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Abstract 

 

Caligid sea lice represent a significant threat to salmonid aquaculture worldwide. 

Lepeophtheirus salmonis is the predominant species that occurs in the Northern Hemisphere. 

Dispersal of sea lice between marine aquaculture sites and geographic regions is thought to 

occur rapidly via planktonic transport of larvae. Population genetic analyses have consistently 

shown minimal population genetic structure in North Atlantic L. salmonis, frustrating efforts to 

track louse populations, improve targeted control measures and understand local adaption to 

environmental conditions. The aim of this study was to test the power of reduced 

representation library sequencing (IIb-RAD sequencing) coupled with random forest machine 

learning algorithms to define markers for fine-scale discrimination of louse populations. We 

identified 1286 robustly supported SNPs among four L. salmonis populations from Ireland (N=2, 

27 individuals), Scotland (N=1, 11 individuals) and North Norway (N=1, 12 individuals). Weak 

global structure (FSC = 0.018, p<0.0001) and only one significant pairwise FST comparison was 

observed (Scotland vs Kenmare Bay, (FST = 0.018, p<0.0001)) using all 1286 SNPs. The 

application of a random forest machine-learning algorithm identified 98 discriminatory SNPs 

that dramatically improved population assignment (DAPC assignment probability = 1), increased 

global Fsc = 0.098, (p<0.0001) and resulted in pairwise comparisons that all showed highly 

significant Fst-values (range = 0.081 – 0.096, p<0.0001). Out of 19 SNPs found to be under 

directional selection between populations, 12 corresponded to the discriminatory SNPs 

identified using random forest. Taken together our data suggest that L. salmonis SNP diversity 

exists with which it is possible to discriminate differences between nearby populations given 

suitable marker selection approaches, and that such differences might have an adaptive basis. 

We discuss these data in light of sea lice adaption to anthropogenic and environmental 

pressures as well as novel approaches to track and predict sea louse dispersal.    

    

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2017. ; https://doi.org/10.1101/179218doi: bioRxiv preprint 

https://doi.org/10.1101/179218
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

Introduction 

 

Caligid sea lice are copepod ectoparasites of marine fish. In the northern hemisphere, the 

salmon louse (Lepeophtheirus salmonis) is the species most commonly infecting farmed and wild 

salmonids (Boxaspen 2006), at considerable cost to animal health, biodiversity security, and 

economic growth. Conservative estimates of costs and losses attributed to sea louse infections, 

(estimated at €350M million in 2014 in Norway alone (Carmona-Antoñanzas et al. 2017) suggest 

these are the single greatest pathogen burden on the global salmonid aquaculture industry. The 

life cycle of the sea louse involves high levels of replication, dispersal and obligate host-

association (Boxaspen 2006); this means that local environmental conditions, sea currents, and 

population densities are important ecological and demographic conditions to facilitate or 

impede infestation (Boxaspen 2006; Jackson et al. 2012; Salama et al. 2013). Eggs carried by 

females hatch to free-swimming non-feeding nauplii, planktonic larvae that are passively 

dispersed. These nauplii undergo two moults before developing into a free swimming 

copipodid.  Development time is temperature dependent and at 10 0 C the infectious copepodid 

stage, which needs to settle successfully on a host for survival, develops two to three days post 

hatching. During the host-associated phase of the lifecycle, which progresses through further 

larval and preadult stages before reaching the reproducing adult stage, salmon lice feed on 

mucus, skin and blood of their host fish (Boxaspen 2006). Depending on severity, infections can 

cause skin lesions, anaemia, osmoregulatory dysfunction, stress, suppression of growth and 

immune function, secondary infections and, if left untreated, mortality  (Boxaspen 2006; Jackson 

et al. 2017). Salmon louse control has traditionally relied on a limited number of drug 

treatments (Burridge et al. 2010; Jackson et al. 2017), but large-scale reliance on just a few 

products is associated with a significant risk of developing drug resistance (Denholm et al. 2002; 

Jackson et al. 2017) 

 

Understanding and predicting salmon louse dispersal is a crucial element for predicting 

infestation, connectivity and the spread of salmon lice and associated drug resistance alleles. 

