek alignment between

two anatomical surfaces, each projected to a sphere, through the procedures

outlined in Fischl et al. (1999a). Here, anatomical surfaces represent tessel-

lated meshes fit to the outer boundary of a white matter tissue segmentation

(i.e. the gray/white surface). These are expanded outwards to the outer grey
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matter (or pial) boundary, and a midthickness surface is generated half way

between white and pial boundaries. Separately, white matter surfaces are

expanded to generate a smooth inflated cortical surface, from which points

are then projected to a sphere. This is done in such a way as to minimise

metric distortions i.e. minimise the overall change in area of triangular mesh

faces during the transformation, Fischl et al. (1999a). Further, during in-

flation, indexed vertices (or points) in each surface space retain one-to-one

correspondence, such that each index represents the same cortical location

across white, midthickness, pial, inflated and spherical surfaces.

The goal of MSM registration is to identify spatial correspondences be-

tween two spheres so as to improve the overlap of the surface geometry and/or

functional properties of the cortical sheet from which the spheres were de-

rived. Spheres may represent corresponding hemispheres (left or right) from:

two different subjects; one subject and a population average template; or the

same subject imaged at two different ages. During registration, vertex points

on one (source) sphere are moved until the surface properties on that sphere

better agree with those of the second (target) sphere. Due to the vertex cor-

respondence between sphere and surface anatomy, this also implicitly derives

correspondences for the cortical anatomy.

Let SSS be the source spherical surface with initial coordinates x, and

TSS be the target spherical surface with coordinates X, where x,X ∈ S2.

Let SAS be the anatomical (white/midthickness/pial) surface representation

of SSS with coordinate y and TAS be the fixed anatomical surface repre-

sentation of TSS with coordinates Y, where y,Y ∈ R3. Let the moving

source spherical surface be represented as MSS with coordinates x′, and the
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resulting deformed anatomical configuration as (DAS) with coordinates y′

(x′ ∈ S2,y′ ∈ R3). Anatomical surfaces may be white, midthickness, pial

or inflated surfaces, and each surface is associated with multimodal feature

sets M (fixed) and m (moving M,m ∈ RN). These represent any combina-

tion of N features describing cortical folding, brain function (such as resting

state networks), cortical architecture, or structural connectivity. The set of

surfaces involved are shown in Fig. 2.

MSM employs a multi-resolution approach. In this, a sequence of spheri-

cal, regularly-sampled, control-point grids (GD)D∈N are used to constrain the

deformation of MSS (Fig. 2b). These are formed from regular subdivisions

of icospheric, triangulated meshes, where the granularity of the Dth control-

point grid increases at each resolution, allowing features of the data to be

matched in a coarse-to-fine fashion. Typically, at each resolution, the fea-

tures from MSS and FSS are downsampled onto regular data grids MSSD

and FSSD to speed processing. Resampling the data in this way may also

reduce any impact that the meshing structures of MSS and FSS might have

on the deformation. Final upsampling of the control-point warp to MSS is

performed using barycentric interpolation.

At each resolution level, registration proceeds as a series of discrete dis-

placement choices. At each iteration, points p ∈ GD, are given a finite choice

of possible locations on the surface to which they can move. The end points

of each displacement are determined from a set of L vertex points defined

on a regular sampling grid (Fig. 2c, purple crosses, see also Robinson et al.

(2014)). Displacements are then defined in terms of a set of L rotation matri-

ces Sp = {R1,R2..RL}, specified separately for each control point p. These
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rotate p to the sample vertex points by angles expressed relative to the centre

of the sphere.

The optimal rotation for each control point Rp ∈ Sp is found using

discrete optimisation (Robinson et al., 2014; Glocker et al., 2008). This

balances a unary data similarity term c(Rp) with a pairwise penalty term

V (Rp,Rq), which encourages a smooth warp. The search for the optimal

rotations can be defined as cost function (C) over all unary and pairwise

terms as:

minC =
∑

p∈GD

c(Rp) + λ
∑

p∈GD

∑
q∈N(p)

V (Rp,Rq) (1)

Here q ∈ N(p) represents all control points that are neighbours of p, and λ is

a weighting term that balances the trade off between accuracy and smooth-

ness of the warp.

One advantage of the discrete framework is that cost functions do not

need to be differentiable, and thus there are no constraints on the choice

of data similarity term c(Rp), for example: correlation, Normalised Mutual

Information (NMI), Sum of Square Differences (SSD), and alpha-Mutual In-

formation (α-MI, useful for multi-modal alignments) (Neemuchwala, 2005;

Robinson et al., 2014) can all be applied.

