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Abstract 
Our voluntary grasping actions lie on a continuum between immediate action 
and waiting for the right moment, depending on the context. Therefore, studying 
grasping requires investigating how preparation time affects this process. Two 
macaque monkeys (Macaca mulatta) performed a grasping task with a short 
instruction followed by an immediate or delayed go cue (0-1300 ms) while we 
recorded in parallel from neurons in the hand area (F5) of the ventral premotor 
cortex and the anterior intraparietal area (AIP). Initial population dynamics 
followed a fixed trajectory in the neural state space unique to each grip type, 
reflecting unavoidable preparation, then diverged depending on the delay. 
Although similar types of single unit responses were present in both areas, 
population activity in AIP stabilized within a unique memory state while F5 
activity continued to evolve, tracking subjective anticipation of the go cue. 
Intriguingly, activity during movement initiation clustered into two trajectory 
clusters, corresponding to movements that were either ‘as fast as possible’ or 
withheld movements, demonstrating a widespread state shift in the fronto-
parietal grasping network when movements must be withheld. Our results reveal 
how dissociation between static and dynamic components of movement 
preparation as well as differentiation between cortical areas is possible through 
population level analysis. 

Significance Statement 
Many of our movements must occur with no warning, while others we can 
prepare in advance. Yet, it’s unclear how planning for movements along the 
spectrum between these two situations differs in the brain. Two macaque 
monkeys made reach to grasp movements after varying amounts of preparation 
time while we recorded from premotor and parietal cortex. We found that the 
initial response to a grasp instruction was specific to the required movement, 
but not the preparation time, reflecting required processing. However, when 
more preparation time was given, neural activity achieved unique states that 
likely related to withholding movements and anticipation of movement, which 
was more prevalent in premotor cortex, suggesting differing roles of premotor 
and parietal cortex in grasp planning. 
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Introduction 
Some actions, such as reacting to a spilling cup of coffee, demand an 
immediate response. Others, such as waiting before a traffic light, require 
withholding our actions for the right moment. Most of our actions lie on the 
continuum between the two, and although many actions are carefully planned 
before they are executed (Kutas and Donchin, 1974; Ghez et al., 1997), we are 
often required to act with little or no warning. Various studies have examined 
how movements are planned and held in memory in the primate brain (Wise, 
1985; Riehle and Requin, 1989), but only a few have contrasted well planned 
movements with situations where little to no preparation is possible (Wise and 
Kurata, 1989; Crammond and Kalaska, 2000; Churchland et al., 2006; Yu et al., 
2009; Ames et al., 2014). None, to our knowledge, have systematically probed 
the transition between immediate and planned grasping movements in the 
behaving primate. 

Delayed movement paradigms, in which actions must be withheld before 
they are executed, have shown that activity in premotor and parietal cortex can 
be used to decode and disentangle object properties and hand shapes during 
preparation (Baumann et al., 2009; Fluet et al., 2010; Townsend et al., 2011; 
Schaffelhofer et al., 2015; Schaffelhofer and Scherberger, 2016) and during 
movement (Menz et al., 2015). Furthermore, preparatory activity in the premotor 
(Churchland et al., 2006; Afshar et al., 2011) and parietal cortex (Snyder et al., 
2006; Michaels et al., 2015) is correlated with reach and grasp reaction time, 
and perturbing this preparation state in premotor cortex delays subsequent 
movement (Day et al., 1989; Churchland and Shenoy, 2007; Gerits et al., 2012), 
a clear indication of a functional contribution to action planning. 
 Recent studies, made possible by the increasing implementation of large-
scale sequential and parallel recordings, have employed a state space 
framework of population activity (for a review see Cunningham and Yu, 2014). 
Under this framework, the firing of each neuron represents a dimension in a 
high-dimensional space of all neurons where the firing of all neurons at a 
particular time represents a single point in the space of all potential network 
states. For example, preparatory activity in motor cortex acts as an initial state 
for subsequent movement dynamics (Churchland et al., 2012), and when 
reaches are cued immediately the neural population in dorsal premotor cortex 
(PMd) can bypass the state space achieved during delayed movements (Ames 
et al., 2014), suggesting that successful preparation of the same reach may be 
achieved through different neural trajectories. After adequate preparation time 
activity stabilized in the state space, while other studies suggest that premotor 
cortex may track time or expectation (Carnevale et al., 2015). Only analyzing the 
full continuum of preparation from immediate to fully planned movements can 
provide an understanding of the complex interaction between planning and 
movement. Furthermore, it has been proposed that delayed and immediate 
movements are controlled quite differently (Braver, 2012), a feature that has not 
been investigated in premotor cortex. 

To address these questions, we recorded neural populations from the 
grasping circuit consisting of the hand area (F5) of the ventral premotor cortex 
(PMv) and the anterior intraparietal area (AIP) while two macaque monkeys 
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performed a delayed grasping task, with a memory component, in which 
preparation time was systematically varied using 12 discrete delays (0-1300 ms). 
We found that the neural states achieved during longer delays were bypassed 
during immediately cued grasps. However, the initial trajectory was specific to 
each grip type, but the same regardless of delay, providing evidence that this 
activity may be required for successful movement. Activity in AIP stabilized 
during long delays, but activity in F5 was highly dynamic and well matched the 
subjective probability of a cue throughout the memory period. Interestingly, 
activity in both areas formed distinct long and short delay trajectory clusters 
following the go cue, demonstrating that a network-wide shift occurs when 
movements are withheld and executed from memory. 

Materials and Methods 
Basic procedures 
Neural activity was recorded simultaneously from area F5 and area AIP in one 
male and one female rhesus macaque monkey (Macaca mulatta, monkeys B 
and S; body weight 11.2 and 9.7 kg, respectively). Animal care and experimental 
procedures were conducted in accordance with German and European law and 
were in agreement with the Guidelines for the Care and Use of Mammals in 
Neuroscience and Behavioral Research (National Research Council, 2003). 
 Basic experimental methods have been described previously (Michaels et 
al., 2015; Dann et al., 2016). We trained monkeys to perform a delayed grasping 
task. They were seated in a primate chair and trained to grasp a handle with the 
left (monkey B) or the right hand (monkey S) (Figure 1a). A handle was placed in 
front of the monkey at chest level at a distance of ~26 cm and could be grasped 
either with a power grip (opposition of fingers and palm) or precision grip 
(opposition of index finger and thumb; Figure 1b insets). Two clearly visible 
recessions on either side of the handle contained touch sensors that detected 
thumb and forefinger contact during precision grips, whereas power grips were 
detected using an infrared light barrier inside the handle aperture. The monkey 
was instructed which grip type to make by means of two colored LED-like light 
dots projected from a TFT screen (CTF846-A; Screen size: 8” digital; Resolution 
800x600; Refresh rate: 75Hz) onto the center of the handle via a half mirror 
positioned between the monkey’s eyes and the target. A mask preventing a 
direct view of the image was placed in front of the TFT screen and two 
spotlights placed on either side could illuminate the handle. Apart from these 
light sources, the experimental room was completely dark. In addition, one or 
two capacitive touch sensors (Model EC3016NPAPL; Carlo Gavazzi) were 
placed at the level of the monkey’s mid-torso and functioned as handrest 
buttons, preventing any premature movement of the hands. The non-acting arm 
of monkey B was placed in a long tube, preventing it from interacting with the 
handle. Monkey S was trained to keep her non-acting hand on an additional 
handrest button. 
 Eye movements were measured using an infrared optical eye tracker 
(model AA-ETL-200; ISCAN) via a heat mirror directly in front of the monkey’s 
head. To adjust the gain and offset, red calibration dots were shown at different 
locations at the beginning of each session for 25 trials that the monkey fixated 
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for at least 2 seconds. Eye tracking and the behavioral task were controlled by 
custom-written software implemented in LabView Realtime (National 
Instruments) with a time resolution of 1 ms. An infrared camera was used to 
monitor behavior continuously throughout the entire experiment, additionally 
ensuring that monkeys did not prematurely move their hands or arms. 
 