There have been several attempts to characterize population genetic structure in L. salmonis in 

the North Atlantic using conventional microsatellite and sequence markers (Glover et al. 2011; 

Nolan & Powell 2009; Tjensvoll et al. 2006; Todd et al. 1997; Todd et al. 2004). High gene flow 

between sites is consistently reported. In the largest such study (13 microsatellite loci, 2500 

samples), significant but weak (0.0022) FST was detected across the Atlantic, with no evidence 
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for population genetic structuring within geographic regions. More recently a genome-wide SNP 

array was developed and deployed using 6000 variable markers, and showed similar results in 

terms of population structure, alongside extensive evidence of selective sweeps and linkage 

disequilibrium attributable, at least in part, by the use of chemotherapeutics in aquaculture 

(Besnier et al. 2014). Thus, although significant progress has been made in determining 

population genetic signatures of selection in L. salmonis, the goal of distinguishing louse 

populations occurring in different regions - a valuable component of detecting dispersal of lice 

between farms – remains difficult.   

 

Determining genetic structure in pelagic marine species has always been challenging. High 

rates of adult and larval dispersal impedes the accumulation of neutral variation among 

populations and regions. Nonetheless, several studies have achieved genetic stock delineation 

by focusing on non-neutral or putative adaptive markers in conjunction with high numbers of 

SNP markers (e.g. (Montes et al. 2013; Nielsen et al. 2012)). In extreme cases like Anguilla 

rostrata, where the organism’s reproductive ecology predicts and the genetic data support 

panmixia among different populations, the challenge of determining genetic differences 

between different populations is even greater (Côté et al. 2013; Jessop et al. 2008). Screening 

thousands of variable SNP markers against population genetic summary statistics may be able 

to detect outliers, however the identification of which markers might best assign individuals to 

their appropriate populations, groups, or ecomorphs necessitates further computational 

approaches. To this end, population genetics can usefully borrow from machine learning 

algorithms developed in the context of genome-wide association studies (Goldstein et al. 2011). 

Such approaches have been successfully used in A. rostrata, to identify SNPs that predict rearing 

habitat as the result of intra-generational selection (Laporte et al. 2016), for example. More 

recently similar approaches have been employed to successfully discriminate Salmo salar 

populations (Sylvester et al. 2017).  

 

In this study, we identify population structure and loci under selection in L. salmonis using high 

throughput SNP genotyping and advanced analytical methods. To achieve this we collected L. 

salmonis from four different sites in the North-Eastern Atlantic (UK, Norway and two sites in 

Ireland) and generated genomic SNP data using a IIB restriction-enzyme associated library 

preparation approach (Wang et al. 2012). We then tested the power of Random Forest machine 
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learning to reveal population structure and find the method reveals previously un-recognized 

population differences and fine-scale population differentiation. 

 

Methods 

Sample collection and DNA isolation.  Adult and pre-adult Lepeophtheirus salmonis were 

collected in four sites around the North-East Atlantic from 18-24 month old Atlantic Salmon 

from commercial pens in 2015. Sites included Finnkirka (NF), Lebesby, Norway; Loch Duart (LD), 

Scotland, UK; Kenmare Bay (SWI), Kenmare, Ireland and Kilkieran Bay (KB), Galway, Ireland (Fig. 

1A). Male and immature female individuals only were selected for sequencing to avoid gamete 

contamination of DNA extracts. High molecular weight DNA was obtained using a modified salt 

extraction protocol (See supplementary data), quantified using a NanoDrop® ND-1000 

spectrophotometer and visualised on a 1.5% agarose gel to assess quality.  Fifteen high quality 

extracts were chosen per site.   