However, a limitation of the original discrete optimisation framework

(Robinson et al., 2014) has been that it is limited to first-order regularisation

constraints. This meant that smoothness constraints are imposed through

pairwise regularisation terms, implemented by penalising differences between
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proposed rotation matrices for neighbouring control-points:

V (Rp,Rq) := || log((RpR
′
p)T (RqR

′
q))||2F (2)

Here ||.||F represents the Frobenius norm, and R′p represents the full rotation

of the control-point p, accumulated over previous labelling iterations. In

what follows we refer to this regularisation framework as sMSMPAIR.
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x LABEL 
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c)	

f)	

d) MSS 

SSS + G 

TSS 
DAS TAS 

g) 

F 

Figure 2. Projecting cortical anatomy through spherical warps. The figure follows the

displacement of three (yellow) points on the source white anatomical surface (SAS), via

the moving source spherical surface (MSS), into a new configuration on the target white

anatomical surface (TAS), where source and target represent the left hemispheres of two

different subjects aged 38±1 week PMA. Steps: a) Vertex correspondence between the

source sphere (SSS) and anatomy (SAS) means that points form triplets on both surfaces;

b) Control point grids (G, red) constrain the deformation of SSS within a discrete optimi-

sation scheme (orange box). c) Each control-point (blue dot) can move to a finite number

of possible positions on the surface (purple crosses). The optimal displacement (blue cross)

improves feature map similarity whilst constraining deformations to be smooth; d) The

displaced spherical surface configuration MSS is estimated from G using barycentric in-

terpolation (Eq. 7); e) Barycentric correspondences are learnt between vertices on MSS

(yellow dots) and TSS (pink crosses; Eq. 9); f) Weights (calculated during step e) are

applied to the equivalent points on the target anatomical surface TAS (Eq. 10); creating

g) a deformed anatomical surface configuration (DAS), which has the mesh topology of

the source surface, but the shape of the target anatomical surface (TAS). Through this a

transformation F can be estimated between SAS and DAS.
15
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3. Higher-order Smoothness Constraints and Strain-based Regu-

larization

As described in the introduction, it is helpful to compute both similarity

and regularization using whole triangles, rather than pairs of vertices, and to

fully model isotropic and anisotropic surface distortions. In this paper, we

therefore propose to take advantage of recent advances in discrete optimisa-

tion (Ishikawa, 2009, 2014) that allow adoption of higher-order smoothness

constraints.

This necessitates generalisation of the original cost function (equation 1)

to allow for terms (formally known as cliques) to vary in size:

minC =
∑

c1∈CD

c(Rc1) + λ
∑

c2∈CR

V (Rc2) (3)

Here CD represents cliques used for estimation of the data similarity term,

CR represents regularisation cliques, and Rc1 , Rc2 represent the sub-set of

rotations estimated for each clique. This represents a highly modular frame-

work where any combination of similarity metric and smoothness penalty can

be used, provided they can be discretised as a sum over clusters of nodes the

graph. In this paper we focus on two new triplet terms:

• Triplet Regularisation V (Rc2): We propose a new regularisation

term derived from biomechanical models of tissue deformation. This

term is inspired by the strain energy minimization approach used in

Knutsen et al. (2010), which constrains the strain energy density (Wpqr)

of locally affine warps Fpqr, defined between the control-point mesh

faces T = {p,q, r}.
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Specifically, Fpqr represents the 2D transformation matrix, or defor-

mation gradient, for T = {p,q, r} after projection into the tangent

plane, fully describing deformations on the surface. The eigenvalues of

F represent principal in-plane stretches, λ1 and λ2, such that relative

change in area may be described by J = λ1λ2 and relative change in

shape (aspect ratio) may be described by R = λ1/λ2. Areal distortion

is traditionally defined as log2(Area1/Area2) = log2 J. Here we intro-

duce an equivalent term for shape distortion, defined as log2 R. To

penalize against both types of deformations, we define strain energy

density using the form:

Wpqr =
µ

2
(Rk +R−k − 2) +

κ

2
(Jk + J−k − 2) (4)

where k is defined as any integer greater than or equal to 1. This

proposed form meets all criteria of a hyperelastic material (a class of-

ten used to characterize biological soft tissues including brain). As

described for other hyperelastic materials, shear modulus, µ, penalizes

changes in shape and bulk modulus, κ, penalizes changes in volume,

or in the case of 2D, area. Our improved form ensures that expansion

(J > 1) and shrinkage (J < 1) are penalized equally in log space (crit-

ical to avoid imbalances in surface registration such as uncontrolled

shrinkage -see introduction) and that changes in shape (R) or area (J)

are penalized by the same function. Additionally, this regularization

function allows the optimization of the trade off between areal distor-

tion and shape distortion. The strain energy penalty is implemented

as:

VSTR(Rp,Rq,Rr) := W 2
pqr (5)
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Note, for the case of k = 1, it can be shown that this form is equivalent

to a modified, compressible Neo hookean material, similar to the orig-

inal form used in Knutsen et al. (2010). See Supplementary Material

for more details and formal justification of the proposed strain energy

form.

• Triplet Likelihood V (Rc2): First proposed for registration in Glocker

et al. (2010), triplet likelihoods were introduced as a means of setting

up a well-posed image matching problem, since (for spherical registra-

tion) a two-dimensional displacement must be recovered from a one-

dimensional similarity function. As in Glocker et al. (2010) we imple-

ment triplet likelihood terms as correlations (CC) between patches of

data: defined as all data points which overlap with each control-point

mesh face triplet:

ψ(Rp,Rq,Rr) = CC(mpqr,Mpqr) = 1− cov((mpqr,Mpqr)

σmpqrσMpqr

(6)

where, mpqr is the sub-matrix of features from m, which correspond to

points from the moving mesh MSS that move with the control point

triplet T = {p,q, r}. Mpqr represent the overlapping patch in the

fixed mesh space TSS. Features Mpqr are resampled onto MSS using

adaptive barycentric resampling (Glasser et al., 2013), and σmpqr and

σMpqr represent the variances of each patch.
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4. Anatomical Regularisation (aMSM)

4.1. Inferring Anatomical Correspondences

Using the known vertex correspondence between the fixed sphere (TSS)

and its anatomical representation (TAS, Fig. 2e) a deformed anatomical

surface configuration (DAS) can be found for the moving surface in the

following steps:

1. The coordinates (x′) of the moving source sphere (MSS) are found

by interpolating coordinates from the control point grid triplet T x =

{p,q, r} that overlaps with x, such that :

x′ = η(x,p;q, r)RpR
′
pp+η(x,q; r,p)RqR

′
qq+η(x, r;p,q)RrR

′
rr (7)

Here, RpR
′
p represents the combined rotation of the control point over

all iterations, and η(.) is a barycentric interpolation function:

η(x,p;q, r) =
[xqr]

[pqr]
(8)

where [...] represents triangle area.