Task Design  
The trial course of the delayed grasping task is shown in Figure 1b. Trials started 
after the monkey placed the acting hand on the resting position and fixated a 
red dot (fixation period).  The monkey was required to keep the acting hand, or 
both hands (monkey S), completely still on the resting position until 150 ms after 
the go cue. After a variable period of 400 to 700 ms two flashlights illuminated 
the handle for 300 ms, followed by 600 ms of additional fixation. In the cue 
period a second light dot was then shown next to the red one to instruct the 
monkey about the grip type for this trial (grip cue). Either a green or white dot 
appeared for 300 ms, indicating a power or a precision grip, respectively. After 
that, the monkey had to either react immediately or memorize the instruction for 
a variable memory period (also referred to as delay length). This memory period 
lasted for 0 to 1300 ms, in discrete memory period bins of 0, 100, 200, 300, 
400, 500, 600, 700, 800, 900, 1000, or 1300 ms (i.e. the go cue could appear 
simultaneously with the grip cue, which was always presented for 300 ms 
regardless of the length of the delay). Switching off the fixation light then cued 
the monkey to reach and grasp the target (movement period) in order to receive 
a liquid reward. Monkeys were required to hold the appropriate grip for 300 ms. 
A failed trial occurred if the monkeys stopped fixating the central point before 
movement onset, moved their hand from the hand rest sensor, performed the 
incorrect grip, or took longer than 1100 ms to complete the movement following 
the go cue. Additionally, no-movement trials were randomly interleaved (8% of 
trials), in which a go cue was never shown and the monkey only received a 
reward if it maintained fixation and the hands on the hand rests for 2000 ms 
following the grip cue. All trials were randomly interleaved and, apart from the 
300 ms handle illumination period, in total darkness. 
 
Surgical procedures and imaging 
Upon completion of behavioral training, each monkey received an MRI scan to 
locate anatomical landmarks, for subsequent chronic implantation of 
microelectrode arrays. Each monkey was sedated (e.g., 10 mg/kg ketamine and 
0.5 mg/kg xylazine, i.m.) and placed in the scanner (GE Healthcare 1.5T or 
Siemens Trio 3T) in a prone position. T1-weighted volumetric images of the brain 
and skull were obtained as described previously (Baumann et al., 2009). We 
measured the stereotaxic location and depth orientation of the arcuate and 
intra-parietal sulci to guide placement of the electrode arrays. 

An initial surgery was performed to implant a head post (titanium cylinder; 
diameter, 18 mm). After recovery from this procedure and subsequent training of 
the task in the head-fixed condition, each monkey was implanted with floating 
microelectrode arrays (FMAs; MicroProbe for Life Science) in a separate 
procedure. Monkey B was implanted with six electrode arrays in the right 
hemisphere, each with 32 electrodes (Figure 1e). Two such arrays were 
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implanted in area F5, two in area AIP, and two in area M1. Monkey S was 
implanted with four FMAs in the left hemisphere and received two arrays in each 
area (Figure 1f). The arcuate sulcus of monkey S did not present a spur, but in 
the MRI a small indentation was visible in the posterior bank of the arcuate 
sulcus, about 2 mm medial to the knee, which we treated as the spur. We 
placed both anterior FMAs lateral to that mark. FMAs consisted of non-
moveable monopolar platinum-iridium electrodes with initial impedances ranging 
between 300 and 600 kΩ at 1 kHz measured before implantation and verified in 
vivo. Lengths of electrodes were between 1.5 and 7.1 mm. 
 All surgical procedures were performed under sterile conditions and 
general anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and 0.05 
mg/kg atropine, s.c., followed by intubation, 1–2% isofluorane, and analgesia 
with 0.01 mg/kg buprenorphene). Heart and respiration rate, electrocardiogram, 
oxygen saturation, and body temperature were monitored continuously and 
systemic antibiotics and analgesics were administered for several days after 
each surgery. To prevent brain swelling while the dura was open, the monkey 
was mildly hyperventilated (end-tidal CO2, ~30 mmHg) and mannitol was kept at 
hand. Monkeys were allowed to recover fully (~2 weeks) before behavioral 
training or recording experiments commenced. 
 
Neural recordings and spike sorting 
Signals from the implanted arrays were amplified and digitally stored using a 128 
channel recording system (Cerebus, Blackrock Microsystems; sampling rate 30 
kS/s; 0.3-7500Hz hardware filter; see Supplementary Methods). Data were first 
filtered using a median filter (window-length: 3ms) and the result subtracted from 
the raw signal, corresponding to a nonlinear high-pass filter. Afterwards, the 
signal was low-pass filtered with a non-causal Butterworth filter (5000 Hz; 4th 
order). To eliminate movement noise (i.e., common component induced by 
reference and ground), PCA artifact cancellation was applied for all electrodes of 
each array (Musial et al., 2002; Dann et al., 2016). In order to ensure that no 
individual channels were eliminated, PCA dimensions with any coefficient greater 
than 0.36 (with respect to normalized data) were retained. Spike waveforms 
were extracted and semi-automatically sorted using a modified version of the 
offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 2009).  
 Units were classified as single- or non-single unit, based on five criteria: 
(1) the absence of short (1–2 ms) intervals in the inter-spike interval histogram for 
single units, (2) the homogeneity and SD of the detected spike waveforms, (3) 
the separation of waveform clusters in the projection of the first 17 features (a 
combination for optimal discriminability of principal components, single values of 
the wavelet decomposition, and samples of spike waveforms) detected by 
Wave_clus, (4) the presence of well known waveform shapes characteristics for 
single units, and (5) the shape of the inter-spike interval distribution. 
 After the semiautomatic sorting process, redetection of the average 
waveforms (templates) was done in order to detect overlaid waveforms (Gozani 
and Miller, 1994). Filtered signals were convolved with the templates starting 
with the biggest waveform. Independently for each template, redetection and 
resorting was run automatically using a linear classifier function (Matlab function: 
classify).  After the identification of the target template, the shift-corrected 
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template (achieved by up and down sampling) was subtracted from the filtered 
signal of the corresponding channel to reduce artifacts for detection of the next 
template. This procedure allowed a detection of templates up to an overlap of 
0.2 ms. Unit isolation was evaluated again as described before to determine the 
final classification of all units into single- or multi-units. Units were only classified 
as single if they unambiguously met the five criteria. 
 