 

IIb-RAD library preparation and sequencing. Library preparation was undertaken as described in 

Wang et al 2012 (Wang et al. 2012). By reference to in silico digestion of the reference genome 

(https://metazoa.ensembl.org/index.html) two enzymes were selected based on potential 

coverage: AlfI (restrictions site ^5’(10/12)GCA(N)6 TGC(12/10)3’^) and CspCI (restriction site 

^5’(11/12)CAANNNNNGTGG(12/13)3’^). Digested DNA of each sample was ligated to a pair of 

partially double-stranded adaptors with compatible and fully degenerated overhangs (5’NNN3’). 

Finally, the obtained IIb-RAD tags were amplified to introduce a sample-specific 7bp barcode 

and the Illumina NGS annealing sites using two different pairs of sequencing primers. A 1.8% 

agarose gel electrophoresis of the PCR products was performed to verify the presence of the 

expected 150 bp target band (fragment, barcodes and adaptors included). In order to ensure an 

approximately equimolar contribution of each sample to the library, the concentration of each 

PCR product was measured from the intensity of the target band in a digital image of the 1.8% 

agarose gel. We prepared two libraries in total, one for each IIB-REase. The purification of the 

libraries from high-molecular weight fragments and primer-dimers was achieved first by 

removing the target band on agarose gel library and eluting them in water overnight; followed 

by DNA capture with magnetic beads (SPRIselect® Beckman Coulter). The DNA concentration in 

the purified libraries was quantified with a Qubit® Fluorometer (Invitrogen) and the libraries 

were combined in one single pool. Two library pools were sequenced, first on a NextSeq 500, 

then on a MiSeq (Illumina, San Diego, CA, USA) with a single 1x50 bp setup using ‘Version2’ 
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chemistry at Glasgow Polyomics (www.polyomics.gla.ac.uk), which also implemented the read 

demultiplexing and quality-filtering.  

 

IIb-RAD data processing. Short reads were aligned to the reference genome in bowtie 2 

(Langmead & Salzberg 2012) and SNPs were called using the STACKS v1.42 package with a 

minimum read depth of 3 (Catchen et al. 2013). The rxstacks module was used to further screen 

SNPs and the population module filter and export genotypes with a minimum depth of coverage 

of 6, minimum minor allele frequency of 0.05, maximum observed heterozygosity of 0.5 and 

present in at least 60% of individuals. To avoid sequence artefacts generated by low complexity 

in restriction enzyme recognition site, SNPs at positions 12-26 were excluded from the analysis. 

For those RAD tags that retained diversity after screening for artefacts, only a single SNP per 

locus was selected for subsequent analysis.   

 

Population structure analysis and detection of positive selection.  Principal components analysis 

(PCA), discriminant analysis of principal components (DAPC), and population assignment 

probabilities were calculated in adegenet (Jombart & Ahmed 2011). Analyses of molecular 

variance (AMOVA), Weir and Cockerham estimators of FST, and summary statistics (Ho, He, Gis, 

π) were calculated in Genodive (Meirmans & Van Tienderen 2004). P-values for FST were FDR 

adjusted for multiple comparisons using a Benjamini-Hochberg correction in the R-package p-

adjust. Isolation-by-distance was assessed using a Mantel test implemented in the vegan R-

package. Loci putatively under positive selection were identified in Lositan (Antao et al. 2008) 

using a FDR < 0.1 significance threshold and localised on the L. salmonis linkage map (Glover, K 

Pers Comm) to assess genomic correspondence with a previous population genomic study 

(Besnier et al. 2014). Lositan results were plotted using ggplot2 in R. Further, we performed a 

second outlier analysis using BayeScan, as it has a lower type I error rate compared to Lositan 

(Foll & Gaggiotti 2008 )). We ran BayeScan with prior odds of 100 due to the small number of 

SNPs and detected significant outliers with a FDR threshold of 0.05 and putative outliers with a 

FDR threshold of 0.1. Finally, we post hoc identified overlapping outlier SNPs between 

BayeScan and Lositan.   