2. Barycentric correspondences are found between the moving spherical

surface configuration (MSS) and the fixed sphere (TSS). These are

used to define a set of vertex indices, and corresponding weights, suffi-

cient for resampling coordinates from the fixed topology onto the mov-

ing topology

ηM→F (x′,Xi;Xj,Xk) =
[x′XjXk]

[XiXjXk]
(9)

For T x′ = {Xi,Xj,Xk}, where T x′ is a triplet of points on the fixed

surface (FSS) that overlaps x′.
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3. The indices and weights found in Eq. 9 are used to project the moving

surface mesh topology onto the fixed anatomical surface. We call this

the deformed anatomical surface (DAS) as this implements the warp

that is implied through the allocation of point-wise correspondences

during the spherical warp:

y′ = ηM→F (x′,Xi;Xj,Xk)Yi + ηM→F (x′,Xj;Xk,Xi)Yj+

ηM→F (x′,Xk;Xi,Xj)Yk

(10)

4.2. Implementing aMSM Regularisation

Using the higher-order constraints formulated in section 3, the evolution

of (DAS) can be controlled by replacing spherical control-point triplets, with

anatomical triplets in Equation 4. In the simplest case this can be achieved

by introducing low-resolution anatomical surfaces at the resolution of the

control-point grid GD. In this way a low-resolution deformed anatomical

configuration DASD can be determined from correspondences found between

the control-point grid and a fixed low-resolution target sphere, TSSD, and

associated low-resolution anatomical grid TASD, with coordinates y,Y ∈ R3

and XD ∈ S2,Y ∈ R3. Coordinates y′ ∈ R3 are then estimated using:

y′
D

=
2∑

i=0

ηM−>T (p,XD
i | T p \ {XD

i }),YD
i (11)

This is shorthand for the notation in Eq 10, where T p \ {XD
i } represents

the points in the triplet T p excluding XD
i . Therefore, transformations (F

in Fig. 2) are assessed by comparing matching triplets between yD and y′D.

Nevertheless, it is important to note that the discrete displacement space

continues to be estimated on the sphere. This allows registration to achieve
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lower anatomical distortions without sacrificing the quality of the alignment.

We refer to this adaptation as anatomical MSM (aMSM).

5. Implementation details

The proposed registration cost functions are non-convex, due to local min-

ima in the similarity function and nonlinear penalty terms. This means that

they cannot be solved by conventional discrete solvers such as α-expansion

(which is used in graph cuts (Boykov et al., 2001)) as this requires that

pairwise terms be submodular (meet the triangle inequality). Instead, it is

necessary to use methods that account for non-submodularity such as FastPD

(Komodakis and Tziritas, 2007; Komodakis et al., 2008) and QPBO (Rother

et al., 2007). However, these methods only solve pairwise MRF functions.

In order to account for triplet terms we adopt the approach of Ishikawa

(2009, 2014). This allows reduction of higher order terms either by: A)

addition of auxiliary variables (for example by reducing a triplet to three

pairwise terms (Ishikawa, 2009); or B) by reconfiguration of the polynomial

form of the MRF energy, until the high-order function can be replaced by a

single quadratic (Ishikawa, 2014). We present results using the latter version,

known as Excludable Local Configuration (ELC). This has the advantage

that, provided an ELC can be found, there is no increase in the number of

pairwise terms, which has some impact on the computational time.

Once terms are reduced, optimisation proceeds as solutions to a series of

binary label problems, where results for the full label space are obtained using

the hierarchical implementation of the fusion moves technique (Lempitsky

et al., 2010), as described in Glocker et al. (2010). In each instance, the
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reduction is passed to the FastPD solver (Komodakis and Tziritas, 2007;

Komodakis et al., 2008) for optimisation.

For effective aMSM implementation, choices have to be made with re-

gards to how far the anatomy should be reasonably downsampled. Resam-

pling of the anatomical surface is performed by barycentric interpolation,

using correspondences between the initial source sphere (SSS) and regular,

low-resolution icospheric spherical grids (Supplementary Material). Where

resolution of SASD exceeds that of the control-point grid, regularisation

for each control-point triplet is calculated by averaging distortions for every

higher-resolution triplet in SASD that falls within the area of that control-

point grid face. This results in a trade-off between run time and accurate

capture of the true anatomical distortion (see Supplementary Material). For

every increase in anatomical mesh resolution relative to the control point

grid, strain calculations better represent that of the native deformation, but

number of strain calculations increases by a factor of four.

In general, estimation of triplet energies and reduction through ELC and

binary FastPD slows the run time relative to the original MSM approach.