Data preprocessing 
Although units were classified as single- or multi-units, all recorded units were 
used for all analyses. A detailed list of data set information can be found in Table 
1. After spike sorting, spike events were binned in non-overlapping 1 ms 
windows. For individual unit plotting (Figure 2), spike trains were smoothed with 
a Gaussian window (σ = 50 ms), but for all analyses spike trains were further 
reduced to a set of latent dimensions (see next section). Data were aligned to 
two events, the presentation of the grip cue and movement onset, i.e. the time 
when the monkey’s hand left the handrest button. The cue alignment proceeded 
from 200 ms before cue onset until the go cue, and the movement onset 
alignment from movement onset minus the median reaction time for each delay 
condition until 400 ms after movement onset. These two alignments were 
combined to produce a continuous signal. In this case the two signals were 
simply concatenated in time. Average firing rates were then calculated by 
averaging over all trials of the same condition. 
 
Dimensionality reduction 
In order to extract a set of smooth single-trial neural trajectories in our neural 
populations we applied Gaussian Process Factor Analysis (GPFA; Yu et al., 
2009) to all neurons of both areas over all successful trials from 200 ms before 
cue onset to 400 ms after movement onset for each recording session 
separately. Performing a single dimensionality reduction over both areas allows a 
direct comparison of each area’s contribution to the common signals. Units 
within each session were recorded simultaneously across both areas. GPFA is 
similar to factor analysis in that it finds an explanatory set of orthogonal 
dimensions based on the covariance structure between units that is a linear 
combination of binned neural data. However, in GPFA, each dimension de-
noises data with a Gaussian smoothing kernel of unique width learned from the 
data. For our GPFA analysis, neural spiking data on single trials were binned into 
50 ms bins and square-rooted before being transformed through linear 
combination into 10 latent dimensions. Units with an average firing rate less than 
1 Hz were discarded before the analysis. These 10 dimensions, each based on 
an individual smoothing kernel, were further orthonormalized to produce a set of 
10 orthogonal dimensions, each containing a combination of all smoothing 
kernels. Cross-validation procedures were undertaken to determine the optimal 
number of latent dimensions (Yu et al., 2009). Beyond 10 latent dimensions very 
little shared variance was explained by further addition of dimensions (<3% per 
dimension), and visualization of these dimensions showed almost no 
modulation. 

Since GPFA was carried out across both recorded areas simultaneously, 
to identify the specific contribution of each area to each latent dimension the 
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neural data of each area were separately transformed into the previously found 
latent dimensions. In more detail, the smoothing kernels and transformation 
matrix found through GPFA over both areas was used to independently 
transform the binned neural data from each area into the 10 latent dimensions, 
giving a representation of each latent dimension as a linear combination of data 
from either F5 or AIP. For most analyses the extracted single trials were then cut 
into two alignments (previous section) and averaged over all trials of the same 
condition. In general. at the boundary of alignments the signals matched very 
well to each other, showing almost no jumps in activity. 
 
Distance analysis 
In order to find the neural distance between two conditions over time, we 
calculated the minimum Euclidean distance (point-to-curve distance) between 
the two trajectories in the space of the 10 latent dimensions extracted through 
GPFA separately for each area. Three versions of this analysis were performed. 
For the distance in Figure 4a, we iterated through all time points on delayed 
trajectory (in steps of 50 ms) and calculated the Euclidean point-to-curve 
distance from the delayed (1000 ms) trajectory to the non-delayed (0 ms) 
trajectory, where the point-to-curve distance is the minimum distance from a 
specific time point on the delayed trajectory to all points on the non-delayed 
trajectory. Minimum distance, as a conservative measure, was used in order to 
overcome the different time courses of the conditions being compared. Small 
distances indicate that the two trajectories achieve a similar point in neural 
space at some point in time, while large distances indicate that the two 
trajectories do not pass through a similar point in the high dimensional space. 
Euclidian distances were normalized by the square root of the number of 
neurons in order to make spaces with different number of neurons comparable. 
 For the distance analysis in Figure 4c, GPFA was recalculated on a 
smaller portion of the data (200 ms before cue onset to 800 ms after) with a 
shorted bin width of 20 ms. Distance was then calculated as before between the 
delayed and non-delayed trajectories. In addition, to determine when grip 
information becomes present in the population, distance between the delayed 
trajectories (1000 ms) of each grip type was calculated in the same manner. 
 For the distance analysis in Figure 5, the Euclidean distance was 
calculated between all pairs of time points on the same trajectory (no-
movement) and used in conjunction with the bootstrapping procedure (next 
section) to determine if two points significantly differed. 
  
Bootstrap procedure 
In order to gain an estimate of underlying trial-to-trial variability, we performed a 
bootstrap analysis. This procedure was in general the same, but with slight 
variations for the different distance analyses presented above. We resampled 
trials from each condition randomly, with replacement, of the same size as the 
number of recorded trials in that condition. We then constructed average firing 
rates for each condition and carried out the appropriate distance analysis as 
described above (e.g., minimum distance between delayed and non-delayed 
trajectory). This resampling was done 1000 times, producing a distribution of 
distances. 
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 To obtain an estimate of how much distance is expected between 
trajectories by chance, we carried out another resampling in which a trajectory 
was resampled from itself to determine its underlying variability. Trajectories 
were resampled once with the number of trials observed in that condition, and 
once using the number of trials recorded in the other trajectory in the 
comparison, then the Euclidean distance was calculated as described in the 
previous section. 

To determine when the observed distance distribution was significantly 
greater than the self-sampled distribution, we used a cluster-based permutation 
test (CBPT; Maris and Oostenveld, 2007). Briefly, we used a modification of the 
original test that evaluates the area under the receiver operator characteristic 
curve (AUC) between the distance distribution and the self-sampled distribution 
over all time points and extracts clusters (consecutive time segments) of activity 
whose AUC exceeds a predefined threshold (α = 0.1), then the absolute AUCs 
within each cluster were summed to produce cluster-level statistics. To generate 
a chance-level distribution from which the cluster-level statistics could be 
calculated, trials were randomly partitioned between the two conditions and the 
AUC and clustering redone (1000 partitions). From every partition the largest 
cluster was used to generate a largest chance cluster distribution. Cluster-level 
statistics were calculated by comparing the real cluster-levels against the largest 
chance cluster distribution. Real clusters were considered significant if they 
exceeded 95% of all largest chance cluster values corresponding to a p = 0.05. 
In this way, sensitivity to short or small time-scale differences is greatly reduced, 
but the overall false-alarm rate across time points remains below the designated 
p-value. This analysis allowed us to determine when an observed distance was 
significantly greater than the distance expected if two trajectories were 
generated from the same underlying distribution. 

For chance analyses in Figure 5, resampling of trials was carried out 
10000 times, with replacement, for each condition and data set. For each of the 
10000 resampling steps the same trajectory was resampled twice, termed 𝒑 
and 𝒑′. Then, for every pair of time points (𝑡& and 𝑡'), the resampled distance 
along the first trajectory 𝑑 = 𝑑 𝒑 𝑡& , 𝒑 𝑡'  was compared to the two inter-
trajectory distances at time 𝑡& and 𝑡': 𝑑& = 𝑑 𝒑 𝑡& , 𝒑′ 𝑡&  and 𝑑' =
𝑑 𝒑 𝑡' , 𝒑′ 𝑡' . We determined the percentile of resamples (across all 10000) 
for which the along-trajectory distance 𝑑 exceeded both inter-trajectory 
distances: 𝑑 > 𝑚𝑎𝑥(𝑑&, 𝑑'). This percentile determined a specific p-value for 
each time pair 𝑡&, 𝑡' . The resampled distance, 𝑑, was then considered 
significant if p < 0.01. In this way, the significance level was dependent on which 
time points were compared along the trajectory, establishing a conservative 
estimate of the underlying trial-to-trial variability. 