 In order to identify genes potentially under positive selection we identified all genes 

within a 10kb region around each outlier SNP by blasting the sequence against the L. salmonis 

reference genome using the blastn function in the EnsemblMetazoa database. We identified all 
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genes within those 10kb regions and when possible determined their function using the 

UniprotKB database.  

 

Using Random Forest analysis to detect population-discriminatory SNPs. In order to detect SNPs 

characteristic of each population we employed a machine learning approach using the 

randomForest package in R. Populations were numerically coded and missing data imputed 

using the na.roughfix command.  Three independent random forest runs with 100,000 trees each 

were conducted and checked for convergence between runs by performing pearson correlation 

between SNP importance values. The resultant dataset (R2 > 0.95) was used to select a final 

dataset for the backwards purging approach. As in Laporte et al., all loci with an importance <0 

were removed as non-discriminatory (Laporte et al. 2016). Backwards purging was performed on 

the remaining 317 SNPs. As such each random forest run was re-implemented (three 

independent iterations) and after each run the SNP with the lowest importance was removed 

until only two SNPs were left. We determined the subset of SNPs with the highest 

discriminatory power based on the lowest out-of-bag (OOB) error rate and we used this subset 

for further downstream analysis.  

 In order to assess the population discriminatory power of the random forest selected 

SNPs we used the same methods as for the full SNP dataset. First, we performed a PCA and 

DAPC in adegenet in R to visualise population structuring and assess the population assignment 

accuracy. Second, we performed an AMOVA and estimated pairwise Weir and Cockerham’s Fst in 

Genodive. We also identified the overlap between highly discriminatory SNPs and SNPs 

potentially under positive selection to assess the impact of selection on discriminating L. 

salmonis populations. 

 

Results 

Bioinformatic processing & summary statistics Using IIb-RAD sequencing we generated an 

average of 1,496,567 ± 673,594 reads per individual for 50 individuals from four populations 

across the North-East Atlantic (Fig. 1a). The final catalogue contained 111,090 RAD tags with an 

average coverage of 19.6 ± 6.9 per individual, covering 0.34% of the genome. After stringent 

filtering we retained 1286 SNPs, spanning 787 different reference genome contigs. Genetic 

diversity, measured as nucleotide diversity (π) and observed heterozygosity (Ho) were similar 

across populations (Table 1). Tajima’s D did not indicate any signals characteristic of significant 

population expansion (Fig. S1).   
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Table	 1:	 Summary	 of	 sample	 sizes,	 mean	 sequencing	 coverage	 per	 individual	 and	 summary	 statistics,	

namely	 observed	 heterozygosity	 (Ho),	 expected	 heterozygosity	 (He),	 inbreeding	 coefficient	 (Gis)	 and	

genetic	diversity	(π).		

Population N Mean Coverage Ho He Gis π 

KB 13 19.7 0.278 0.304 0.086 0.3025986 

SWI 14 18.6 0.265 0.304 0.128 0.3019599 

LD 11 19.8 0.258 0.298 0.132 0.2952346 

NF 12 20.2 0.267 0.312 0.143 0.3096919 

 

 

Population structure using the full SNP dataset. In a first approach, we assessed population 

genetic structure using the full dataset of 1286 SNPs by several different approaches. A PCA did 

not reveal any population structuring across the entire range, however using pre-defined 

populations in the DAPC approach revealed a weak population structuring (Fig. 1b & c, Fig. S2). 

The population assignment probability was on average 0.82 ± 0.10. An AMOVA showed weak 

but significant population structure (Fsc = 0.018, p<0.0001; Table 2). However, based on pairwise 

Fst values only LD and KB were significantly genetically differentiated (Fst = 0.01, p<0.0001). No 

significant isolation-by-distance was detected (R2 = -0.35, P = 0.67).  

 

Using machine learning to define population genetic structure. In order to detect population 

structuring among populations we utilised a random forest machine learning approach. We 

detected a subset of 93-101 SNPs that minimised the out-of-bag error rate to 0.1 (compared to 

0.76 for the full dataset) and maximised the discriminatory power among populations (Fig. 2A). 