To reduce some of the impact the control point grids are no longer reset

after each iteration. Instead the source mesh and control grid incremen-

tally deform together and all neighbourhood relationships are learned once

at the beginning of each resolution level. To prevent folding of the mesh dur-

ing alignment a weighting penalty is placed on the regularisation cost that

severely penalises flipping of the triangular faces. This is done to ensure the

final transformation is smooth and invertible.

Finally, to improve convergence and allow for smoother warps, modi-
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fications are also made to the rescaling of the discrete label space at each

iteration. In the original framework the label space switches between the ver-

tices and barycentres of a regular sampling grid (Robinson et al., 2014). In

the new framework the discrete displacement vectors dlp are instead rescaled

by 0.8× their original length over 5 iterations, before being reset to their

original lengths.

6. Experimental Methods and Results

We test the framework on real data collected as part of the adult Human

Connectome Project (HCP2) and Developing Human Connectome Project

(dHCP3) to assess the impact of the proposed strain regulariser on both

spherical and anatomical deformations. In all experiments results are com-

pared for the higher-order MSM registration framework (MSMSTR) and the

original form (sMSMPAIR). Where feasible MSM was also compared against

FreeSurfer (FS: arguably the most commonly used tool for cortical sur-

face alignment) and Spherical Demons (SD), which is diffeomorphic on the

sphere. Note, standard implementations of FreeSurfer and Spherical Demons

are not capable of multimodal or multivariate alignment.

6.1. Cohorts

A sub-set of 28 subjects for the full HCP cohort (1200 subjects) were

selected for parameter optimisation of the multimodal alignment protocol

laid out in Glasser et al. (2016a). Here registration was driven using a com-

2http://www.humanconnectome.org/
3http://www.developingconnectome.org/
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bination of features reflecting myelin maps Glasser and Van Essen (2011),

34 well-defined cortical surface resting-state spatial maps, and 8 visuotopic

features (reflecting topographic organisation of functional connectivity in the

visual cortex; see Glasser et al. (2016a) Supplementary Methods sec 2). The

sub-set of subjects was selected to reflect a spectrum of sources of variance

in the HCP data, including data sets with unusual functional topology (see

Glasser et al. (2016a) Supplementary Rsesults sec 1.3); or low signal-to-noise

ratio (SNR).

In the second experiment a subset of dHCP subjects scanned (twice) lon-

gitudinally were used to explore longitudinal alignment of developing cortical

shapes. This sub-set was selected specifically to contain all subjects scanned

twice within 32.66 ± 1.22 weeks PMA (first scan) and 41.47 ± 1.61 weeks

PMA (second scan) in order to allow straight-forward comparison of the

deformations across subjects.

6.2. Data

Acquisition of HCP data was performed on a Siemens 3T Skyra platform,

using a 32-channel head coil and MPRAGE (T1w) and SPACE (T2w) se-

quences (Glasser et al., 2013). Isotropic structural image acquisitions were

acquired at 0.7mm3 . Functional imaging data was acquired with multiband

(factor 8) 2mm Gradient-Echo EPI sequences (Moeller et al., 2010). Four

resting state fMRI (rfMRI) scans were acquired (two successive 15 minutes

scans in each of two sessions) (Smith et al., 2013). Seven task-fMRI (tfMRI)

experiments were also conducted, including: working memory, gambling, mo-

tor, language, social cognition, relational, and emotional tasks; tfMRI scans

were acquired after the rfMRI scans in each of two hour-long sessions on
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separate days (Barch et al., 2013). Additional details regarding specific ac-

quisition parameters and task protocols are available in Barch et al. (2013)

and Smith et al. (2013), as well as on the HCP website4. Generation of

surface meshes and associated shape features were carried out using HCP

Structural Pipelines (Glasser et al., 2013).

dHCP data was acquired at St. Thomas Hospital, London, on a Philips

3T scanner using a 32 channel dedicated neonatal head coil (Hughes et al.,

2016). To reduce the effects of motion, T2 images were obtained using a

Turbo Spin Echo (TSE) sequence, acquired in two stacks of 2D slices (in

sagittal and axial planes), using parameters: TR=12s, TE=156ms, SENSE

factor 2.11 (axial) and 2.58 (sagittal). Overlapping slices (resolution (mm)

0.8×0.8× 1.6) were acquired to give final image resolution voxels 0.8× 0.8×
0.8mm3 after motion corrected reconstruction, combining Cordero-Grande

et al. (2016); Kuklisova-Murgasova et al. (2012). T1 images were acquired

using an IR-TSE (Inversion Recovery Turbo Spin Echo) sequence at the same

resolutions with TR=4.8s, TE=8.7ms, SENSE factor 2.26 (axial) and 2.66

(sagittal). All images were reviewed by an expert paediatric neuroradiologist

and checked for possible abnormalities. Generation of surface meshes and

associated shape features were carried out using dHCP Structural Pipelines

(Makropoulos et al., 2017).

6.3. Strain Parameter Optimisation

Higher-order MSM (MSMSTR) was run using: tri-clique data terms, bulk

modulus (κ) of 1.6, shear modulus (µ) of 0.4 (i.e. a 4 to 1 ratio), and

4http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html
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k = 2. These parameters were optimised for multimodal alignment of adult

HCP data sec. 6.4, where bulk and shear moduli were optimized for an

exponent of k = 2, keeping κ + µ = 2 and regularisation λ constant), until

alignment was optimised. These values were kept throughout the paper.