 
Hazard rate 
To classify the temporal evolution of activity during the memory period, the mean 
firing rate of each latent dimension for the no-movement condition from cue 
onset until reward onset was fit with an anticipation function, which can be 
described as the conditional probability that a movement will be required at a 
given moment, given that it has not occurred until this point. This type of 
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anticipation has been termed the hazard rate, and we present it here precisely 
as in Janssen and Shadlen (2005). The hazard rate can be expressed as 
	 ℎ 𝑡 =

𝑓(𝑡)
1 − 𝐹(𝑡)

 ( 1 ) 

where 𝑓(𝑡) is the probability that a go cue will come at a given time after cue 
onset, and 𝐹(𝑡) is the cumulative distribution, 𝑓 𝑠 𝑑𝑠7

89: . 
 As in Janssen and Shadlen (2005), to obtain an estimate of the monkey’s 
internal representation of anticipation we calculate ‘subjective anticipation’ 
based on the assumption that the animal is uncertain about time and that this 
uncertainty scales with time since an event. Therefore, before calculating hazard 
rate we smoothed our probability density function, 𝑓(𝑡), with a normal 
distribution where standard deviation is proportional to elapsed time. 

	 𝑓 𝑡 =
1

𝜙𝑡 2𝜋
𝑓 𝜏 𝑒

@ A@7 B

'CB7B 	𝑑𝜏
E

@E

 ( 2 ) 

The coefficient of variation, 𝜙, is a Weber fraction under the assumption that the 
experience of elapsed time carries uncertainty that is proportional to the true 
duration (Weber’s Law). For all analyses we used a value of 0.26, as has been 
calculated from behavioral experiments and used previously (Leon and Shadlen, 
2003; Janssen and Shadlen, 2005). To obtain the final subjective anticipation 
function, 𝑓 𝑡  was then substituted into Eq. 1, along with its cumulative 
distribution, F 𝑡 .  

	 𝑟 𝑡 = 𝑤& + 𝑤'ℎ(𝑡 − 𝑤J) ( 3 ) 

 All fitting procedures were performed by fitting Eq. 3 to the average 
activity of each latent dimension over both areas, where 𝑤 are constant terms 
obtained during the fitting procedure (Matlab function: fit), and ℎ is Eq. 2 
substituted into Eq. 1. 
 
Clustering analysis 

To evaluate whether or not delay trajectories leading up to movement 
onset clustered in a distinct way, we calculated the Euclidean distance between 
all pairs of linearly spaced delays (0-1000 ms, in steps of 50 ms) in the 10 latent 
dimensions determined by GPFA and looked for community structure (i.e. 
distinct clusters of similar value) in the resulting distance matrix. We employed a 
well-known modularity analysis that iteratively finds non-overlapping groups of 
conditions that minimizes the within-group distance between conditions and 
maximizes the between-group distance (Newman, 2004; Reichardt and 
Bornholdt, 2006) with a gamma sensitivity of 0.75. Each distance matrix was 
normalized to the maximum value over all time and subtracted from a matrix of 
ones in order to prepare them for analysis. Using this analysis, the number of 
clusters obtained is purely data-driven and not specified by the experimenter. To 
ensure that the found structure was not due to chance, we randomly permuted 
the distance matrix (1000 permutations, while conserving matrix symmetry) and 
compared the modularity index Q between the empirical and permuted data. 
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The percentile of instances where the permuted distribution values exceeded the 
empirical value corresponds to the p-value. 

Results 
Task and behavior 
To investigate the continuum of grasp movement preparation, we trained two 
macaque monkeys (B and S) to perform a delayed grasping task, with a 
memory component, in which the amount of preparation time was 
systematically varied between non-delayed (0 ms) and a long delay (1300 ms) in 
12 distinct increments (Materials and Methods). Monkeys fixated a central point 
(red), received a grip cue (300 ms) corresponding to either precision (white) or 
power grip (green), and were cued to perform this grip following a variable delay 
when the central fixation point turned off (Figure 1a-b). The performance of both 
monkeys was high, correctly completing trials after receiving grip information 
95% and 98% of the time for monkeys B and S, respectively (Table 1).  In 
addition to the normal task, we also randomly inserted no-movement trials to 
ensure that monkeys waited for the go cue before acting. Both monkeys 
completed these trials successfully (monkey B: 100%; monkey S: 97.7%). 
 In addition to number of correctly executed trials, reaction times (RTs) 
and movement times (MTs) of the monkeys provided useful insight into the 
performance of the task. RT decreased steadily with increasing amounts of 
preparation (Rosenbaum, 1980), approaching a minimum after approximately 
400 ms of preparation (Figure 1c), well in line with previous findings (Churchland 
et al., 2006). RT increased slightly for the longest delay. For monkey S, MT did 
not correlate with length of the delay period (Figure 1d, p = 0.9), indicating that 
although RT was slower for short delays, movements were only initiated once 
they were fully prepared. In monkey B there was a small positive correlation 
between delay and MT (Figure 1d, r = 0.11). Movement kinematics were likely 
similar regardless of delay, since the variability in mean movement times 
between different delay lengths were extremely small. The standard deviations in 
mean movement times (Monkey S, precision grip: 3.5 ms SD, power grip: 1.8 
ms SD; Monkey B, precision grip: 14.2 ms SD, power grip: 10.8 ms SD) provide 
evidence that the kinematics of the movements did not vary between delays, 
especially for monkey S. The number of errors showed no clear relationship to 
the length of the delay period, and the number of errors was extremely low, 
providing evidence that the monkeys could complete all conditions equally well. 
 
Neural responses 
We recorded six sessions of each monkey using floating microelectrode arrays 
for a total of 128 channels (64 in each area) simultaneously in F5 and AIP (Figure 
1e,f) and single- and multi-unit activity was isolated (Materials and Methods). 
There were significantly more units recorded in area F5 of monkey B than in AIP 
(Paired t-test, p < 0.001), while there was no significant difference for monkey S 
(Paired t-test, p = 0.81). For individual session information see Table 1. For all 
analyses we pooled single- and multi-units together (mean recorded per 
session: 75 single and 102 multi). We evaluated grip type tuning in both areas to 
ensure that the task successfully elicited task-related tuning. The average 
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percentage of units tuned for grip type during the 200 ms following cue onset 
was 29% in F5 and 29% in AIP, 28% and 26% in the 200 ms preceding go cue, 
and 55% and 45% in the 200 ms following movement onset (t-test, p < 0.05), 
conservatively measured only for movements with a distinct memory period (i.e. 
≥500 ms delay). Amounts of grip tuning were very similar between monkeys and 
to previous studies of both F5 and AIP (Lehmann and Scherberger, 2013; 
Michaels et al., 2015; Schaffelhofer et al., 2015), confirming their involvement in 
grasp coding. 
 If the brain areas we investigated were specifically coding task-related 
visual features, we would expect similar responses to the grip cue regardless of 
whether grasps were cued immediately or not. Conversely, if single units were 
related to execution of the correct motor plan, we should observe similar neural 
responses during movement regardless of when go cues were presented. 
Interestingly, a wide variety of mixed activity patterns were present in both areas 
(Figure 2). In many cases the initial cue response was suppressed when the go 
cue appeared concurrently with the grip information (Figure 2a,d), while in other 
cases the initial cue response was present regardless of delay (Figure 2b,e). 
Other interesting responses were observed, such as a peak in activity during the 
memory period (Figure 2c), and activity during the movement period which 
differed between delayed and non-delayed grasps (Figure 2c,f). All of these 
diverse types of responses were present in both F5 and AIP. The broad variety 
of unit responses reveals a complex interaction between differing amounts of 
preparation, making strict categorization of individual neurons difficult. 
 