From this subset, we selected 98 SNPs for further downstream analyses. To assess the power of 

this subset of 98 highly discriminatory loci to detect significant population structure we 

performed the same population genetic analysis as was conducted on the full dataset. A PCA 

performed with the random forest selected subset showed a stronger separation between 

populations with a weak overlap of 95% confidence-intervals between LD and SWI (Fig. S2). 

However, the DAPC clearly separated all populations and the population assignment probability 

recovered was 1, meaning all individuals were correctly assigned to their respective population 

(Fig. 3). The variance explained among populations increased to 9.8% (from 1.8% with the full 

dataset) in the AMOVA (Fsc = 0.098, p<0.0001). All pairwise comparisons showed highly 
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significant Fst-values (range = 0.081 – 0.096), confirming the significant discriminatory power 

of the random forest detected SNP subset.   

 

 

Figure	1:	Population	structuring	 in	L.	 salmonis	bases	on	 the	 full	SNP	dataset.	 A)	Map	 showing	 the	

sampling	 sites	 of	 all	 four	 populations	 across	 the	 North-East	 Atlantic:	 Finnkirka	 (NF),	 Loch	 Duart	 (LD),	

Kenmare	Bay	(SWI)	and	Kilkieran	Bay	(KB).	B)	DAPC	plot	of	the	first	and	second	linear	discriminant	axis	

based	on	the	full	SNP	dataset,	explaining	a	total	of	81.4%	of	the	total	variation.	C)	Membership	probability	

plot	showing	the	population	assignment	probability	for	each	individual.	

 

 

Population discriminating SNPs and selection. One factor that might explain the strong 

discrimination of sea louse populations using the subset of random forest-selected SNPs would 

be divergent selection pressures, such as adaptation to different drug treatments, or local 

adaptation to natural environmental factors. Therefore, we performed two different tests for 

selecting SNPs under significant positive selection.  An FDist approach implemented in Lositan 

detected 19 SNPs under strong positive selection (FDR < 0.1) with an average Fst of 0.233 ± 

0.083 between populations (Fig. 2C, Table 3). Eleven out of all 19 SNPs under positive selection 

are located on previously defined linkage groups 1 and 14, seven and four respectively (Besnier 

et al. 2014). The remaining SNPs are either located on linkage groups 4, 6 and 7 (two, two and 

one respectively) or could not be assigned to a linkage group. We further detected 46 SNPs 

under balancing selection (FDR < 0.1; p < 0.02). 
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An analysis in BayeScan detected only one SNP (FDR < 0.01) under significant positive 

selection and two more putatively under selection (FDR < 0.05). All three of these SNPs were 

also detected to be under selection by Lositan and the significant one was also the top outlier 

in Lositan and located on linkage group 1 (Fst = 0.507). The other two putative SNPs in BayeScan 

were also highly significant in Lositan (p < 0.001) and were located on linkage group 1 and 4.  

 To detect how selection influences the genetic discrimination of populations we 

identified the amount of overlap between the 98 SNPs detected by random forest and all 

Lositan SNPs under significant positive selection. 63.2% of loci (12 out of 19 loci) detected to be 

under positive selection using Lositan were also identified being highly discriminatory between 

populations using random forest.  Locus 3621, which was also identified using BayeScan, had 

the highest importance in the random forest analysis, suggesting that strong local adaptation 

and selection distinguishes sea louse populations.  