Experiments on the influence of these parameters for longitudinal alignment

of cortical anatomies (run using aMSMSTR, Supplementary Material sec. 2)

show that, in general, results are robust over a range of parameters. Further,

the parameters chosen for adult multimodal data are also optimal for both

adult human folding alignment and longitudinal folding alignment. This

suggests the strain parameters generalise well.

6.4. Multimodal alignment of adult HCP data

In the first experiment, sMSMSTR was compared against sMSMPAIR,

SD, and FS for alignment of task fMRI data from a sub-set of 28 subjects

from the HCP project. In this instance, anatomical regularisation was not

used lest it predjudiced the solution towards alignment of cortical folding

patterns, as these may not consistently reflect areal features across large parts

of the brain across subjects. MSM methods were compared against FS and

SD, run using their default settings (cortical folding alignment only) because

FS registration is fixed and immutable, and the current implementation of

SD allows only for alignment of univariate features.

MSM was run in two stages: first registration was initialised using con-

strained alignment of cortical folds, as described in Robinson et al. (2014)

as the MSMSulc procotol, optimized in order to maximize task fMRI align-

ment. Then alignment of areal features was refined using what has become

known as MSMAll Glasser et al. (2016a). In this multimodal registration
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features containing myelin maps Glasser and Van Essen (2011), resting-state

networks (RSNs) and visuotopic features were used to drive alignment to a

group average template.

MSMSulc was run using strain-based regularisation (sMSMSTR) over

three control-point (CP ) grid resolutions with CP resolution: CPres=162,

642, 2542; and features sampled to regularly-spaced grids (MSSD,FSSD)

at resolutions: DPres=2542, 10242, 40962. Regularisation strength was con-

trolled through λ = 10, 7.5, 7.5. Features were variance normalised but no

smoothing of the data was performed. Notably, the re-optimized strain-

based MSMSulc substantially outperforms both the pairwise MSMSulc and

the FreeSurfer registration (Table 1).

MSMAll was optimised three times, once using strain-based higher-order

regularisation and likelihood terms (sMSMSTR) and twice using pair-wise

regularisation sMSMPAIR. In each case, common parameters between the

methods were fixed; registration was run over three control-point grid res-

olutions: CPres=162, 642, 2542, DPres=2542, 10242, 40962; features were

variance normalised and there was no smoothing of the data. Regularisa-

tion of sMSMSTR was optimised in order to maximise alignment of tfMRI

(appraised through estimates of cluster mass - defined below), subject to

edge distortion mean across subjects and surfaces not exceeding that for

FreeSurfer. Then sMSMPAIR was optimised twice: in the first case to achieve

comparable peak edge distortions to sMSMSTR (this keeps peak distortions

well controlled, but limits the amount of registration that can occur, see in-

troduction) , and in the second case to match comparable mean values of

edge distortions (this allows a similar amount of registration to occur, but
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peak distortions may exceed neurobiologically plausible thresholds).

Following registration tfMRI timeseries on the subjects’ native meshes

were resampled according to the registration to the standard mesh. Im-

provements in alignment were assessed via comparisons of the group mean

activation maps (obtained using mixed effects FLAME Woolrich et al. (2009))

both qualitatively and quantitatively, via cluster mass, calculated using the

following formula: CM =
∑

i∈S |z(xi)|A(xi). Here xi is a vertex coordinate,

z(xi) is the statistical value at this coordinate, A(xi) is the area associated

with this vertex (calculated from a share of the area of each mesh triangle

connected to it in the mid-thickness surface), and S is the set of vertices

where |z(xi)| > 5, and the threshold of 5 was chosen to be approximately

equivalent to a two-tailed Bonferroni correction. The cluster mass measure

reflects both the size of the super-threshold clusters and the magnitude of

the statistical values within them.

Distortions are reported in terms of absolute values for: areal distortions

(log2 J, Eq. 4), shape distortions (log2 R), and edge distortions. Edge dis-

tortions are estimated from the relative change in length of edges between

neighbouring vertices in the mesh: log2
L2

L1
, where L2 is edge length following

registration, and L1 is length before, and are reported per vertex by taking

the average values for all connected edges. These maps reflect a univariate

summary of changes to area and shape and thus were used during optimisa-

tion

Results in Table 1 and Fig. 3 demonstrate that, as expected, multimodal

alignment of tfMRI data (MSMAll) significantly improves the sharpness and

peak values of the group z-statistics, relative to cortical folding based align-
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ment (SD,FS,MSMSulc). This results in a 20.97% increase in total cluster-

mass for MSMAll run with sMSMSTR relative to MSMSulc, a comparable

increase of 22.42% over SD, and a 27.31% increase over FS. Fig. 6 displays

the spread of improvements across all constrasts within each task as improve-

ment relative to FS, again sMSMSTR outperforms all other methods.

In terms of folding-based methods, both sMSMSTR and SD have much

lower and smoother distortions than FS; although it is important to note

both are optimised for alignment of areal features Robinson et al. (2014);

Yeo et al. (2010), whereas FS is optimised for alignment of cortical folds.

MSMSulc, achieves marginal improvements over SD, with slight increases in

tfMRI clustermass obtained from deformations with lower isotropic distor-

tions, and similar edge distortions. Fig. 5 shows sMSMSTR edge distortions

are dispersed across the whole of the surface whereas SD alignment results

in peaks of high distortions.