Visualizing the population response 
An alternative approach to categorizing single units is the state space 
framework, in which all units are considered as a high-dimensional space in 
which the firing of each unit represents one dimension. In order to visualize the 
complex interactions between planning and movement, we projected the 
population activity of all units across both areas for all trials into a lower 
dimensional space of 10 latent dimensions using Gaussian Process Factor 
Analysis (GPFA; Materials and Methods). These 10 latent dimensions well 
captured the variance of both areas. Once the latent dimensions were found, 
the activity of each area was independently projected into these dimensions in 
order to compare the contribution of each area. Figure 3a,c shows the neural 
trajectories of exemplar data of each monkey (sessions B4, S2) from 100 ms 
before grip cue onset to 400 ms after movement onset. 
 In both monkeys the first dimension was a mostly condition-independent 
movement signal, especially large in F5, a feature observed previously in motor 
cortex (Kaufman et al., 2016). The other dimensions show varying levels of grip-
specific cue responses, delay- or grip-specific memory responses, and strong 
movement activity. Particularly interesting is latent 3 in Figure 3a and latent 4 in 
Figure 3c, which showed in both monkeys sustained grip selectivity through 
memory into movement. Plotting latents 2-4 against each other revealed other 
features (Figure 3b,d, 100 ms before cue onset to 50 ms after movement onset). 
Trajectories began in a tight cluster at grip cue onset and remained overlapped 
for the initial response (200-300 ms) regardless of delay, but specific to each 
grip type. The trajectories for longer delays continued to evolve for hundreds of 
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milliseconds, but the short delays proceeded to movement onset, bypassing the 
part of the space achieved by long delays. Interestingly, while activity in AIP 
congregated in a stable state 500-600 ms after the grip cue, activity in F5 
continued to evolve for the entire memory period, never congregating in an area 
of low variability. Finally, for each grip type short and long delays grouped into 
two clusters during movement initiation (Figure 3b, AIP; Fig 3d, F5). 
 
Unique memory state for delayed grasping movements 
 As we saw in Figure 3, unique memory states were traversed by the 
neural trajectory during trials with long delays. To test this possibility statistically, 
we used a continuous distance analysis (Materials and Methods). We measured 
the minimum Euclidean distance (known as point-to-curve) between each time 
point on the trajectory of a delayed condition (1000 ms delay condition in steps 
of 50 ms) and the entire non-delayed trajectory (0 ms delay condition). This was 
done for the 10 latent dimensions of each area to determine which points in the 
state space were traversed by both conditions and which were unique to longer 
delayed movements, separately for each recording session and each grip type. 
After the cue, distance between delayed and non-delayed trajectories rose and 
remained significantly above chance level until around movement onset or later 
in example data sets of both areas and monkeys (Figure 4a; sessions B2, S3; 
Bootstrapping procedure with 1000 resamples, p < 0.05, cluster-based 
permutation test; Materials and Methods). Over all grip types and data sets the 
same effect is present (Figure 4b), showing that distance between the 
trajectories was most prevalent until shortly before movement onset. The 
amount of divergence between the delayed and non-delayed trajectories was 
very similar in F5 and AIP, indicating that when grasps are cued without a delay 
the neural population of both areas bypass the states achieved by longer delays. 
Performing the same analysis on the full neural space without dimensionality 
reduction produced similar results (data not shown). 
 As mentioned earlier, it appeared in Figure 3 that the difference between 
grip types was present before the difference between delays. In other words, the 
effect of the grip cue appeared before the effect of the go cue. To test this, we 
repeated the distance analysis with a finer time resolution around cue onset 
(GPFA using steps of 20 ms) and additionally tested the Euclidean distance 
between grip conditions (Figure 4c, Materials and Methods). Comparing the first 
onset of significance between delay and grip effects for each data set separately 
revealed that grip separation consistently appeared before delay separation in 
both areas and monkeys (Wilcoxon sign-rank test, F5 monkey S, p < 0.001; AIP 
monkey S, p < 0.001; F5 monkey B, p = 0.003; AIP monkey B, p = 0.016). On 
average across monkeys and areas, grip separation occurred 128 ms after cue 
onset and delay separation occurred 352 ms after cue onset. 
 Taken together, these results provide evidence that large portions of the 
state space that are traversed after the first ~300 ms do not seem to be 
necessary for successfully executing grasping movements, and the activity in the 
first ~300 ms likely represents unavoidable processing. 
 
Static and dynamic memory states 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 23, 2017. ; https://doi.org/10.1101/179143doi: bioRxiv preprint 

https://doi.org/10.1101/179143
http://creativecommons.org/licenses/by-nc-nd/4.0/


            
	

Page 14 of 33 

Given that the trajectories of delayed and non-delayed grasps only overlap for 
the first ~300 ms of preparation, what is the function and dynamics of the 
memory period activity? A striking feature of the visualization in Figure 3 was that 
the F5 activity continually evolved throughout the course of the memory period, 
while activity in AIP congregated in an area of low variability. To analyze when 
and if the neuronal trajectory of the two areas stabilized, we systematically 
compared the Euclidean distance between all pairs of time points along the 
trajectories for the no-movement trajectories (Figure 5a, example data sets S6 
and B5). Dynamic activity should appear as large distances between trajectories 
everywhere except the diagonal (points close in time), while static activity should 
appear as a ‘block’ of activity with a small distance between trajectories. 
 The strongest differences occurred shortly after cue onset and near 
reward. Most remarkably, the neuronal trajectory during the memory period in 
F5 continuously and uniformly progressed in the absence of behavioral events. 
On the contrary, the neuronal trajectory in AIP stabilized 200-300 ms after cue 
offset. The effect becomes clearer when visualizing the time points that 
significantly differed (Figure 5b, Materials and Methods), showing a stereotypical 
‘block’ pattern in AIP and also visible over all data sets (Figure 5c). Taking the 
average distance between all time points during the portion of the memory 
period unaffected by cue or reward (600 ms – 1800 ms after cue onset) showed 
a significantly more dynamic representation in F5 than AIP (Figure 5d; Wilcoxon 
signed-rank test, p < 0.001). Similar results were obtained using the full neural 
space (data not shown). These results indicate a considerably different code at 
the population level in AIP and F5. 
 It is also important to consider that the probability of having to perform a 
movement did not remain constant, since the probability of being in the no-
movement condition increased with time spent in the memory period. Therefore, 
could it be that the dynamic nature of the memory period in F5 is due to the 
change in necessity of the motor plan. To rule out this possibility, we repeated 
the current analysis on data of a similar experiment in which movements were 
required in all conditions (Michaels et al., 2015). We found that the same inter-
area difference reported here were present (Figure 6), lending support to the 
observed dissociation between areas.  
 