 

Figure	2:	Detecting	discriminatory	loci	using	random	forest	and	signals	of	selection.	A)	Plot	showing	

the	results	of	 the	backwards	purging	approach,	with	 the	number	of	SNPs	per	subset	plotted	against	 the	

out-of-bag	 (OOB)	 error	 rate	 for	 each	 subset.	 The	 black	 line	 shows	 the	 smoothed	 estimates	 with	 95%	

confidence-intervals	(grey	area).	The	two	red	dotted	lines	show	the	range	of	subsets	(93-101	SNPs)	with	

the	lowest	OOB	error	rate.	B)	The	inset	shows	the	initial	distribution	of	scaled	importance	values	for	each	

SNP	before	the	backwards	purging.	The	grey	dotted	line	shows	the	importance	threshold	for	the	subset	of	

SNPs	used	for	backwards	purging.	C)	FST	outlier	analysis	results	showing	individual	SNP	loci	and	5%	(blue	

line)	 and	 95%	 (red	 line)	 confidence	 intervals.	 Outlier	 loci	 potentially	 under	 positive	 selection	 are	 in	

plotted	in	red	and	those	potentially	under	balancing	selection	in	blue.	Squares	mark	FST	outlier	 loci	 that	

were	also	detected	as	highly	discriminatory	using	random	forest	and	triangles	those	that	are	not	shared.	

The	significant	outlier	detected	using	BayeScan	is	labelled	with	‘Locus	3621’.	

 

0

10

20

30

40

0 500 1000
SNP ranking

Im
po
rta
nc
e

0.1

0.2

0.3

0.4

0 100 200 300

Number of SNPs

O
O
B
er
ro
r-
ra
te

0.0

0.2

0.4

0.1 0.2 0.3 0.4 0.5

Heterozygosity

Fs
t

Locus 3621CA B

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2017. ; https://doi.org/10.1101/179218doi: bioRxiv preprint 

https://doi.org/10.1101/179218
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

Table	2:	 AMOVA	 summarising	 the	 global	 population	 structure	 in	L.	salmonis	 populations	 using	 the	 full	

SNP	dataset	and	only	the	discriminatory	SNPs	identified	using	the	random	forest	appraoch.		

 Source of Var. Nested in % Var F-stat F-value P-value 

Full  

SNP  

dataset 

Within Ind. -- 88.4 F_it 0.116 -- 

Among Ind. Population 9.8 F_is 0.1 p<0.0001 

Among Pop. -- 1.8 F_sc 0.018 p<0.0001 

 

Discriminatory  

SNPs 

Within Ind. -- 78.9 F_it 0.211 -- 

Among Ind. Population 11.3 F_is 0.125 p<0.0001 

Among Pop. -- 9.8 F_sc 0.098 p<0.0001 

 

 

Annotation of outlier SNPs. In order to identify specific genes potentially involved in local 

adaptation and are under positive selection in sea lice, we explored these regions in the 

annotated L. salmonis genome. Five of the 19 SNPs were in regions contained annotated genes 

within 10kb, but only one of the annotated genes has been characterized. Two of the contigs 

with annotated genes were on linkage group 01, two on linkage group 14 and one on linkage 

group 6. Contig LSalAtl2s80 (linkage group 01) contained the characterized gene PSA2, which 

codes for the proteasome subunit alpha type protein.  

 

 

See	next	page	for	figure	legend.	
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Figure	 3:	 Population	 structure	 and	 population	 assignment	 in	 L.	 salmonis	 using	 discriminatory	

random	 forest	 loci.	A)	 DAPC	 plot	 of	 the	 first	 and	 second	 linear	 discriminant	 axis	 based	 on	 98	 highly	

discriminatory	 SNPs,	 explaining	 a	 total	 of	 74.3%	of	 the	 total	 variation.	 B)	Membership	 probability	 plot	

showing	the	population	assignment	probability	for	each	individual.	Each	individual	was	correctly	assigned	

to	 its	 sampling	 site.	 C)	 Heatmap	 showing	 pairwise	 Fst	 between	 sampling	 sites	 based	 on	 the	 full	 SNP	

dataset	(below	diagonal)	and	based	on	the	highly	discriminatory	SNP	subset	(above	diagonal).	Significant	

Fst	values	(inside	each	square)	with	P	<	0.05	are	highlighted	in	bold.		