For multimodal alignment, optimising the original form of MSM to achieve

comparable mean distortions does achieve comparable improvements in clus-

ter mass to sMSMSTR but leads to extensive patches of extreme distortions

across the cortical averages (Fig , Fig 5 D), with peak values for log2 J and

log2 R exceeding that of sMSMSTR by 128% and 63% respectively. These

levels of distortions are highly non plausible given known ranges of regional

variation from previous studies (Van Essen, 2005).

When distortions are instead matched for peak strains, improvements in

total cluster mass observed for sMSMSTR are 3.86% above the gains obtained

with the original form of MSM (Table 1) showing that MSMAll does not

reach its full potential for aligning the data. This results in sharper tMRI
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group task maps (Fig. 3). Indeed, out of an abundance of conservatism we

do not exceed the field standard edge distortion of FreeSurfer, however the

strain-based MSM is capable of being pushed harder without peak distortions

getting out of control. Unlike with MSMAll pairwise, with the strain-based

MSMAll one can choose the desired level of distortion without having issues

with runaway peak distortions, making the algorithm both more robust and

easier for less neuroanatomically experienced users to use.

Figure 3. Comparison of group Z-statistic spatial maps following folding alignment (MSM-

Sulc, run with sMSMSTR) and alignment driven my multimodal features (MSMAll, run

with sMSMSTR and sMSMPAIR, matched for peak strains ) for: a) a working-memory

contrast (2BK) and b) a language task (Story). White boxes highlight improvements in

sharpness of the contrast in the areas of the Dorsal Lateral Pre-Frontal cortex (A); region

55b (B) and in the temporal lobe (B)
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Figure 4. Histogram plots comparing MSMall distortions. sMSMPAIR generates long

tailed distributions with excessive peak distortions

Figure 5. Mean edge distortion maps, averaged across all surfaces. Top row) distortions

for folding based alignment only, peak boxes highlight hot spots of edge distortions for

SD method; Bottom row) multi-modal (MM) alignments: MSM Pair Mean (MSMall run

with sMSMPAIR optimised to achieve comparable mean strains to sMSMSTR); MSM

Pair Peak (MSMall run with sMSMPAIR optimised to achieve comparable peak strains

to sMSMSTR; MSM Pair Strain (MSMall run with sMSMSTR)
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Figure 6. Bar chart of mean cluster mass statistics across HCP task categories for different

methods. Note, only pure contrasts are included.

Cluster Mass Edge distortion Areal distortion Shape distortion

Mean Max Mean Max Mean Max

FS 3212876 0.271 2.564 0.377 4.879 0.698 6.752

SD 3341178 0.074 0.520 0.124 1.087 0.147 0.884

MSMSulc (sMSMPAIR) 3019301 0.089 0.486 0.142 0.879 0.183 1.040

MSMSulc (sMSMSTR) 3381148 0.089 0.268 0.102 0.525 0.235 1.151

MSMAll (sMSMPAIR, peak matched) 3938268 0.139 0.972 0.209 2.561 0.311 2.824

MSMAll (sMSMPAIR, mean matched) 4022388 0.271 1.918 0.387 3.939 0.604 4.901

MSMAll (sMSMSTR) 4090190 0.261 0.919 0.306 1.731 0.662 3.015

Table 1. Peak distortions and cluster mass estimates following alignment of HCP tfMRI

data using each of the proposed methods.

6.5. Longitudinal Registration

In the second experiment we explore the impact of anatomical warp reg-

ularisation for within-subject longitudinal alignment of 10 different neonatal

subjects, each scanned twice within two specific time points (TPs): 32.66 ±
1.22 weeks PMA (TP1) and 41.47 ± 1.61 weeks PMA (TP2). This selection

criterion was made by clustering all longitudinally scanned subjects (37 at

time of writing) into groups with similar TPs, such that the resulting defor-
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mations may be directly compared. This section presents results from the

group with the biggest scan separation. Over this time period cortical ge-

ometry and the pattern of distortions resulting from the spherical projection

changes dramatically (Fig. 7 a). Since the relationship between structural

and functional organisation of the brain remains consistent over time, it is

sufficient to align cortical geometry within a longitudinal experiment. Ac-

cordingly, in this experiment, registration was driven using mean curvature

(Fig. 7 c).

Results are compared for: the original MSM spherical framework (sMSMPAIR);

spherical MSM with higher-order strain regularisation (sMSMSTR); anatom-

ical MSM with strain regularisation (aMSMSTR); and Spherical Demons

(SD). All registrations were run using the TP1 surface as the target of the

registration, and TP2 as the moving surface as this was found to generate

the most accurate alignment, where this was judged in terms of correlation

between features sets, relative to total surface distortion. This is likely be-

cause it is a better-defined problem to register a more complex surface to a

simpler surface than the reverse. Deformations in the direction TP1 → TP2

were then obtained by inverting the transformation.