Memory period dynamics 
 Given the dynamic nature of activity during the memory period, does this 
activity follow any predictable pattern? As mentioned earlier, some units 
appeared to change their activity strictly during the memory period (Figure 2c), 
even in the absence of behavioral cues. The observed pattern appears similar to 
the hazard rate, which in the current experiment is the probability of a go cue 
occurring at any moment, given that the go cue has not appeared yet (Janssen 
and Shadlen, 2005). The form of the hazard rate during no-movement trials and 
corresponding subjective anticipation function, which takes the monkey’s 
uncertainty about time into account (Materials and Methods), is shown in Figure 
7a. We fit the average activity of each latent dimension (over both areas) to 
subjective anticipation. The best fitting dimension per data set had an average 
adjusted R-square of 0.73 for monkey S and 0.88 for monkey B, indicating that 
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anticipation may be significantly represented (mean time shift: -11 ms, wJ in Eq. 
3). Example data sets are shown in Figure 7b,e (data from session S2 and B4). 
 When comparing the mean contribution per unit (weight in GPFA loading 
matrix) between areas across data sets to the best fitting latent dimensions, F5 
clearly contributes more (Figure 7c,f, Wilcoxon signed-rank test, p < 0.001), with 
an average of 1.5 times the contribution per neuron, supporting the finding that 
F5 memory activity was much more dynamic. On average across data sets, the 
best fitting latent dimension explained the 4th most variance of the 10 
dimensions extracted for each data set, corresponding to on average 11% 
variance explained. 

Interestingly, activity on single trials in the ideal latent dimensions at the 
go cue was correlated with reaction time (Figure 7d,g; trials with a delay of at 
least 800 ms), with a mean R-square of 0.17 in monkey S and 0.16 in monkey 
B, similar to results obtained in F5 with other state space methods (Michaels et 
al., 2015). For this analysis only the causal portion of all GPFA smoothing kernels 
were used so that activity at the go cue conservatively reflected only past 
spikes. Given that the activity in this latent dimension is predictive of reaction 
time, does being closer or farther away from the movement state predict 
reaction time in a consistent way? When the absolute difference between the go 
cue activity and mean activity during movement initiation (100 ms before 
movement onset) was correlated with reaction time, 11 out of 12 data sets 
produced a positive correlation (mean R-square of 0.1), providing evidence that 
being closer to the movement initiation state on a given trial led to shorter 
reaction times. 
 
Clustering of immediate and withheld movements from memory 
In the population visualization in Figure 3 we saw that the trajectories of short 
and long delays formed two distinct clusters leading up to movement onset. To 
visualize the clustering for example data sets in F5, we plotted the activity of all 
linearly spaced delays (0-1000 ms) of a single grip type around movement onset 
in an example latent dimension (Fig 8a). Looking specifically at around 100 ms 
before movement onset, trajectories from the conditions with a delay of 0-
400/500 ms and from the conditions with a delay of 400/500-1000 ms seem to 
form two clusters. This effect is also present in AIP, where trajectories deflect 
into two distinct groups in a similar fashion (Figure 9). 
 To quantify clustering at the population level, we calculated the Euclidean 
distance between all pairs of delay lengths for each grip type separately in the 
space of all latent dimensions (Figure 8b) and looked for clusters in the distance 
matrices without assuming clustering a priori (Materials and Methods). Two 
clusters were identified for the example data set (Figure 8c), showing a split 
around the 400-500 ms delay point that lasts until shortly before movement 
onset (permutation test, p < 0.01; Materials and Methods). This pattern was very 
similar over all data sets (Figure 8d, Figure 9d), did not differ between grip types, 
and was present in both areas and monkeys, indicating that the state change 
that occurs between short and long delays spans both the frontal and parietal 
lobes. 
 Clustering is not likely due to different movement kinematics, since the 
movement times were nearly identical for all delay lengths (Figure 1d), especially 
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for monkey S. However, since the time of movement onset is determined by the 
monkey’s behavior, the time that has elapsed since the visual grip cue was 
presented could introduce a potential confound. Yet, differences in how long 
ago the grip cue was presented is unlikely to explain the two clusters, since 
repeating the same clustering analysis on the behavioral data, i.e. the mean time 
between cue presentation and movement onset for all delays, does not produce 
significant clustering for either grip type (permutation test, Precision grip: p = 
0.97, Power grip: p = 0.97). These controls suggest that the separation of the 
neural trajectories into two distinct clusters reflects a robust effect of delay 
length in F5 and AIP.	

Discussion 
To systematically probe the interplay between planning and movement in the 
grasping network, we recorded neural populations in premotor area F5 and 
parietal area AIP while two macaque monkeys performed a delayed grasping 
task with 12 distinct preparation times (0-1300 ms). Firstly, the initial part (~300 
ms) of the neural space traversed was the same for all delays, but was grip 
specific, providing evidence that this activity was an unavoidable part of 
preparing the correct movement. Next, population activity shifted into a separate 
state that was not achieved during short delays. The memory state was more 
dynamic in F5 than in AIP, tracking subjective movement anticipation over time. 
Lastly, activity during movement initiation formed two distinct clusters during 
movement initiation, demonstrating a network-wide shift when movements need 
to be withheld. Our findings reinforce the notion that more global aspects of 
movements, such as the movement plan, as well as dynamic aspects, such as 
cue anticipation, can be well extracted at the population level.  
 As shown in Figure 4, separation between the neural trajectories 
occurred more than 200 ms earlier between the two grips than between long 
and short delays. This novel result indicates that while grip information is swiftly 
encoded in F5 and AIP following the cue, responses to the go cue are delayed 
at least 200 ms relative to the grip information in order to facilitate the 
completion of the motor plan, after which areas of the state space traversed by 
longer delays are not strictly necessary to produce successful movements, 
similar to the results of Ames et al. (2014) in dorsal premotor cortex (PMd). 

In F5 the memory period activity did not congregate in a specific region of 
the state space, a feature of F5 never before observed to our knowledge. This 
finding differs to the results of Ames et al. (2014) in nearby PMd, who postulated 
that delay period activity may act as an attractor state into which all trials would 
congregate given enough preparation time. It is possible that PMd activity would 
be more dynamic if an experimental design with a memory period were utilized, 
a point supported by studies showing that activity from some sub-regions of 
premotor cortex can encode prior knowledge of when events are likely to occur 
(Mauritz and Wise, 1986; Carnevale et al., 2015). However, given current 
evidence our results support the notion that strongly dynamic memory period 
activity is a unique feature of F5. 
 It could be that the temporal dynamics during the memory period are a 
result of an internalized representation of the likelihood of task events occurring 
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at specific times throughout the memory period, known as hazard rate and 
previously observed in the lateral intraparietal cortex (LIP) (Leon and Shadlen, 
2003; Janssen and Shadlen, 2005). We observed significant fits of latent 
dimensions to the subjective anticipation rate across both areas, although F5 
contributed significantly more to this activity. Furthermore, activity in these 
dimensions was predictive of reaction time, supporting the role of this activity in 
increasing or decreasing sensitivity to an external stimulus. 