	

	
Table	3:	Outlier	SNPs	identified	using	the	different	approaches	(Lositan,	BayeScan	and	Random	Forest)	

and	annotation.	RF	stands	for	random	forest,	meaning	SNPs	that	have	been	detected	using	the	random	

forest	approach.	‘Unchar.’	stands	for	uncharacterized	genes.	

Locus ID Contig_position LG Fst (Lositan) Lositan BayeScan RF Annotation 

38173 lsalatl2s740_42780 4 0.320968 Yes Putative Yes  -- 

3621 lsalatl2s1185_140991 1 0.50726 Yes Yes Yes  -- 

40396 lsalatl2s80_965936 1 0.20663 Yes No Yes  PSA2 

41679 lsalatl2s85_1109389 4 0.181416 Yes No No  -- 

42860 lsalatl2s907_144760 -- 0.203467 Yes No No  -- 

4355 lsalatl2s122_618061 7 0.207882 Yes No No  -- 

6832 lsalatl2s139_1380660 1 0.199199 Yes No No  -- 

8287 lsalatl2s14_555303 1 0.377272 Yes Putative Yes  unchar. 

8241 lsalatl2s14_1020918 1 0.217428 Yes No Yes  unchar. 

9674 lsalatl2s163_163880 14 0.201546 Yes No No  -- 

15099 lsalatl2s228_333839 1 0.241913 Yes No Yes  -- 

1623 lsalatl2s10843_736 -- 0.212014 Yes No Yes  -- 

21928 lsalatl2s3387_1782 -- 0.185878 Yes No Yes  -- 

25024 lsalatl2s39_920686 6 0.216516 Yes No Yes  -- 

26383 lsalatl2s429_103294 14 0.175808 Yes No No  unchar. 

29942 lsalatl2s514_325267 14 0.164932 Yes No No  -- 

30716 lsalatl2s535_184954 14 0.230334 Yes No Yes  -- 

2652 lsalatl2s1135_117353 1 0.183753 Yes No Yes  -- 

30805 lsalatl2s538_341294 6 0.20138 Yes No Yes  unchar. 
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Discussion  

In this study, we used a IIb-RAD sequencing approach coupled with advanced and sensitive 

population genetic analyses to genetically ‘fingerprint’ L. salmonis populations in the North-East 

Atlantic and to detect signatures of selection.  We were able to achieve this using a relatively 

small (n=50) number of individuals genotyped across only a limited portion of the genome 

(c.2.3Mbp = 0.34%). An important set of discriminatory loci was identified against a background 

of high genetic connectivity via a random forest machine-learning algorithm and these can be 

exploited to distinguish between nearby sea louse populations. A high degree of overlap 

between loci under positive selection using genome-scan approaches and loci with high 

discriminatory power from random forest analysis was also observed.  

 

Sea lice are known to disperse rapidly among aquaculture sites as part of the larval zooplankton 

as well as via the movements of migratory (Salmo salar) or resident (Salmo trutta) anadromous 

salmonids (Boxaspen 2006).  Previous population genetic studies were consistent with such 

high levels of dispersal (Glover et al. 2011; Nolan & Powell 2009; Todd et al. 2004), finding no 

significant genetic differentiation in our study region when utilizing a set of neutral 

microsatellite loci. Inclusion of putatively non-neutral loci can improve population 

discrimination across the Atlantic (e.g. (Glover et al. 2011)). However, the same studies could not 

distinguish populations on a small geographic scale as our data and approach suggest is 

possible. 

 

More recent genome wide analysis of SNP variation in L. salmonis has to date been consistent 

with the lack of genetic structure that was found using classic markers such as microsatellite 

loci (Besnier et al. 2014). As with our dataset, correlation with geographic distances is not a 

feature of the genetic variation observed even with such genome-wide information. We found 

global FST-values based on all loci to be significant but low (0.018), in agreement with patterns 

that have been found previously (Besnier et al. 2014). The use of anti-parastic drugs has been 

shown to be a strong selective pressure in sea lice and several genomic regions under selection 

have been linked to drug treatment (Besnier et al. 2014). In particular linkage groups 1 and 5 in 