SD was run using its default parameterisation and represents a baseline

for smooth diffeomorphic spherical alignment. All MSM registrations were

optimised over 4 resolution levels with mesh resolutions: CPres=162, 642,

2542, 10242, DPres=10242, 10242, 40962, 40962; variance normalisation and

smoothing was applied σin = σref = 6, 4, 2, 1. aMSMSTR was parameterised

to penalise distortions of the midthickness surfaces, using anatomical mesh

resolutions (DASD,TASD) of AGres=2542, 10242, 40962, 40962. Prior to
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aMSMSTR registration midthickness surfaces were first normalised to have

constant surface area between timepoints; this encourages even penalisation

of shape changes across the surface allowing for regions to deform at different

rates. In each case λ was selected so as to optimise feature map correlation

relative to areal distortions.

After registrations, true midthickness surfaces were projected through the

estimated warp using the procedure described in sec. 4. Methods were then

compared in terms of the goodness of fit of the obtained alignments, relative

to distortions of the anatomy. In order to compare deformations between

data sets relative values for areal (log2 J) and shape (log2 R) distortions were

estimated at each vertex i as L̂og2Ji = log2
Ji
Ĵ

, L̂og2Ri = log2
Ri

R̂
. Alignment

quality was assessed though improvements in correlation of curvature feature

maps and dice overlap of 16 folding-based cortical regions (Fig. 9) relative to

affine registration. Here, cortical labels were obtained through registration of

each timepoint’s T2 brain volume to 20 manually annotated neonatal atlases

(ALBERTS: (Gousias et al., 2012)). The resulting 20 segmentations were

then fused in a locally-weighted scheme to form the subject’s cortical labels

(see LWV-MSD in Artaechevarria et al. (2009); Makropoulos et al. (2014)),

so that similar patches between each atlas and the image have increased

weighting.

Results in Fig. 8 show strong improvements for aMSMSTR over the

spherical methods. Areal distortions are much reduced (Fig 8 a), and shape

distortions are lower than all methods other than SD, for which alignment

quality is comparatively reduced (Fig. 9).

To further assess the smoothness and consistency of the distortions be-
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(a) (b) (c)

Figure 7. Comparison of surface geometry (a), cortical labels (b) and curvature maps (c)

for one exemplar data set (top=TP1, bottom=TP2)

tween subjects, the initial time point for all scans was registered to a 34

week surface template (Božek et al., 2016), using sMSMSTR alignment of

sulcal depth maps using the following parameters: CPres=162, 642, 2542;

DPres=2542, 10242, 40962; λ = 0.5, 0.5, 0.5; σin = σref = 6, 4, 2. Distribu-

tions of LogJ for each subject were then resampled onto the template and

compared using FSL’s PALM (Winkler et al., 2014), which performs permu-

tation testing for surface image data. This assesses at each vertex whether

distortions are statistically greater than zero.

Results in Fig. 10 show mean L̂og2J across the surface is much smoother

for aMSMSTR than for spherical methods (SD, sMSMPAIR, sMSMSTR).

This translates to much broader areas where distortions are significantly

above zero. These areas correspond to regions in the frontal and parietal

lobe, which are expected to grow faster during this time period as well as

after birth (Moeskops et al., 2015; Hill et al., 2010).
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Figure 8. Cumulative distribution functions of L̂og2J and L̂og2R. for different methods:

sMSMPAIR (red); SD (green); sMSMSTR (blue); aMSMSTR (black). Functions are

estimated from the full distribution of strain values estimated by combining per-vertex

strain values across all 10 deformations.
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Figure 9. Alignment quality of longitudinal warps, assessed through feature map cross

correlation and Dice Overlap (averaged across 16 cortical regions). Colour as for Fig. 8
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Figure 10. Comparison of distortion fields across subjects. Left: ˆLog2J relative isotopic

strain averaged across all 10 neonatal subjects in template space; Right: pvalues for sta-

tistical comparison, thresholded at p < 0.05

7. Discussion

Human brain imaging studies are extremely diverse; a wide variety of

different tissue properties are studied using a range of available imaging

modalities. The relationships between these properties are unknown but

are likely to be complex since studies have already shown disassociations be-

tween patterns of functional and folding organisation (Amunts et al., 2007;

Glasser et al., 2016a). Despite this issue the majority of spatial normal-

isation techniques focus on alignment of specific feature types, including:

cortical folding patterns (Fischl et al., 1999b; Yeo et al., 2010; Wright et al.,
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2015; Lombaert et al., 2013), cortical geometry (Durrleman et al., 2009),

tfMRI time series (Sabuncu et al., 2010), patterns of functional organisation

(Conroy et al., 2013; Nenning et al., 2017), and fixed combinations of ge-

ometry and fMRI/dMRI (Lombaert et al., 2015; Orasanu et al., 2016b). By

contrast in this paper we present MSM, a method which allows flexible and

robust alignment of a wide variety of different combinations of features on the

cortical surface, as well as biologically-constrained and statistically-plausible

deformations of cortical anatomy.

This paper builds on previous work in which we proposed a tool for spheri-

cal alignment of brain imaging data, implemented using discrete optimisation

(Robinson et al., 2014). This framework offered significant advantages for

multimodal registration on account of offering a modular and flexible choice

of cost functions, and deformations robust to local minima. One limitation of

the original approach was that it was implemented through use of first-order

discrete methods and a regularization function with several limitations (see

introduction). This resulted in a tension between controlling peak distor-

tions in regions with individual differences in the layout of cortical areas and

maximizing alignment across the rest of the surface. This paper therefore

presents an improved framework that utilises advances in discrete optimisa-

tion that allow for the inclusion of higher-order smoothness penalty terms

(Ishikawa, 2009, 2014). Using this framework we improve the robustness of

MSM through inclusion of a new hyperelastic strain energy density penalty

(Eq. 4) that allows complete control over local changes in shape (R) and area

(J). In this way we have been able to significantly improve the alignment

of complex multi-modal feature sets. In particular, enhancing the alignment
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of data from the adult multimodal parcellation feature set from the HCP

Glasser et al. (2016a).