Time dependence has been identified in prefrontal areas (Genovesio et 
al., 2006), and increasing literature suggesting that time keeping is an intrinsic 
property of all neural networks (for a review see Goel and Buonomano, 2014), as 
well as a feature of some sub-cortical areas (Gouvêa et al., 2015). A mechanistic 
explanation for the dynamics observed during the memory period could be that 
recurrent networks of neurons in these areas generate temporal dynamics 
similar to a time code. The strongest evidence for this view comes from a recent 
study in which the presence or absence of a sensory stimulus on a given trial 
had to be reported (Carnevale et al., 2015). The authors found that the neural 
state space of premotor cortex evolved over the course of the trial and was 
more sensitive to incoming sensory information during the fixed window that the 
monkeys knew would or would not contain the stimulus. Importantly, Carnevale 
et al. (2015) showed that a recurrent neural network model trained for optimal 
response sensitivity well explained the behavior of the monkey. A number of 
recent studies have shown that timing is a robust feature of chaotic recurrent 
networks (Buonomano and Laje, 2010; Laje et al., 2013; Goudar and 
Buonomano, 2014), suggesting that F5 may be able to track the course of time 
internally and use this information to predict when an action is likely to be 
required. Furthermore, even though activity continues to change throughout 
memory, a stable representation of the desired action remains at the population 
level (Druckmann and Chklovskii, 2012), consistent with the constant separation 
between grip types observed in some latent dimensions (Figure 3). 
 One of the most striking features in both areas, but especially in F5, was 
that the population activity of a single grip type was highly variable at the time of 
go cue, yet converged rapidly leading up to movement onset (Figure 3, Figure 
8). We propose that the broadly tuned nature of activity at the go cue provides 
the motor system with a large flexibility in movement initiation. Similar to the 
dynamics observed during the memory period, it could be that once movement 
is triggered, recurrent networks of neurons within these areas rapidly reduce 
variability within particular regions of the neural space in order to ensure correct 
muscle activation during initiation (Sussillo et al., 2015; Michaels et al., 2016). 
Under this framework, selecting between multiple movement plans would only 
require the neural population to be within a general region of activity. Such a 
framework is also in line with the finding that preparatory activity in PMd/M1 
projects into the null-space of upper limb muscles and transitions into the 
potent-space during movement (Kaufman et al., 2014), as this transition likely 
takes place during movement initiation when variability between movement 
plans is heavily reduced (Elsayed et al., 2016). Once movement is initiated, 
activity would fall onto a common trajectory unique to each action plan. Future 
work must tackle the question of to what degree local circuit features or extrinsic 
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inputs can account for the rapid decrease in trial-to-trial variability taking place 
before movement execution. 
 While variability decreased leading up to movement onset, trajectories 
clustered into two distinct groups splitting between delay conditions less than or 
greater than 400-500 ms (Figure 8, Figure 9). Given that full preparation likely 
takes ~400 ms, evidenced by the leveling of the RT curve after ~400 ms (Figure 
1d), the two clusters could correspond to movements executed ‘as fast as 
possible’ and movements executed from memory where the monkey must first 
wait for the go signal. Our results indicate that shifting between immediate 
movements and withheld movements from memory may cause a state shift in 
the fronto-parietal network that produces the two clusters during movement 
initiation. Once the state has been changed, the trajectories continue to cluster 
for the entirety of movement initiation (up to movement onset). Specifically, the 
underlying cause of the shift is likely the transition from reactive to proactive 
control, i.e., the increased ability to properly anticipate a go cue after sufficient 
preparation times (Braver, 2012). This sensitivity to task timing is inherent in 
highly trained tasks, and has been shown in supplementary motor area (SMA; 
Chen et al., 2010) and medial frontal cortex (Stuphorn and Emeric, 2012). 
Execution of timed behavior is reduced in humans with SMA lesions (Halsband 
et al., 1993) and supports our findings, since F5 is especially connected to the 
pre-SMA (Luppino et al., 1993). 

It remains a possibility that systematic differences in hand-shaping 
latencies or final posture between different delay lengths could contribute to the 
observed clustering. However, clustering of delay conditions was almost non-
existent after movement onset, especially in F5, making differences in final 
posture improbable. Although differences in hand-shaping during movement 
cannot be ruled out, the extreme similarity in movement times between delays 
(Results), especially for monkey S, make this possibility unlikely. 
 Given that the current task also involved a large reaching component, 
reach planning is likely a significant part of the observed activity. Still, the 
presence of grip type tuning in all epochs (Results), as well as previous research 
employing a grasp-only task (Hepp-Reymond et al., 1994) and a grasp-reach 
dissociation task (Lehmann and Scherberger, 2013), indicates that F5 encodes 
grasping quite independently of reaching. Furthermore, reversibly inactivating F5 
(Fogassi et al., 2001) or AIP (Gallese et al., 1994) selectively impairs hand-
shaping and not reaching, providing evidence that our results are an accurate 
representation of the grasping network. 
 In summary, our results provide novel insights building on delayed 
reaching and grasping literature in premotor (Cisek et al., 2003; Lucchetti et al., 
2005; Fluet et al., 2010) and parietal cortex (Murata et al., 1996; Snyder et al., 
2006; Baumann et al., 2009). We show that dissociation of global and dynamic 
aspects of movement, such as the movement plan and the anticipation over 
time, respectively, can be coherently extracted at the level of neural populations 
and allow for comparison and dissociation between interacting cortical areas. 
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Figures 
	