the study showed evidence of selective sweeps, with the same region on linkage group 5 being 

implicated in drug resistance in a QTL analysis (Besnier et al. 2014). Other linkage groups, such 
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as 14 also showed signal of positive selection in that study (Besnier et al. 2014). Our study 

similarly found that 11 out of the 19 outlier loci we identified also lay in linkage groups 1 & 14, 

which represents an important independent validation. Spatio-temporal variation in treatment 

regimes, such as rotations of different drugs or the alternative use of warm-water or freshwater 

treatments (Ljungfeldt et al. 2016), may drive the heterogeneity observed in our and previous 

studies. This is partly as a result of cost, perceived efficacy, as well as different regulatory 

conditions in the countries concerned. Even though spatio-temporal variation in drug resistance 

is likely to be the strongest driver of differential selection among populations, local 

environmental conditions can constitute further selective pressures driving allele frequency 

differences among populations. Local environmental variables such as temperature (e.g. 

(Samsing et al. 2016)) and salinity (e.g. (Bricknell et al. 2006)), for example, can have profound 

effects on sea louse survival and development. Furthermore, a combination of drug treatment 

and increased host density is shown to influence the evolution of reproductive and life history 

traits (Mennerat et al. 2017), as well as virulence in sea lice (Mennerat et al. 2012) among 

different populations. However, such local adaptation is most likely linked to subtle allele 

frequency differences, compared to strong selective sweeps caused by drug treatments, as the 

selective pressure is comparably low. The combination of a few outlier loci under strong 

positive selection and a wide range of loci showing subtle allele frequency differences fits the 

expected pattern.  Independent of the cause for allele frequency differences among 

populations, we show that a random forest machine learning approach can be used to cost-

effectively distinguish even near-by sea louse populations, even with a low number of samples 

and genotyping density.  

 The use of (historical) samples from the same site at different time points, differing in 

treatment regimes, could be used to disentangle the effects of drug regime and local adaption 

on allele frequency differences among populations and signatures of selection. Genome-scale 

population genetic profiling, alongside robust phenotyping, may also eventually reveal the 

genetic architecture underlying drug resistance and local adaptation. Here we have identified 

signals of selection across the genome, including markers closely associated with functional 

genes (e.g. PSA2). The association of genomic response to selection, natural environmental 

conditions, and drug treatment profiles will be important considerations for future work. 

 

Tools to enable parasite traceability and molecular epidemiology are an important requirement 

for rational sea louse control. Hydrographic modelling has been successfully deployed to 
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understand short-range dispersal L. salmonis between farms and have been used to evaluate 

optimal treatment strategies (Gettinby et al. 2011; Salama et al. 2013).  Such model predictions 

can be biologically ‘truthed’ using planktonic trawls and strategically placed ‘sentinel’ fish that 

can infer the geographic scales of dispersal, as it has been done in one of the study areas, 

Kilkieran Bay (KB), (Jackson et al. 2012). However, biological (or genetic) confirmation of larger 

scale dispersal models (i.e. between lochs (=fjord) and loch systems) within and across regions is 

also required to assess long-range re-infestation risks for aquaculture sites.  Such a strategy is 

of particular relevance in the light of an increasing control focus on loch-wide fallowing 

practices (Torrissen et al. 2013). Furthermore, integration of genetic connectivity data with 

hydrographic larval dispersal models – so called ‘seascape genetics’ (e.g.(Riginos & Liggins 

2013))  - is likely to be more fruitful in defining any spatial-genetic correlations than crude map 

distances and represents an interesting further avenue for study.  In this context, our data show 

that it may be possible to genetically ‘fingerprint’ louse populations in nearby regions to 

understand connectivity between them and provide a valuable tool for disease surveillance. 
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Supplementary material:  

 

Figure S1: Violin plots of Tajima’s D for each sea louse population.  

Figure S2: Principal component analysis for the full SNP dataset and random forest candidate 

SNPs. 
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