A further advantage of the proposed high-order framework is that it has

enabled modification of MSM to allow alignment of cortical anatomies, by im-

posing regularisation on the anatomical deformations implied by the spherical

warp. Experiments performed for longitudinal alignment of 10 neonatal cor-

tices imaged twice between two specific time points: 32.66 ± 1.22 weeks PMA

and 41.47 ± 1.61 weeks PMA show that anatomical MSM (aMSM) gener-

ates smooth and biologically plausible deformations. These reflect patterns

of cortical growth similar to those previously reported in region-of-interest

studies (Moeskops et al., 2015). But, importantly, aMSMSTR allowed us to

observe these trends using a much smaller sample size, and without the loss

of detail associated with large regions of interest.

Throughout this paper we have compared the proposed MSM only against

other spherical registration frameworks: Spherical Demons (SD) and FreeSurfer

(FS), and solely optimised for cortical folding alignments. We compare di-

rectly to spherical methods as these offer more flexibility in terms of the range

of features that can be used to drive the registration. Whilst it is possible that

methods, such as Durrleman et al. (2009); Lombaert et al. (2013); Orasanu

et al. (2016a) , designed purposely for smooth and/or diffeomorphic align-

ment of cortical surface geometries may outperform MSM for the specific task

of longitudinal alignment, these methods are coupled to alignment of cortical

shape. This limits their flexibility for between subject alignment on account

of known dissociation between the brain’s functional (or areal) organisation

and patterns of cortical folding (Amunts et al., 2007; Glasser et al., 2016a;
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Nenning et al., 2017). For the same reason, it is not clear how methods that

combine spectral alignment of shape with correspondences learnt from func-

tional or diffusion MRI (Lombaert et al., 2015; Orasanu et al., 2016a) should

resolve this conflict to obtain a unified mapping across the whole brain.

We compare against SD and FS only for folding alignment on account

of the fact that FS registration is fixed and immutable (allowing cortical

folding alignment only) and the current implementation of SD allows only for

alignment of univariate features. It is true that other groups have applied SD

to alignment of brain function by mapping or embedding functional data to

a univariate space (Nenning et al., 2017; Tong et al., 2017). However,we have

shown through comparisons of SD and sMSMSTR for registration of adult

folding data that sMSMSTR achieves warps with comparable smoothness to

SD. By contrast the strength of MSM is that it works flexibly with a range of

multivariate and multimodal features as well as overcoming the limitations of

traditional spherical methods by generating plausible deformations of cortical

surface anatomies. For these reasons we consider an extensive comparison

against MSM against these specialised cases outside of the scope of this paper,

but would welcome an independent review on these topics.

There remain limitations of the proposed approach inasmuch as the cur-

rent implementation, using Ishikawa (2009, 2014), reduces the higher-order

problem to a series of binary problems. In this paper, a multi-label solu-

tion is obtained through use of the fusion moves technique (Lempitsky et al.,

2010). However, this circumvents the fast multi-label optimisation offered

by the FastPD algorithm (Komodakis and Tziritas, 2007; Komodakis et al.,

2008), leading to a slower solution. Specifically, on a 64bit linux system,
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the proposed version of MSM runs in approximately 1hr 15 minutes (com-

parable in run time to FreeSurfer) whereas the original pairwise form runs ¡

10mins, and Spherical Demons runs in less than 5 mins. Run times can be

considerably brought down through appropriate code parallelisation. How-

ever, future work should also explore alternative higher-order optimisation

strategies such as Fix et al. (2014); Komodakis and Paragios (2009).

Despite the improvement in robustness of the proposed method to the

effects of noise and topological variance in the data, this method is still a

spatially-smooth, topology-constraining registration approach. An impor-

tant future avenue will be to address the significant limitation that spatially

constrained deformation approaches cannot align brains with variable func-

tional topologies, such as those observed for in ∼10% of subjects for area 55b

in Glasser et al. (2016a). One avenue may be to explore combining (Langs

et al., 2010; Haxby et al., 2011) or graph matching (Ktena et al., 2016)

with spatially-constrained registration approaches, such that constraints are

placed to ensure that regions cannot be matched if they are very far apart in

space (Iordan et al., 2016). Alternatively, in Robinson et al. (2016) we pro-

pose a group-wise registration scheme that accounts for topological variation

though minimisation of rank of the feature set across the group.

In conclusion, these results underline MSM as a truly flexible tool, which

provides a singular resource to study a wide variety of properties of brain or-

ganisation across a range of populations. The strain-based version of MSM

will be used in HCP studies on development, aging, and disease. Future

work will expand studies on longitudinal fetal and neonatal cortical develop-

ment across a larger cohort to better understand the mechanisms underpin-
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ning cortical growth, and will extend studies of neonatal resting-state net-

works through development of spatio-temporal templates of brain functional

and structural organisation Božek et al. (2016). By quantifying patterns of

structural and functional development it will be possible to generate vital

biomarkers indicating neurodevelopmental outcomes for vulnerable groups

such as preterm infants.
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