	
Figure 1. Task design, implantation, and behavior. (a) Illustration of a monkey 
in the experimental setup. The cues were presented on a masked monitor and 
reflected by a mirror such that cues appeared super-imposed on the grasping 
handle. (b) Delayed grasping task with two grip types (top: power grip, bottom: 
precision grip). Trials were presented in pseudorandom order in darkness and 
with the handle in the upright position. (c and d) Scatter plots of reaction time 
and movement time against delay length for both monkeys. The solid line 
represents the mean for each delay bin. (e and f) Array locations for monkey S 
(e) and B (f). Two arrays were placed in F5 on the bank of the arcuate sulcus 
(AS) and two were placed in AIP toward the lateral end of the intraparietal sulcus 
(IPS). In monkey B two more arrays were placed on the bank of the Central 
sulcus (CS), but not used in this study. The cross shows medial (M), lateral (L), 
anterior (A), and posterior (P) directions. Note that monkey S was implanted in 
the left hemisphere and monkey B the right hemisphere. 
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Figure 2. Example average firing rate curves of single-units for delayed 
(1300 ms) vs. non-delayed (0 ms) grasps. (a-c) Example single-units from area 
F5 of monkey B showing (a) a completely suppressed cue response during non-
delayed grasps, (b) an identical cue response for either delay, (c) differing 
movement period activity between delayed and non-delayed grasps. (d-f) Similar 
single-unit examples from AIP of monkeys B and S. Delayed data were aligned 
to two events, grip cue onset and movement onset and are separated by a gap, 
which marks the go cue. Non-delayed data were only aligned to movement 
onset. Dotted gray line represents approximate time of cue onset and go cue for 
non-delayed grasps. The cue was always presented for 300 ms regardless of 
delay. Curves and shaded bands represent mean and standard error of the 
mean, respectively. 
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Figure 3. Low-dimensional latent space trajectories of F5 and AIP. 
Population data of all conditions were projected into a 10 dimensional latent 
space as determined by GPFA. (a) A single session trial-averaged example from 
monkey S is shown for the first 4 latent dimensions (S4). Trajectories begin 100 
ms before the grip cue and end 400 ms after movement onset. (b) A 3D plot of 
the second to fourth latent dimensions plotted from 100 ms before cue onset to 
50 ms after movement onset. (c-d) same as (a-b) for a single session from 
monkey B (B2). Gray arrows show the flow of time. 
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Figure 4. Point-to-curve distance between delayed (1000 ms) and non-
delayed (0 ms) trajectories. (a) Minimum Euclidian distance in the latent space 
between each time point on the delayed trajectory (in steps of 50 ms) and the 
entire non-delayed trajectory over time for 2 example data sets (B2-Power, S3-
Power) from both areas and monkeys. The black line represents the minimum 
point-to-curve distance between the delayed and non-delayed trajectory, while 
the gray lines represent the chance level (Materials and Methods). Black bars 
along the top of plots denote times when the distance is significantly greater 
than chance level (Bootstrapping procedure with 1000 resamples, p = 0.05, 
Cluster-based permutation test; Materials and Methods). Error bars represent 
the 5th and 95th percentiles of the distances generated by the bootstrapping 
procedure. (b) Fraction of significant distances over all data sets and grip types 
(6 data sets x 2 grip types). Error bars represent the standard error of the mean 
over data sets and grip types. (c) Difference in onset of grip and delay separation 
over all data sets and grip types (6 data sets x 2 grip types) at a higher temporal 
resolution (20 ms bins). 
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Figure 5. Neural trajectory stability over the course of no-movement trials. 
(a) Mean Euclidean distance in the latent space for the no-movement trials 
between all pairs of time points over both grip types for example data sets in 
each monkey (sessions B5, S6). For each pair of time points, distance results 
were tested for a significant difference using a bootstrapping procedure (10000 
resamples in steps of 50 ms, p = 0.01). The abbreviations Cue, Mem, and Rew, 
correspond to the cue, memory, and reward epochs, respectively. All plots are 
clipped at 1 sp/s for visualization. The times where a significant difference was 
found (in no conditions, one grip type, or both grip types) are shown in (b). (c) 
Percentage of time points showing a significant difference over all data sets and 
grip types (6 data sets x 2 grip types) of each monkey separately. (d) Mean 
distance between all time points during the stable portion of the memory period 
(600 ms – 1800 ms after cue onset) for all individual data sets and grip types (6 
data sets x 2 grip types) across areas and paired according to recording 
session. Stars indicate a significant difference (Wilcoxon sign-rank test, p < 
0.001). 
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Figure 6. Neural trajectory stability over the course of instructed trials for 
an additional experiment. Same layout as Figure 5. (a) Mean Euclidean 
distance in the latent space for the Instructed trials between all pairs of time 
points over both grip types for an example data set in monkey Z. For each pair 
of time points, distance results were tested for a significant difference using a 
bootstrapping procedure (10000 resamples in steps of 50 ms, p = 0.01). The 
abbreviations Cue, Mem, and Move, correspond to the cue, memory, and 
movement epochs, respectively. All plots are clipped at 1 sp/s for visualization. 
The times where a significant difference was found are shown in (b). (c) 
Percentage of time points showing a significant difference over all data sets and 
grip types (6 data sets x 2 grip types). (d) Mean distance over the stable portion 
of the memory period (600 ms after cue onset – go cue) for all individual data 
sets and grip types (6 data sets x 2 grip types) across areas and paired 
according to recording session. Stars indicate a significant difference (Wilcoxon 
sign-rank test, p < 0.001). As described in Michaels et al. (2015), monkey Z 
performed a similar task to the current study (6 data sets x 2 grip types, 
Instructed condition). The same grip types were cued and the memory period 
was also variable. However, all trials resulted in movement, regardless of 
condition. Therefore, if the dynamic nature of the memory period observed in the 
present experiment were due only to the changing expectation of having to 
execute a movement over the course of the trial or the deterioration of a motor 
plan, we should observe stable activity. Yet, in this additional experiment the 
highly time dependent nature of the memory period activity un F5 is maintained, 
suggesting that this variability is not due to the varying chance of subsequent 
movement, but represents features of the examined areas. 
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Figure 7. Representation of subjective anticipation across F5 and AIP. (a) 
Illustration of the probability of a go cue at all times during the delay, the hazard 
rate (Eq. 1), and the subjective anticipation function (Eq. 2 substituted into Eq. 
1). (b) subjective anticipation (Eq. 3) fit to an example latent dimension during the 
no-movement condition (session S2). (c) Mean contribution per unit in each area 
to the best latent dimension of each data set. Stars indicate a significant 
difference (Wilcoxon sign-rank test, p < 0.001). (d) Example latent dimension at 
go cue correlated with single-trial reaction time for delays of at least 800 ms. (e-
g) Same as (b-d) for monkey B (session B4). 
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Figure 8. Clustering of movement initiation activity in F5. (a) Example latent 
projection population activity in F5 over all linearly spaced delays (0-1000 ms) for 
precision grip trials for an example data set from each monkey (sessions S4, 
B2), aligned to movement onset. (b) Euclidean distance between all pairs of 
delays in the full latent space for two example time points of the example data 
set including identified clustering using a clustering analysis that finds 
community structure (Materials and Methods). (c) Clusters identified in the 
distance matrices over time (in steps of 50 ms) for the example data set. Black 
significance bar shows time points where the modularity statistic exceeded 
chance level (permutation test, p < 0.01). (d) Same analysis as (c) averaged over 
all data sets and grip types (6 data sets x 2 grip types). 
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Figure 9. Clustering of movement initiation activity in AIP. Same Layout as 
Figure 8. (a) Example latent projection population activity in AIP over all linearly 
spaced delays (0-1000 ms) for precision grip trials for an example data set from 
each monkey (S3, B4), aligned to movement onset. (b) Euclidean distance 
between all pairs of delays in the full latent space for two example time points of 
the example data set including identified clustering using a clustering analysis 
that finds community structure (Materials and Methods). (c) Clusters identified in 
the distance matrices over time (in steps of 50 ms) for the example data set. 
Black significance bar shows time points where the modularity statistic 
exceeded chance level (permutation test, p < 0.01). (d) Same analysis as (c) 
averaged over all data sets and grip types (6 data sets x 2 grip types). 
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Table 
	
* This table should appear between Fig 1 and Fig 2 * 
 
Table 1. Trial counts, performance, and number of units recorded for all 
data sets. 
 
 Trial 

Count 
Correct 
Performance 

Units Recorded 
in F5 

Units Recorded 
in AIP 

B1 485 91% 65 29 
B2 685 96% 88 35 
B3 586 96% 43 25 
B4 814 96% 64 28 
B5 775 96% 46 19 
B6 745 97% 72 33 
Mean: 682 95.3% 63.0 28.2 
     
S1 502 98% 124 134 
S2 514 97% 136 148 
S3 571 97% 142 137 
S4 658 99% 121 97 
S5 590 99% 115 104 
S6 546 98% 156 165 
Mean: 564 98.0% 132.3 130.8 
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